Although many studies have found that cadmium(Cd)can be toxic to microalgae,only a few reports focused on the role of extracellular polymeric substances(EPS)in Cd(Ⅱ)detoxification.The biochemical and physiological en...Although many studies have found that cadmium(Cd)can be toxic to microalgae,only a few reports focused on the role of extracellular polymeric substances(EPS)in Cd(Ⅱ)detoxification.The biochemical and physiological endpoints of Microcystis aeruginosa,including the composition and functional groups of soluble EPS(SL-EPS),loosely bound EPS(LB-EPS),and tightly bound EPS(TB-EPS),were detected to elucidate the toxicity and detoxification mechanisms of Cd(Ⅱ)for cyanobacteria.Toxicological and physiological assays on M.aeruginosa showed that the 0.25-mg/L Cd(Ⅱ)resulted in a larger inhibition on growth and F_(v)/F_(m).Nevertheless,Cd(Ⅱ)significantly induced much higher contents of superoxide dismutase(SOD),intracellular microcystin LR(MC-LR),extracellular MC-LR,and EPS.Scanning electron microscopy with energy dispersive X-ray spectroscopy confirmed that Cd(Ⅱ)was absorbed into the EPS layer.Fourier transform infrared spectrum analysis revealed that the functional groups bound with Cd(Ⅱ)of algae biomass,SL-EPS,LB-EPS,and TB-EPS were somewhat different.The C=O/C=N groups ofδ-lactam or protein were their prominent functional groups,suggesting that amide or proteins in the EPS played a key role in the adsorption in Cd(Ⅱ).The concentration of 0.25 mg/L of Cd(Ⅱ)may change the chemical structure of EPS by altering the production of protein-like substances containing tryptophan.This study indicated that M.aeruginosa could detoxify Cd(Ⅱ)stress via induction of antioxidant capacity(higher SOD activity and MC synthesis),EPS production,and modification in chemical structure of EPS.展开更多
[Objective]The relationship between signal molecule N-acety-homoserine lactones(AHLs) and Microcystis aeruginosa cell apoptosis was studied.[Method]With M.aeruginosa as the test materials treated by 5 μmol/L N-acet...[Objective]The relationship between signal molecule N-acety-homoserine lactones(AHLs) and Microcystis aeruginosa cell apoptosis was studied.[Method]With M.aeruginosa as the test materials treated by 5 μmol/L N-acety-homoserine lactones(AHLs),the morphology of cell apoptosis was observed through staining with DAPI.[Result]Microcystis aeruginosa cell apoptosis was induced by signal molecule N-acetyhomoserine lactones(AHLs) with the concentration of 1 μmol/L to inhibit the growth and proliferation of Microcystis aeruginosa.[Conclusion] The results provided the important scientific basis and new management ideas for the treatment of water bloom of Microcystis aeruginosa.展开更多
[Objective] The study aimed to discuss the effects of pH value on the growth metabolism of Microcystis aeruginosa and the phosphorus metabolism relationship with adnascent Pseudomonas.[Method] By the phosphorus uptake...[Objective] The study aimed to discuss the effects of pH value on the growth metabolism of Microcystis aeruginosa and the phosphorus metabolism relationship with adnascent Pseudomonas.[Method] By the phosphorus uptake experiment of M.aeruginosa under different pH conditions(8.0-10.0) and the effect experiment on the phosphorus metabolism of M.aeruginosa and adnascent Pseudomonas under different pH conditions(7.0-9.0),the phosphorus uptake of M.aeruginosa in the short time and the growth curve of M.aeruginosa,the change of phosphorus concentration in the water,the change of total phosphorus content in M.aeruginosa in the longer time were measured.[Results] In the short time,pH value had the effects on the absorption phosphorus ability of M.aeruginosa.As pH value rose,the absorption phosphorus ability enhanced.During the longer time,the higher pH value was,the quicker the growth speed of M.aeruginosa was,and the better the growth situation was.M.aeruginosa had the ability of self regulation pH value and could use the phosphorus well in the water which was released from Pseudomonas.In the system of the algae,bacteria and water,the phosphorus in the bacteria played the role of phosphorus source which was released slowly.Though the phosphorus concentration was lower,it was favorable to the growth of algae.[Conclusions] pH value was the factor that affected the circle of the phosphorus element in the system of algae-bacteria-water.展开更多
