Rail irregularities, in particular for urban rail- way infrastructures, are one of the main causes for the generation of noise and vibrations. In addition, repetitive loading may also lead to decay of the structural e...Rail irregularities, in particular for urban rail- way infrastructures, are one of the main causes for the generation of noise and vibrations. In addition, repetitive loading may also lead to decay of the structural elements of the rolling stock. This further causes an increase in main- tenance costs and reduction of service life. Monitoring these defects on a periodic basis enables the network rail managers to apply proactive measures to limit further damage. This paper discusses the measurement methods for rail corrugation with particular regard to the analysis tools for evaluating the thresholds of acceptability in re- lation to the tramway Italian transport system. Further- more, a method of analysis has been proposed: an application of the methodology used for treating road profiles has been also utilized for the data processing of rail profilometric data.展开更多
Measuring multi-directional waves with the wave gauge array is one of the fundamental and easily realised methods. In this paper, the wave gauge array is described and the effects of the gauge spacing, the array orien...Measuring multi-directional waves with the wave gauge array is one of the fundamental and easily realised methods. In this paper, the wave gauge array is described and the effects of the gauge spacing, the array orientations, etc. of the three array arrangements, i. e., linear array, T-type array and pentagon array, on the resolution of the directional spreading of waves, are investigated experimentally. This study can be used as a reference in the experimental study and the field measurement of directional waves.展开更多
Through the experimental design and theoretical analysis, three technologies used for characterizing the two-photon absorption(TPA) properties, such as nonlinear transmission experiment and theory, Z-scan technology a...Through the experimental design and theoretical analysis, three technologies used for characterizing the two-photon absorption(TPA) properties, such as nonlinear transmission experiment and theory, Z-scan technology and two-photon induced fluorescence method, are introduced. The properties of the three experiments to be utilizable and realizable under desirable limitation are simply analyzed. The advantages of the measurements for TPA characterization are also analyzed.展开更多
Peroxyacetic acid has been widely used in food,medical,and synthetic chemical fields for the past several decades.Recently,peroxyacetic acid has gradually become an effective alternative disinfectant in wastewater dis...Peroxyacetic acid has been widely used in food,medical,and synthetic chemical fields for the past several decades.Recently,peroxyacetic acid has gradually become an effective alternative disinfectant in wastewater disinfection and has strong redox capacity for removing micro-pollutants from drinking water.However,commercial peroxyacetic acid solutions are primarily multi-component mixtures of peroxyacetic acid,acetic acid,hydrogen peroxide,and water.During the process of water treatment,peroxyacetic acid and hydrogen peroxide(H2O2)often coexist,which limits further investigation on the properties ofperoxyacetic acid.Therefore,analytical methods need to achieve a certain level of selectivity,particularly when peroxyacetic acid and hydrogen peroxide coexist.This review summarizes the measurement and detection methods of peroxyacetic acid,comparing the principle,adaptability,and relative merits of these methods.展开更多
Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditiona...Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV) was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU). The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with ki- nematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA) test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis.展开更多
Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban tran...Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban transportation carbon emission reduction.Since the whole life cycle of urban rail transit carbon emission measurement involves a wide range of aspects,a systematic framework model is required for analysis.This research reviews the existing studies on carbon emission of urban rail transit.First,the characteristics of urban rail transit carbon emission were determined and the complexity of carbon emission measurement was analyzed.Then,the urban rail transit carbon emission measurement models were compared and analyzed in terms of the selection of research boundaries,the types of greenhouse gas(GHG)emissions calculation,and the accuracy of the measurement.Following that,an intelligent station was introduced to analyze the practical application of digital collaboration technology and energy-saving and carbon-reducing system platforms for rail transit.Finally,the urgent problems and future research directions at this stage were discussed.This research presents the necessity of establishing a dynamic carbon emission factor library and the important development trend of system integration of carbon emission measurement and digital system technology.展开更多
We describe theoretically the grounded method of measuring the conductivity of anisotropic layered semiconductor materials. The suggested method implies the use of a four-probe testing device with a linear arrangement...We describe theoretically the grounded method of measuring the conductivity of anisotropic layered semiconductor materials. The suggested method implies the use of a four-probe testing device with a linear arrangement of probes. The final expressions for identifying the electrical conductivity are presented in the form of a series of analytic functions. The suggested method is experimentally verified, and practical recommendations of how to apply it are also provided.展开更多
