Metallurgical modeling of synergistic microcrack self-repairmen during welding single crystal and polycrystalline superalloys of high-temperature aerospace materials has been properly established. The idea of improvem...Metallurgical modeling of synergistic microcrack self-repairmen during welding single crystal and polycrystalline superalloys of high-temperature aerospace materials has been properly established. The idea of improvement of nickel-based superalloys weldability through non-equilibrium solidification behavior of backfill to self-repair arterial crack network is usefully proposed. Crystallographic control strategy of crack self-repairmen of fusion zone interdendritic solidification cracking and heat-affected zone (HAZ) intergranular liquation cracking is technically achievable, indicating that optimal niobium alloying beneficially refines weld microstructure, stabilizes the primary solidification path, increases the solidification temperature and concomitantly decreases the weld pool geometry. High-carbon grain boundary is more thermal stable and less contributes to incipient intergranular liquid film than that of low-carbon grain boundary. The theoretical predictions of cracking susceptibility are indirectly verified in a rather satisfactory manner. Additionally, the metallurgical modeling enhances predicative capabilities and thereby is readily applicable for other alloy systems.展开更多
An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanic...An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.展开更多
The activity of FetO is very important in ironmaking and steelmaking process. In order to predict the activ- ity of Fe, O and optimize the operation conditions in ironmaking and steelmaking process, by application of ...The activity of FetO is very important in ironmaking and steelmaking process. In order to predict the activ- ity of Fe, O and optimize the operation conditions in ironmaking and steelmaking process, by application of regular so lution model in molten slag systems, FeO-Fe2 O3-SIO2 ternary system, FeO-Fe2 O3-SiO2-CaO and FeO-Fe2 O3-SiO2-NiO quaternary systems have been studied by the chemical equilibrium between H2/H20 gas mixture and liquid slag con tained in solid iron. The values of interaction energy between cations concerning steelmaking slags have been deter- mined by application of ferric-ferrous iron equilibrium and iron-ferric iron equilibrium. And then the activity of Fe, O can be calculated. The results show that the relative error is 3.9% in FeO-Fe203-SiO2 system and 18% in FeO- Fe203-SiO2 CaO system. The prediction of activities of FetO in the systems are in good agreement with the measure- ments and the regular solution model is valid for predicting the activity of FetO in complex molten slags systems. The activity of Fe, O in FeO-Fe20a-NiO system have not been tested presently, and the calculated result can not be assessed.展开更多
文摘Metallurgical modeling of synergistic microcrack self-repairmen during welding single crystal and polycrystalline superalloys of high-temperature aerospace materials has been properly established. The idea of improvement of nickel-based superalloys weldability through non-equilibrium solidification behavior of backfill to self-repair arterial crack network is usefully proposed. Crystallographic control strategy of crack self-repairmen of fusion zone interdendritic solidification cracking and heat-affected zone (HAZ) intergranular liquation cracking is technically achievable, indicating that optimal niobium alloying beneficially refines weld microstructure, stabilizes the primary solidification path, increases the solidification temperature and concomitantly decreases the weld pool geometry. High-carbon grain boundary is more thermal stable and less contributes to incipient intergranular liquid film than that of low-carbon grain boundary. The theoretical predictions of cracking susceptibility are indirectly verified in a rather satisfactory manner. Additionally, the metallurgical modeling enhances predicative capabilities and thereby is readily applicable for other alloy systems.
基金This work was financially supported by the High Technology Development Program(No.2001AA339030)the National Natural Science Foundation of China(No.50334010).
文摘An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.
基金Sponsored by National Natural Science Foundation of China (50764006,50574045)Yunnan Basic Applied Research Foundation of China (2006E0021M)
文摘The activity of FetO is very important in ironmaking and steelmaking process. In order to predict the activ- ity of Fe, O and optimize the operation conditions in ironmaking and steelmaking process, by application of regular so lution model in molten slag systems, FeO-Fe2 O3-SIO2 ternary system, FeO-Fe2 O3-SiO2-CaO and FeO-Fe2 O3-SiO2-NiO quaternary systems have been studied by the chemical equilibrium between H2/H20 gas mixture and liquid slag con tained in solid iron. The values of interaction energy between cations concerning steelmaking slags have been deter- mined by application of ferric-ferrous iron equilibrium and iron-ferric iron equilibrium. And then the activity of Fe, O can be calculated. The results show that the relative error is 3.9% in FeO-Fe203-SiO2 system and 18% in FeO- Fe203-SiO2 CaO system. The prediction of activities of FetO in the systems are in good agreement with the measure- ments and the regular solution model is valid for predicting the activity of FetO in complex molten slags systems. The activity of Fe, O in FeO-Fe20a-NiO system have not been tested presently, and the calculated result can not be assessed.