[Objective] The research aimed to discuss the inhibitory effect of Sophora japonica extracts against the growth of Microcystis aeruginosa.[Method] The inhibitory effect of extracted liquid of Sophora japonica leaf aga...[Objective] The research aimed to discuss the inhibitory effect of Sophora japonica extracts against the growth of Microcystis aeruginosa.[Method] The inhibitory effect of extracted liquid of Sophora japonica leaf against the growth of M.aeruginosa was measured.Moreover,the active component was studied and analyzed initially.[Result] The absolute alcohol extract of Sophora japonica leaf was separated by n-hexane,ethyl acetate,n-butanol and water phases in turn.The polar fractions were found being the majority (〉60%).The non-polar fraction in n-nexane (about 25%) was found significantly inhibiting the growth of M.aeruginosa.The inhibition rates of fraction in n-hexane at the concentrations of 25 and 50 mg/L against M.aeruginosa in 7 d were higher than 75% and 90% respectively.In addition,chlorophyll a of M.aeruginosa was also destroyed in the presence of the hexane fraction.[Conclusion] The research provided the theoretical basis for preventing and controlling the water bloom of M.aeruginosa.展开更多
Objective To isolate and characterize indigenous algicidal bacteria and their algae-lysing compounds active against Microcystis aeruginosa, strains TH1, TH2, and FACHB 905. Methods The bacteria were identified using t...Objective To isolate and characterize indigenous algicidal bacteria and their algae-lysing compounds active against Microcystis aeruginosa, strains TH1, TH2, and FACHB 905. Methods The bacteria were identified using the Biolog automated microbial identification system and 16S rDNA sequence analysis. The algae-lysing compounds were isolated and purified by silica gel column chromatography and reverse-phase high performance liquid chromatography. Their structures were confirmed by Nuclear Magnetic Resonance (NMR) and Fourier Transform infrared (FT-IR) spectroscopy. Algae-lysing activity was observed using microscopy. Results The algae-lysing bacterium LTH-2 isolated from Lake Taihu was identified as Serratia marcescens. Strain LTH-2 secreted a red pigment identified as prodigiosin (C20H25N30), which showed strong lytic activity with algal strains M. aeruginoso TH1, TH2, and FACHB 905 in a concentration-dependent manner. The 50% inhibitory concentration (ICs0) of prodigiosin with the algal strains was 4.8 (±0.4)×10^-2 μg/mL, 8.9 (±1.1)×10^-2μg/mL, and 1.7 (±0.1)×10^-1 μg/mL in 24 h, respectively. Conclusion The bacterium LTH-2 and its pigment related to damage of cell membranes. The bacterium for regulating blooms of harmful M. aeruginosa. had strong Microcystis-lysing activity probably LTH-2 and its red pigment are potentially useful展开更多
The MaMV-DC cyanophage,which infects the bloom-forming cyanobacterium Microcystis aeruginosa,was isolated from Lake Dianchi,Kunming,China.Twenty-one cyanobacterial strains were used to detect the host range of MaMV-DC...The MaMV-DC cyanophage,which infects the bloom-forming cyanobacterium Microcystis aeruginosa,was isolated from Lake Dianchi,Kunming,China.Twenty-one cyanobacterial strains were used to detect the host range of MaMV-DC.Microcystic aeruginosa FACHB-524 and plaque purification were used to isolate individual cyanophages,and culturing MaMV-DC with cyanobacteria allowed us to prepare purified cyanophages for further analysis.Electron microscopy demonstrated that the negatively stained viral particles are tadpole-shaped with an icosahedral head approximately 70 nm in diameter and a contractile tail approximately 160 nm in length.Using one-step growth experiments,the latent period and burst size of MaMV-DC were estimated to be 24–48 hours and approximately 80infectious units per cell,respectively.Restriction endonuclease digestion and agarose gel electrophoresis were performed using purified MaMV-DC genomic DNA,and the genome size was estimated to be approximately 160 kb.Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE)analysis revealed four major structural proteins.These results support the growing interest in using freshwater cyanophages to control bloom-forming cyanobacterium.展开更多
Growth and uptake of exogenous phosphate by Microcystis aeruginosa in batch culture under different temperature, photoperiod, and turbulence were studied by the method of phosphate isotope tracer. Relatively high temp...Growth and uptake of exogenous phosphate by Microcystis aeruginosa in batch culture under different temperature, photoperiod, and turbulence were studied by the method of phosphate isotope tracer. Relatively high temperature, long photoperiod and strong turbulence increased the cell density of M. aeruginosa in these batch cultures. The initial rapid uptake of phosphate by M. aeruginosa was independent of the temperature, photoperiod, and turbulence. Similarly, maximum exogenous phosphate uptake was not related to these environmental factors. However, elevated temperature and turbulence shortened the time, required to obtain maximum P accumulation. The growth of M. aeruginosa could alleviate the phosphorous leakage. Total amounts of exogenous phosphate uptake to M. aeruginosa and the phosphorus leakage of M. aeruginosa were significantly influenced by the growth state of M. aeruginosa closely correlated with the environmental factors. The maximum volume of exogenous phosphate uptake to M. aeruginosa was 46% of added exogenous phosphate in water with 16 hours of photoperiod. Thus, total amounts of exogenous phosphate uptake to M. aeruginosa were more strongly affected by the photoperiod length than temperature and turbulence.展开更多