Accurately measuring magnetic fields is essential for magnetic-field sensitive experiments in areas like atomic,molecular,and optical physics,condensed matter experiments,and other areas.However,since many experiments...Accurately measuring magnetic fields is essential for magnetic-field sensitive experiments in areas like atomic,molecular,and optical physics,condensed matter experiments,and other areas.However,since many experiments are often conducted in an isolated environment that is inaccessible to experimentalists,it can be challenging to accurately determine the magnetic field at the target location.Here,we propose an efficient method for detecting magnetic fields with the assistance of an artificial neural network(NN).Instead of measuring the magnetic field directly at the desired location,we detect fields at several surrounding positions,and a trained NN can accurately predict the magnetic field at the target location.After training,we achieve a below 0.3%relative prediction error of magnetic field magnitude at the center of the vacuum chamber,and successfully apply this method to our erbium quantum gas apparatus for accurate calibration of magnetic field and long-term monitoring of environmental stray magnetic field.The demonstrated approach significantly simplifies the process of determining magnetic fields in isolated environments and can be applied to various research fields across a wide range of magnetic field magnitudes.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
Proper selection of machines and equipment used in underground coal mining significantly influence the increase of their durability and reliability. The paper describes new, created in Poland devices to determine and ...Proper selection of machines and equipment used in underground coal mining significantly influence the increase of their durability and reliability. The paper describes new, created in Poland devices to determine and evaluate the mechanical properties of the carbon (workability) whose co-founder is the author of this paper. These devices reflect the nature of the work of a plough and drum cutter-loader. It is presented their construction, operating principles as well as innovation and originality of used solutions. The devices are certified by enabling them to work in conditions of real mines, as a device intended for use in potentially explosive atmospheres. These devices have been awarded medals and diplomas at many International Fairs and Technological Innovation Exhibitions.展开更多
Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is...Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.展开更多
Due to local uneven heating during the welding process,the residual stress of the structure after welding affects the reliability of it.In order to ensure the reliability,it is of great significance to test the residu...Due to local uneven heating during the welding process,the residual stress of the structure after welding affects the reliability of it.In order to ensure the reliability,it is of great significance to test the residual stress distribution of the welded joint.It has always been the focus to find a simple and feasible method for residual stress testing to quickly and accurately obtain the residual stress distribution of welded joints.The mechanical measurement method has high measurement accuracy,convenient and easy operation,but it will cause certain damage to the components.Physical measurement method can avoid damage to components,but its test cost is usually high,and its measurement accuracy can also be affected by the material microstructure characteristics of welded components.Based on the advantages and disadvantages of these two residual stress test methods,a modal test method is proposed.This method is a non-destructive measurement method.Based on the mathematical relationship between the residual stress of the welded structure and the natural frequency(mathematical model),the natural frequency is measured through the modal test to calculate the residual stress quickly.However,it is difficult to establish a mathematical model with this method,and it is not suitable for realization.展开更多
The angular light-scattering measurement(ALSM) method combined with an improved artificial bee colony algorithm is introduced to determine aerosol optical constants and aerosol size distribution(ASD) simultaneousl...The angular light-scattering measurement(ALSM) method combined with an improved artificial bee colony algorithm is introduced to determine aerosol optical constants and aerosol size distribution(ASD) simultaneously. Meanwhile, an optimized selection principle of the ALSM signals based on the sensitivity analysis and principle component analysis(PCA)is proposed to improve the accuracy of the retrieval results. The sensitivity analysis of the ALSM signals to the optical constants or characteristic parameters in the ASD is studied first to find the optimized selection region of measurement angles. Then, the PCA is adopted to select the optimized measurement angles within the optimized selection region obtained by sensitivity analysis. The investigation reveals that, compared with random selection measurement angles, the optimized selection measurement angles can provide more useful measurement information to ensure the retrieval accuracy. Finally,the aerosol optical constants and the ASDs are reconstructed simultaneously. The results show that the retrieval accuracy of refractive indices is better than that of absorption indices, while the characteristic parameters in ASDs have similar retrieval accuracy. Moreover, the retrieval accuracy in studying L-N distribution is a little better than that in studying Gamma distribution for the difference of corresponding correlation coefficient matrixes of the ALSM signals. All the results confirm that the proposed technique is an effective and reliable technique in estimating the aerosol optical constants and ASD simultaneously.展开更多