Microcystis often dominates phytoplankton in eutrophic lakes and must survive a long period of cold or dark conditions. However, the survival strategies of Microcystis to withstand cold or dark stress are less well kn...Microcystis often dominates phytoplankton in eutrophic lakes and must survive a long period of cold or dark conditions. However, the survival strategies of Microcystis to withstand cold or dark stress are less well known. In this study, we conducted experiments on the responses of two toxic Microcystis aeruginosa strains (FACHB-905 and FACHB-915) and their microcystin release in conditions of low temperature (15℃ or 4℃, with illumination) or darkness, and subsequent recovery in standard conditions (25℃ with illumination). On exposure to 15℃, a small decrease in cell viability was observed, but the cell number increased gradually, suggesting that M. aeruginosa FACHB-905 and FACHB-915 cells seem in general tolerant in 15℃. Interestingly, our results show that a higher carotenoid content and microcystin release potentially enhance the fitness of surviving cells at 15℃. M. aeruginosa cells exposed to lower temperature light stress (4℃) did not completely lose viability and retained the ability to reinitiate growth. In darkness, the maximum quantum yield (Fv/Fm) and the maximum electron transport rate (ETRmax) values and cell viability of M. aeruginosa cells gradually decreased with time. During the recovery period, the photosynthetic efficiency of M. aeruginosa reverted to the normal level. Additionally, M. aeruginosa FACHB-905 and FACHB-915 exposed to low temperature had increased caspase-3-1ike activity and DNA fragmentation, which suggests the occurrence of a type of cell death in M. aeruginosa cells under cold stress similar to programmed cell death. Overall, our findings could confer certain advantages on the Microcystis for surviving cold or dark conditions encountered in the annual cycle, and help explain its repeated occurrence in water blooms in large and shallow lakes.展开更多
Microcystis aeruginosa, generally occurring in large colonies under natural conditions, mainly exists as single cells in laboratory cultures. The mechanisms involved in colony formation in Microcystis aeruginosa and t...Microcystis aeruginosa, generally occurring in large colonies under natural conditions, mainly exists as single cells in laboratory cultures. The mechanisms involved in colony formation in Microcystis aeruginosa and their roles in algal blooms remain unknown. In this study, based on previous research findings that fluid motion may stimulate the colony formation in green algae, cul^are experiments were conducted under axenic conditions in a circular water chamber where the flow rate, temperature, light, and nutrients were controlled. The number of cells of Microcystis aeruginosa, the number of cells per colony, and the colonial characteristics in various growth phases were observed and measured. The results indicated that the colony formation in Microcystis aeruginosa, which was not observed under stagnant conditions, was evident when there was fluid motion, with the number of cells per largest colony reaching 120 and the proportion of the number of cells in colonial form to the total number of cells and the mean number of cells per colony reaching their peak values at a flow rate of 35 crn/s. Based on the analysis of colony formation process, fluid motion stimulates the colony formation in Microcystis aeruginosa in the lag growth phase, while flushes and disaggregates the colonies in the exponential growth phase. The stimulation effect in the lag growth phase may be attributable to the involvement of fluid motion in a series of physiological processes, including the uptake of trace elements and the synthesis and secretion of polysaccharides. In addition, the experimental groups exhibiting typical colonial characteristics in the lag growth phase were found to have higher cell biomass in the later phase.展开更多
Nephrotoxic potential of laboratory cultures of freshwater cyanobacterium (blue-green al ga) Microcystis aeruginosa PCC 7806 (Pasteur Institute) was assessed in male rats. The ani mals were injected intraperitoneall...Nephrotoxic potential of laboratory cultures of freshwater cyanobacterium (blue-green al ga) Microcystis aeruginosa PCC 7806 (Pasteur Institute) was assessed in male rats. The ani mals were injected intraperitoneally with 0. 5, 1. 0 and 2. 0 LD50 doses of lyophilized cell ex tract. Elevated plasma urea and creatinine levels were accompanied by decrease in protein and albumin levels, followed by hematuria, proteinuria and bilirubinuria. Also decrease in kidney lactate dehydrogenase and glutamic oxaloacetic transaminase indicated possible nephrotoxic po tential of the cyanobacteria. The extract also produced various hematological changes associat ed with stagnant type of hypoxia. High perfomance liquid chromatography of the culture I dentified the active principle (toxin) as Microcystin-LR展开更多
The aim of this study was to isolate algicidal bacteria so as to control harmful cyanobacterium Microcystis aeruginosa (M. aeruginosa) blooms using biological methods. Nine bacterial strains were isolated to inhibit...The aim of this study was to isolate algicidal bacteria so as to control harmful cyanobacterium Microcystis aeruginosa (M. aeruginosa) blooms using biological methods. Nine bacterial strains were isolated to inhibit the growth ofM. aeruginosa, among which the Mail 1-5 bacterial strain exhibited remarkable algicidal activity against M. aeruginosa cells during the test. Based on the 16S rDNA analysis, the isolated Mail 1-5 was identified as Pedobacter sp. through morphology and homology research. The results of cocultivation of the cyanobacteria with MaI 11-5 algicidal isolates showed obvious algicidal activity against cyanobacterial cells. The algicidal effect of Mail 1-5 exceeded 50% after two days, exceeded 70% after four days, and reached 80% after seven days. The observation results with a scanning electron microscope showed that the cyanobacterial cells aggregated and produced mucous-like substances when cocultivated with the algicidal bacteria. The results indicated that the Mail 1-5 bacterial strain may possess a novel function for controlling harmful blooms and further studies will provide new insights into its role in water environment.展开更多
Laboratory cultures of freshwater cyanobacterium (blue-green alga) Microcystis aeruginosa PCC 7806 was cvaluated for its hepatotoxic effects in rats. The lyophilized cell extract injected intraperitoneally at 1 and 2 ...Laboratory cultures of freshwater cyanobacterium (blue-green alga) Microcystis aeruginosa PCC 7806 was cvaluated for its hepatotoxic effects in rats. The lyophilized cell extract injected intraperitoneally at 1 and 2 LD50 (15.8 and 31.6 mg/kg, respectively) produced significant increase in liver-specific enzymes viz. plasma alkaline phosphatase,γ-glutamyl transferase, lactate dehydrogenase with a concomitant decrease in hepatic glutamic pyruvic transaminase. A corresponding increase in liver body weight index and histopathological changes in liver (degeneration of hepatocytes, congestion and hemorrhage etc.) are indicative of a dose and time dependent hepatotoxic nature of the algal extract展开更多
In this study, the 454 pyrosequencing technology was used to analyze the DNA of the Microcystis aeruginosa symbiosis system from cyanobacterial algal blooms in Taihu Lake, China. We generated 183 228 reads with an ave...In this study, the 454 pyrosequencing technology was used to analyze the DNA of the Microcystis aeruginosa symbiosis system from cyanobacterial algal blooms in Taihu Lake, China. We generated 183 228 reads with an average length of 248 bp. Running the 454 assembly algorithm over our sequences yielded 22 239 significant contigs. After excluding the M. aeruginosa sequences, we obtained 1 322 assembled contigs longer than 1 000 bp. Taxonomic analysis indicated that four kingdoms were represented in the community: Archaea (n = 9; 0.01%), Bacteria (n = 98 921; 99.6%), Eukaryota (n = 373; 3.7%), and Viruses (n = 18; 0.02%). The bacterial sequences were predominantly Alphaproteobacteria (n = 41 805; 83.3%), Betaproteobacteria (n = 5 254; 10.5%) and Gammaproteobacteria (n = 1 180; 2.4%). Gene annotations and assignment of COG (clusters of orthologous groups) functional categories indicate that a large number of the predicted genes are involved in metabolic, genetic, and environmental information processes. Our results demonstrate the extraordinary diversity of a microbial community in an ectosymbiotic system and further establish the tremendous utility of pyrosequencing.展开更多