The cone is widely used in mechanical design for rotation, centering and fixing. Whether the conicity error can be measured and evaluated accurately will directly influence its assembly accuracy and working performanc...The cone is widely used in mechanical design for rotation, centering and fixing. Whether the conicity error can be measured and evaluated accurately will directly influence its assembly accuracy and working performance. According to the new generation geometrical product specification(GPS), the error and its measurement uncertainty should be evaluated together. The mathematical model of the minimum zone conicity error is established and an improved immune evolutionary algorithm(IlEA) is proposed to search for the conicity error. In the IIEA, initial antibodies are firstly generated by using quasi-random sequences and two kinds of affinities are calculated. Then, each antibody clone is generated and they are self-adaptively mutated so as to maintain diversity. Similar antibody is suppressed and new random antibody is generated. Because the mathematical model of conicity error is strongly nonlinear and the input quantities are not independent, it is difficult to use Guide to the expression of uncertainty in the measurement(GUM) method to evaluate measurement uncertainty. Adaptive Monte Carlo method(AMCM) is proposed to estimate measurement uncertainty in which the number of Monte Carlo trials is selected adaptively and the quality of the numerical results is directly controlled. The cone parts was machined on lathe CK6140 and measured on Miracle NC 454 Coordinate Measuring Machine(CMM). The experiment results confirm that the proposed method not only can search for the approximate solution of the minimum zone conicity error(MZCE) rapidly and precisely, but also can evaluate measurement uncertainty and give control variables with an expected numerical tolerance. The conicity errors computed by the proposed method are 20%-40% less than those computed by NC454 CMM software and the evaluation accuracy improves significantly.展开更多
This paper systematically summarizes previous measuring methods and observational instruments for the magnitude of dewfall on land surface, analyzes the characteristics of common observational instruments for land sur...This paper systematically summarizes previous measuring methods and observational instruments for the magnitude of dewfall on land surface, analyzes the characteristics of common observational instruments for land surface dewfall, and describes several basic dewfall measurement methods. Moreover, the basic principles of these methods and instruments are interpreted, and their advantages, disadvantages, and applicability are analyzed. Recommendations for the further improvement of these observational instruments and the development of dewfall measuring methods are presented, and new technologies and scientific proposals for exploiting dewfall are elucidated.展开更多
The undisturbed ground temperatures are important for design of the ground heat exchangers in ground source heat pump (GSHP) systems. In this paper, the undisturbed ground temperatures measured in two different me...The undisturbed ground temperatures are important for design of the ground heat exchangers in ground source heat pump (GSHP) systems. In this paper, the undisturbed ground temperatures measured in two different methods are presented. The investigation was carried out in two cases. The temperature measured with the direct method is assumed to give the correct undisturbed ground temperature profile. The temperature measured with indirect method overestimates the undisturbed ground temperature by 2.1℃ and 1.7~C. This difference is mainly caused by the circulation pump and ambient air to the fluid. Therefore, the results that are decreased about 2℃ as compared with the indirect measured are recommended to estimate the undisturbed ground temperature in situ measuring. A smaller pump or deeper borehole or mild weather would result in a more correct temperature. Because the undisturbed ground temperature is affected by many factors. Whether or not these conclusions are correct to other areas, this would need further investigation.展开更多
Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degrad...Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.展开更多
Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave ref...Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave reflection method is found to can obtain the thickness distribution along a certain direction.It is a simple and suitable method to evaluate the film thickness uniformity.展开更多
In this paper, the measurement method of calorimetric power for an electron cyclotron resonance heating(ECRH) system for EAST is presented. This method requires measurements of the water flow through the cooling cir...In this paper, the measurement method of calorimetric power for an electron cyclotron resonance heating(ECRH) system for EAST is presented. This method requires measurements of the water flow through the cooling circuits and the input and output water temperatures in each cooling circuit. Usually, the inlet water temperature stability is controlled to obtain more accurate results.The influence of the inlet water temperature change on the measurement results is analyzed for the first time in this paper. Also, a novel temperature calibration method is proposed. This kind of calibration method is accurate and effective, and can be easily implemented.展开更多
The air quality inside vehicle is concerned widely in the world. The pollution inside vehicle is special serious in China. State Environmental Protection Administration of China is formulating the standard of air qual...The air quality inside vehicle is concerned widely in the world. The pollution inside vehicle is special serious in China. State Environmental Protection Administration of China is formulating the standard of air quality inside vehicle. However the measurement relates to many factors. Because of the small space, temperature easy changed, various ventilation modes, being close to pollution source of engine exhaust, there are differences between in-vehicle and indoor measurement. The influence of measuring factors was investigated. Those factors include temperature, preconditioning time, ventilation modes, engine state, and sampling fashion. The measuring mode and relating factors were discussed. The suggestion was offered.展开更多
文摘Rail irregularities, in particular for urban rail- way infrastructures, are one of the main causes for the generation of noise and vibrations. In addition, repetitive loading may also lead to decay of the structural elements of the rolling stock. This further causes an increase in main- tenance costs and reduction of service life. Monitoring these defects on a periodic basis enables the network rail managers to apply proactive measures to limit further damage. This paper discusses the measurement methods for rail corrugation with particular regard to the analysis tools for evaluating the thresholds of acceptability in re- lation to the tramway Italian transport system. Further- more, a method of analysis has been proposed: an application of the methodology used for treating road profiles has been also utilized for the data processing of rail profilometric data.
文摘Measuring multi-directional waves with the wave gauge array is one of the fundamental and easily realised methods. In this paper, the wave gauge array is described and the effects of the gauge spacing, the array orientations, etc. of the three array arrangements, i. e., linear array, T-type array and pentagon array, on the resolution of the directional spreading of waves, are investigated experimentally. This study can be used as a reference in the experimental study and the field measurement of directional waves.
基金Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University(KLSSM-200607)
文摘Through the experimental design and theoretical analysis, three technologies used for characterizing the two-photon absorption(TPA) properties, such as nonlinear transmission experiment and theory, Z-scan technology and two-photon induced fluorescence method, are introduced. The properties of the three experiments to be utilizable and realizable under desirable limitation are simply analyzed. The advantages of the measurements for TPA characterization are also analyzed.
基金We acknowledge supports from National Key Basic Research Program of China(Grant No.2019YFA0705800)National Natural Science Foundation of China(Nos.21876049 and 91834301).The authors show deep gratitude to Mr.Casey Finnerty from UC Berkeley on polishing the manuscript.
文摘Peroxyacetic acid has been widely used in food,medical,and synthetic chemical fields for the past several decades.Recently,peroxyacetic acid has gradually become an effective alternative disinfectant in wastewater disinfection and has strong redox capacity for removing micro-pollutants from drinking water.However,commercial peroxyacetic acid solutions are primarily multi-component mixtures of peroxyacetic acid,acetic acid,hydrogen peroxide,and water.During the process of water treatment,peroxyacetic acid and hydrogen peroxide(H2O2)often coexist,which limits further investigation on the properties ofperoxyacetic acid.Therefore,analytical methods need to achieve a certain level of selectivity,particularly when peroxyacetic acid and hydrogen peroxide coexist.This review summarizes the measurement and detection methods of peroxyacetic acid,comparing the principle,adaptability,and relative merits of these methods.
文摘Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV) was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU). The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with ki- nematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA) test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis.
基金supported by Beijing Natural Science Foundation(J210001)Natural Science Foundation of Hebei Province(E2021210142)Tianjin Natural Science Foundation(21JCZXJC00160).
文摘Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban transportation carbon emission reduction.Since the whole life cycle of urban rail transit carbon emission measurement involves a wide range of aspects,a systematic framework model is required for analysis.This research reviews the existing studies on carbon emission of urban rail transit.First,the characteristics of urban rail transit carbon emission were determined and the complexity of carbon emission measurement was analyzed.Then,the urban rail transit carbon emission measurement models were compared and analyzed in terms of the selection of research boundaries,the types of greenhouse gas(GHG)emissions calculation,and the accuracy of the measurement.Following that,an intelligent station was introduced to analyze the practical application of digital collaboration technology and energy-saving and carbon-reducing system platforms for rail transit.Finally,the urgent problems and future research directions at this stage were discussed.This research presents the necessity of establishing a dynamic carbon emission factor library and the important development trend of system integration of carbon emission measurement and digital system technology.
基金Supported by the Ministry of Education and Science of the Russian Federation under Grant No 2271
文摘We describe theoretically the grounded method of measuring the conductivity of anisotropic layered semiconductor materials. The suggested method implies the use of a four-probe testing device with a linear arrangement of probes. The final expressions for identifying the electrical conductivity are presented in the form of a series of analytic functions. The suggested method is experimentally verified, and practical recommendations of how to apply it are also provided.