Microcystis aeruginosa has always been regarded as the main culprit of cyanobacterial blooms in freshwater.However,in recent years,Raphidiopsis raciborskii has gradually replaced M.aeruginosa as the culprit of cyanoba...Microcystis aeruginosa has always been regarded as the main culprit of cyanobacterial blooms in freshwater.However,in recent years,Raphidiopsis raciborskii has gradually replaced M.aeruginosa as the culprit of cyanobacterial blooms in some tropical and subtropical shallow lakes.To reveal which one plays a more dominant role,interactions between cylindrospermospin(CYN)-producing R.raciborskii and microcystins(MCs)-producing or non-MCs-producing M.aeruginosa strains were studied using bialgal cultures at different initial ratios of biomasses of the two species at 25℃.During the co-cultivation,the M.aeruginosa strains inhibited the growth and heterocyst formation of R.raciborskii filaments,and thus occupied a dominant position during the co-cultivation regardless of the initial biomass ratios in the cultures.In addition,the MCs-producing M aeruginosa strain contributed to a higher portion of the total biomass and exerted a stronger inhibitory effect on R.raciborskii compared with the non-MCs-producing strain.However,the growth of both MCs-producing and non-MCs-producing M.aeruginosa strains was stimulated by R.raciborskii in the co-cultures compared with M.aeruginosa monoculture,indicating that M.aeruginosa could outcompete R.raciborskii if given enough time,enabling it to develop into the dominant species even in very low initial concentration.To our best knowledge,this is the first report on the loss of heterocyst formation by a species of cyanobacteria that resulted from interactions between two different species of cyanobacteria.These findings indicate that it is difficult for R.raciborskii to replace the dominant position of M.aeruginosa under the experimental environmental condition,and the allelopathic effects of M.aeruginosa on R.raciborskii could significantly contribute to the success of M.aeruginosa.展开更多
In order to explore a novel and potential method using carbon nanotubes (CNTs) for controlling blue-green algal blooms efficiently in future, effects of single-walled carbon nanotubes (SWCNTs) on Microcystis aerug...In order to explore a novel and potential method using carbon nanotubes (CNTs) for controlling blue-green algal blooms efficiently in future, effects of single-walled carbon nanotubes (SWCNTs) on Microcystis aeruginosa growth control were investigated under lab cultured conditions. Related physiological changes were tested involving several important enzyme of antioxidant defense system (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), malondiadehyde (MDA), photosynthetic pigments, protein, soluble sugar and extracellular microcystin toxins (MC-LR)). Algal cell density was significantly inhibited by SWCNTs at high concentration (〉5.00 mg/L), and the inhibition rate was dose-dependent. For treatment with 100 mg/L SWCNTs, the inhibitory rates even reached above 90%. 96 h IC50 was determined as 22 mg/L. Antioxidant enzyme activities were dramatically dropped with increasing lipid peroxidation at higher SWCNTs concentration, indicating intracellular generation of reactive oxygen species (ROS) and oxidative stress damage in algae. Reduction of photosynthetic pigments, soluble sugar and protein contents suggested that SWCNTs may severely ruin algal photosynthesis system, destroy the metabolism-related structure of cell, and thus lead to negative physiological status in M. aeruginosa. Besides, SWCNTs can effectively decrease the amount of extracellular microcystins in culture medium.展开更多
Based on ecological niche theory, Microcystis Aeruginosa(MA) immobilized in the complex of polyvinyl alcohol(PVA)and sodium alginate(SA) crosslinked by CaCl2, was treated as a new kind of special species, and its prop...Based on ecological niche theory, Microcystis Aeruginosa(MA) immobilized in the complex of polyvinyl alcohol(PVA)and sodium alginate(SA) crosslinked by CaCl2, was treated as a new kind of special species, and its properties were investigated.Chlorophyll a was used to characterize the bioactivity of the immobilized MA. Results reveal that the gel beads have mechanical strength and chemical stability even under non-sterile harsh conditions, which may be attributed to the rarely seen structure(including three different layers: dense surface, tubular-shaped divergent structure and honeycomb crystal lattice layer) of the immobilized MA determined by scanning electron microscope(SEM). SEM also displays that more quantity of MA is attached to the inwall after cultivation, which demonstrates that the MA within beads maintains high bioactivity. Removal capacities on phosphorous(P) removal in wastewater in the presence and absence of the BG-11 medium were examined, and the removal ratios are 80.3% and76.7%, respectively, which indicates that the beads without providing ample nutrients still have high capacity of P removal. In addition, control experiment, utilizing polyvinyl alcohol and sodium alginate(PVA-SA) beads without immobilized MA,demonstrates that MA within beads plays the key role in absorbing P.展开更多
The increasing occurrence of cyanobacterial blooms in water bodies is a serious threat to the environment. Efficient in-lake treatment methods for the control of cyanobacteria proliferation are needed, their in-vivo d...The increasing occurrence of cyanobacterial blooms in water bodies is a serious threat to the environment. Efficient in-lake treatment methods for the control of cyanobacteria proliferation are needed, their in-vivo detection to obtain a real-time response to their presence, as well as the information about their physiological state after the applied treatment. In-vivo fluorescence measurements of photosynthetic pigments have proved to be effective for quantitative and qualitative detection of phytoplankton in a water environment. In the experiment, chlorophyll and phycocyanin fluorescence sensors were used concurrently to detect stress caused by electrochemical oxidation applying an electrolytic cell equipped with borondoped diamond electrodes on a laboratory culture of cyanobacteria Microcystis aeruginosa PCC 7806. The inflicted injuries were reflected in a clear transient increase in the phycocyanin fluorescence signal(for 104 %? 43%) 24 h after the treatment, which was not the case for the chlorophyll fluorescence signal. In the next 72 h of observation, the fluorescence signals decreased(on 40% of the starting signal) indicating a reduction of cell number, which was confirmed by cell count(24% reduction of the starting concentration) and analysis of extracted chlorophyll and phycocyanin pigment. These results demonstrate the viability of the combined application of two sensors as a useful tool for in-vivo detection of induced stress, providing real-time information needed for the evaluation of the efficiency of the in-lake treatment and decision upon the necessity of its repetition. The electrochemical treatment also resulted in a lower free microcystins concentration compared to control.展开更多
The Microcystis aeruginosa(MA) was immobilized on sodium alginate and used as biosorbent for removal of Cd(Ⅱ) ions from aqueous solution.The biosorption process is pH dependent,and the optimum biosorption was observe...The Microcystis aeruginosa(MA) was immobilized on sodium alginate and used as biosorbent for removal of Cd(Ⅱ) ions from aqueous solution.The biosorption process is pH dependent,and the optimum biosorption was observed at pH 6.0 with the biosorption capacity of 98.38 mg/g.Among Langmuir,Freundlich and Temkin isotherm models,the Freundlich and the Temkin isotherm fit well with the experimental data.Cd(Ⅱ) ions biosorption follows the pseudo-second-order kinetic model.The rate controlling mechanism study reveals that film diffusion is the rate-limiting step and intraparticle diffusion is also involved in biosorption.Thermodynamic parameters,such as Gibbs free energy(ΔG°),the enthalpy(ΔH°) and entropy(ΔS°) were calculated,and revealed that the biosorption process is spontaneous,exothermic and random.Furthermore,the immobilized MA can be regenerated using 0.1 mol/L HCl solutions.展开更多
The degradation kinetics of strains P05 and P07 and the degradation effects of mixed strain on Microcystis aeruginosa were studied. The results showed that: (1) The degradation processes of strains P05 and P07 on Micr...The degradation kinetics of strains P05 and P07 and the degradation effects of mixed strain on Microcystis aeruginosa were studied. The results showed that: (1) The degradation processes of strains P05 and P07 on Microcystis aeruginosa accorded with the first-order reaction model when the range of Chl-a concentration was from 0 to 1500 μg/L. (2) The initial bacterium densities had a strong influence on the degradation velocity. The greater the initial bacterium density was, the faster the degradation was. The degradation velocity constants of P05 were 0.1913, 0.2175 and 0.3092 respectively, when bacterium densities were 4.8×10 5, 4.8×10 6, 2.4×10 7 cells/ml. For strain P07, they were 0.1509, 0.1647 and 0.2708. The degradation velocity constant of strain P05 was higher than that of P07 when the bacterium density was under 4.8×10 5 cells/ml, but the constant increasing of P07 was quicker than that of P05. (3) The degradation effects of P05 and P07 strains did not antagonize. When the concentration of Chl-a was high, the degradation effects of mixed strain excelled that of any single strains. But with the decrease of the Chl-a concentration, this advantage was not clear. When the concentration was less than 180 μg/L, the degradation effects of mixed were consistent with that of strain P07.展开更多