基金Project supported by the RGC of China(Grant Nos.16306119,16302420,16302821,16306321,16306922,C6009-20G,N-HKUST636-22,and RFS2122-6S04).
文摘Accurately measuring magnetic fields is essential for magnetic-field sensitive experiments in areas like atomic,molecular,and optical physics,condensed matter experiments,and other areas.However,since many experiments are often conducted in an isolated environment that is inaccessible to experimentalists,it can be challenging to accurately determine the magnetic field at the target location.Here,we propose an efficient method for detecting magnetic fields with the assistance of an artificial neural network(NN).Instead of measuring the magnetic field directly at the desired location,we detect fields at several surrounding positions,and a trained NN can accurately predict the magnetic field at the target location.After training,we achieve a below 0.3%relative prediction error of magnetic field magnitude at the center of the vacuum chamber,and successfully apply this method to our erbium quantum gas apparatus for accurate calibration of magnetic field and long-term monitoring of environmental stray magnetic field.The demonstrated approach significantly simplifies the process of determining magnetic fields in isolated environments and can be applied to various research fields across a wide range of magnetic field magnitudes.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
文摘Proper selection of machines and equipment used in underground coal mining significantly influence the increase of their durability and reliability. The paper describes new, created in Poland devices to determine and evaluate the mechanical properties of the carbon (workability) whose co-founder is the author of this paper. These devices reflect the nature of the work of a plough and drum cutter-loader. It is presented their construction, operating principles as well as innovation and originality of used solutions. The devices are certified by enabling them to work in conditions of real mines, as a device intended for use in potentially explosive atmospheres. These devices have been awarded medals and diplomas at many International Fairs and Technological Innovation Exhibitions.
文摘Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.
基金Project was supported by the National Natural Science Foundation of China(Grant No.52165034)Science and Technology Programs of Inner Mongolia(Grant No.2020GG0301)+1 种基金Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No.2019MS05061)Scientific Research Projects of Higher Education of Inner Mongolia Autonomous Region Institutions(Grant No.NJZY20066).
文摘Due to local uneven heating during the welding process,the residual stress of the structure after welding affects the reliability of it.In order to ensure the reliability,it is of great significance to test the residual stress distribution of the welded joint.It has always been the focus to find a simple and feasible method for residual stress testing to quickly and accurately obtain the residual stress distribution of welded joints.The mechanical measurement method has high measurement accuracy,convenient and easy operation,but it will cause certain damage to the components.Physical measurement method can avoid damage to components,but its test cost is usually high,and its measurement accuracy can also be affected by the material microstructure characteristics of welded components.Based on the advantages and disadvantages of these two residual stress test methods,a modal test method is proposed.This method is a non-destructive measurement method.Based on the mathematical relationship between the residual stress of the welded structure and the natural frequency(mathematical model),the natural frequency is measured through the modal test to calculate the residual stress quickly.However,it is difficult to establish a mathematical model with this method,and it is not suitable for realization.
基金Project supported by the Jiangsu Provincial Natural Science Foundation,China(Grant Nos.BK20170800 and BK20160794)the National Natural Science Foundation of China(Grant No.51606095)
文摘The angular light-scattering measurement(ALSM) method combined with an improved artificial bee colony algorithm is introduced to determine aerosol optical constants and aerosol size distribution(ASD) simultaneously. Meanwhile, an optimized selection principle of the ALSM signals based on the sensitivity analysis and principle component analysis(PCA)is proposed to improve the accuracy of the retrieval results. The sensitivity analysis of the ALSM signals to the optical constants or characteristic parameters in the ASD is studied first to find the optimized selection region of measurement angles. Then, the PCA is adopted to select the optimized measurement angles within the optimized selection region obtained by sensitivity analysis. The investigation reveals that, compared with random selection measurement angles, the optimized selection measurement angles can provide more useful measurement information to ensure the retrieval accuracy. Finally,the aerosol optical constants and the ASDs are reconstructed simultaneously. The results show that the retrieval accuracy of refractive indices is better than that of absorption indices, while the characteristic parameters in ASDs have similar retrieval accuracy. Moreover, the retrieval accuracy in studying L-N distribution is a little better than that in studying Gamma distribution for the difference of corresponding correlation coefficient matrixes of the ALSM signals. All the results confirm that the proposed technique is an effective and reliable technique in estimating the aerosol optical constants and ASD simultaneously.