Cyanobacterial blooms have become a serious global environmental issue due to their potential risk for releasing detrimental secondary metabolites into aquatic ecosystems,posing a great threat to water quality managem...Cyanobacterial blooms have become a serious global environmental issue due to their potential risk for releasing detrimental secondary metabolites into aquatic ecosystems,posing a great threat to water quality management for public health authorities.Aphanizomenon,a common filamentous cyanobacterial genus belonging to Nostocales,is under particular concern because its several members are able to form harmful blooms.Furthermore,succession of bloom between A.flos-aquae and Microcystis occurs in many natural lakes.To evaluate the competitiveness of A.flos-aquae vs.M.aeruginosa,two sets of experiments at different ratios of biomass at 15℃and 25℃were conducted.Results show that at 15℃,the two species were able to coexist,and A.flos-aquae showed a specific higher growth rate,and its growth was promoted by the presence of M.aeruginosa.At 25℃,the growth of A.flos-aquae was inhibited by the biomass of M.aeruginosa,and M.aeruginosa suppressed A.flos-aquae in competition.Additionally,the vegetative cell size of A.flos-aquae was significantly influenced by the co-culture with M.aeruginosa,whereas the filament length of A.flos-aquae was not significantly affected.This study confirms that temperature is the dominating factor on the succession of A.flos-aquae and M.aeruginosa of a different biomass.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.31800457,32170383)。
文摘Although many studies have found that cadmium(Cd)can be toxic to microalgae,only a few reports focused on the role of extracellular polymeric substances(EPS)in Cd(Ⅱ)detoxification.The biochemical and physiological endpoints of Microcystis aeruginosa,including the composition and functional groups of soluble EPS(SL-EPS),loosely bound EPS(LB-EPS),and tightly bound EPS(TB-EPS),were detected to elucidate the toxicity and detoxification mechanisms of Cd(Ⅱ)for cyanobacteria.Toxicological and physiological assays on M.aeruginosa showed that the 0.25-mg/L Cd(Ⅱ)resulted in a larger inhibition on growth and F_(v)/F_(m).Nevertheless,Cd(Ⅱ)significantly induced much higher contents of superoxide dismutase(SOD),intracellular microcystin LR(MC-LR),extracellular MC-LR,and EPS.Scanning electron microscopy with energy dispersive X-ray spectroscopy confirmed that Cd(Ⅱ)was absorbed into the EPS layer.Fourier transform infrared spectrum analysis revealed that the functional groups bound with Cd(Ⅱ)of algae biomass,SL-EPS,LB-EPS,and TB-EPS were somewhat different.The C=O/C=N groups ofδ-lactam or protein were their prominent functional groups,suggesting that amide or proteins in the EPS played a key role in the adsorption in Cd(Ⅱ).The concentration of 0.25 mg/L of Cd(Ⅱ)may change the chemical structure of EPS by altering the production of protein-like substances containing tryptophan.This study indicated that M.aeruginosa could detoxify Cd(Ⅱ)stress via induction of antioxidant capacity(higher SOD activity and MC synthesis),EPS production,and modification in chemical structure of EPS.
基金Supported by National Natural Science Fund(30960036)Key Schoollevel Project of Kunming University(20091016)~~
文摘[Objective]The relationship between signal molecule N-acety-homoserine lactones(AHLs) and Microcystis aeruginosa cell apoptosis was studied.[Method]With M.aeruginosa as the test materials treated by 5 μmol/L N-acety-homoserine lactones(AHLs),the morphology of cell apoptosis was observed through staining with DAPI.[Result]Microcystis aeruginosa cell apoptosis was induced by signal molecule N-acetyhomoserine lactones(AHLs) with the concentration of 1 μmol/L to inhibit the growth and proliferation of Microcystis aeruginosa.[Conclusion] The results provided the important scientific basis and new management ideas for the treatment of water bloom of Microcystis aeruginosa.
基金Supported by"973"Project(2008CB418003)The National Natural Science Fund(30700414)
文摘[Objective] The study aimed to discuss the effects of pH value on the growth metabolism of Microcystis aeruginosa and the phosphorus metabolism relationship with adnascent Pseudomonas.[Method] By the phosphorus uptake experiment of M.aeruginosa under different pH conditions(8.0-10.0) and the effect experiment on the phosphorus metabolism of M.aeruginosa and adnascent Pseudomonas under different pH conditions(7.0-9.0),the phosphorus uptake of M.aeruginosa in the short time and the growth curve of M.aeruginosa,the change of phosphorus concentration in the water,the change of total phosphorus content in M.aeruginosa in the longer time were measured.[Results] In the short time,pH value had the effects on the absorption phosphorus ability of M.aeruginosa.As pH value rose,the absorption phosphorus ability enhanced.During the longer time,the higher pH value was,the quicker the growth speed of M.aeruginosa was,and the better the growth situation was.M.aeruginosa had the ability of self regulation pH value and could use the phosphorus well in the water which was released from Pseudomonas.In the system of the algae,bacteria and water,the phosphorus in the bacteria played the role of phosphorus source which was released slowly.Though the phosphorus concentration was lower,it was favorable to the growth of algae.[Conclusions] pH value was the factor that affected the circle of the phosphorus element in the system of algae-bacteria-water.