基金Supported by National Natural Science Foundation of China(Grant No.51075198)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK2010479)+1 种基金Jiangsu Provincial Project of Six Talented Peaks of ChinaJiangsu Provincial Project of 333 Talents Engineering of China(Grant No.3-45)
文摘The cone is widely used in mechanical design for rotation, centering and fixing. Whether the conicity error can be measured and evaluated accurately will directly influence its assembly accuracy and working performance. According to the new generation geometrical product specification(GPS), the error and its measurement uncertainty should be evaluated together. The mathematical model of the minimum zone conicity error is established and an improved immune evolutionary algorithm(IlEA) is proposed to search for the conicity error. In the IIEA, initial antibodies are firstly generated by using quasi-random sequences and two kinds of affinities are calculated. Then, each antibody clone is generated and they are self-adaptively mutated so as to maintain diversity. Similar antibody is suppressed and new random antibody is generated. Because the mathematical model of conicity error is strongly nonlinear and the input quantities are not independent, it is difficult to use Guide to the expression of uncertainty in the measurement(GUM) method to evaluate measurement uncertainty. Adaptive Monte Carlo method(AMCM) is proposed to estimate measurement uncertainty in which the number of Monte Carlo trials is selected adaptively and the quality of the numerical results is directly controlled. The cone parts was machined on lathe CK6140 and measured on Miracle NC 454 Coordinate Measuring Machine(CMM). The experiment results confirm that the proposed method not only can search for the approximate solution of the minimum zone conicity error(MZCE) rapidly and precisely, but also can evaluate measurement uncertainty and give control variables with an expected numerical tolerance. The conicity errors computed by the proposed method are 20%-40% less than those computed by NC454 CMM software and the evaluation accuracy improves significantly.
基金supported by the National Science Foundation of China (Grant Nos. 40830957 and 40575006)
文摘This paper systematically summarizes previous measuring methods and observational instruments for the magnitude of dewfall on land surface, analyzes the characteristics of common observational instruments for land surface dewfall, and describes several basic dewfall measurement methods. Moreover, the basic principles of these methods and instruments are interpreted, and their advantages, disadvantages, and applicability are analyzed. Recommendations for the further improvement of these observational instruments and the development of dewfall measuring methods are presented, and new technologies and scientific proposals for exploiting dewfall are elucidated.
文摘The undisturbed ground temperatures are important for design of the ground heat exchangers in ground source heat pump (GSHP) systems. In this paper, the undisturbed ground temperatures measured in two different methods are presented. The investigation was carried out in two cases. The temperature measured with the direct method is assumed to give the correct undisturbed ground temperature profile. The temperature measured with indirect method overestimates the undisturbed ground temperature by 2.1℃ and 1.7~C. This difference is mainly caused by the circulation pump and ambient air to the fluid. Therefore, the results that are decreased about 2℃ as compared with the indirect measured are recommended to estimate the undisturbed ground temperature in situ measuring. A smaller pump or deeper borehole or mild weather would result in a more correct temperature. Because the undisturbed ground temperature is affected by many factors. Whether or not these conclusions are correct to other areas, this would need further investigation.
基金Projects(51475462,61374138,61370031)supported by the National Natural Science Foundation of China
文摘Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.
文摘Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave reflection method is found to can obtain the thickness distribution along a certain direction.It is a simple and suitable method to evaluate the film thickness uniformity.
基金supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos.2011GB102000, 2015GB103000)
文摘In this paper, the measurement method of calorimetric power for an electron cyclotron resonance heating(ECRH) system for EAST is presented. This method requires measurements of the water flow through the cooling circuits and the input and output water temperatures in each cooling circuit. Usually, the inlet water temperature stability is controlled to obtain more accurate results.The influence of the inlet water temperature change on the measurement results is analyzed for the first time in this paper. Also, a novel temperature calibration method is proposed. This kind of calibration method is accurate and effective, and can be easily implemented.
文摘The air quality inside vehicle is concerned widely in the world. The pollution inside vehicle is special serious in China. State Environmental Protection Administration of China is formulating the standard of air quality inside vehicle. However the measurement relates to many factors. Because of the small space, temperature easy changed, various ventilation modes, being close to pollution source of engine exhaust, there are differences between in-vehicle and indoor measurement. The influence of measuring factors was investigated. Those factors include temperature, preconditioning time, ventilation modes, engine state, and sampling fashion. The measuring mode and relating factors were discussed. The suggestion was offered.