基金Supported by National Natural Science Foundation of China(41076097,41006097)Science and Technology Research Key Project of ChineseMinistry of Education(211065)+3 种基金Natural Science Foundation of Jiangsu Province,China(BK2010322)Open Research of Jiangsu Key Laboratory of Environmental Material and Environmental Engineering(K090027,K090025,K090026,K090028)Graduate Science and Technology Innovation Project of Department of Education,Jiangsu Province,China(M080960)"New Century"Talent Project of Yangzhou University,China~~
文摘[Objective] The research aimed to discuss the inhibitory effect of Sophora japonica extracts against the growth of Microcystis aeruginosa.[Method] The inhibitory effect of extracted liquid of Sophora japonica leaf against the growth of M.aeruginosa was measured.Moreover,the active component was studied and analyzed initially.[Result] The absolute alcohol extract of Sophora japonica leaf was separated by n-hexane,ethyl acetate,n-butanol and water phases in turn.The polar fractions were found being the majority (〉60%).The non-polar fraction in n-nexane (about 25%) was found significantly inhibiting the growth of M.aeruginosa.The inhibition rates of fraction in n-hexane at the concentrations of 25 and 50 mg/L against M.aeruginosa in 7 d were higher than 75% and 90% respectively.In addition,chlorophyll a of M.aeruginosa was also destroyed in the presence of the hexane fraction.[Conclusion] The research provided the theoretical basis for preventing and controlling the water bloom of M.aeruginosa.
基金supported by the National Science and Technology Major Project (2012ZX07101-005)the National Natural Science Foundation of China (30972440)Jiangsu Province Postgraduate Innovation Project (CX10B-087Z)
文摘Objective To isolate and characterize indigenous algicidal bacteria and their algae-lysing compounds active against Microcystis aeruginosa, strains TH1, TH2, and FACHB 905. Methods The bacteria were identified using the Biolog automated microbial identification system and 16S rDNA sequence analysis. The algae-lysing compounds were isolated and purified by silica gel column chromatography and reverse-phase high performance liquid chromatography. Their structures were confirmed by Nuclear Magnetic Resonance (NMR) and Fourier Transform infrared (FT-IR) spectroscopy. Algae-lysing activity was observed using microscopy. Results The algae-lysing bacterium LTH-2 isolated from Lake Taihu was identified as Serratia marcescens. Strain LTH-2 secreted a red pigment identified as prodigiosin (C20H25N30), which showed strong lytic activity with algal strains M. aeruginoso TH1, TH2, and FACHB 905 in a concentration-dependent manner. The 50% inhibitory concentration (ICs0) of prodigiosin with the algal strains was 4.8 (±0.4)×10^-2 μg/mL, 8.9 (±1.1)×10^-2μg/mL, and 1.7 (±0.1)×10^-1 μg/mL in 24 h, respectively. Conclusion The bacterium LTH-2 and its pigment related to damage of cell membranes. The bacterium for regulating blooms of harmful M. aeruginosa. had strong Microcystis-lysing activity probably LTH-2 and its red pigment are potentially useful
基金National Natural Science Foundation of China(grant nos.31072239,31270213)Knowledge Innovation Program of the Chinese Academy of Sciences(grant no.KSCX2-EW-Z-3)StateKey Laboratory of Freshwater Ecology&Biotechnology Program(grant no.2011FBZ12)
文摘The MaMV-DC cyanophage,which infects the bloom-forming cyanobacterium Microcystis aeruginosa,was isolated from Lake Dianchi,Kunming,China.Twenty-one cyanobacterial strains were used to detect the host range of MaMV-DC.Microcystic aeruginosa FACHB-524 and plaque purification were used to isolate individual cyanophages,and culturing MaMV-DC with cyanobacteria allowed us to prepare purified cyanophages for further analysis.Electron microscopy demonstrated that the negatively stained viral particles are tadpole-shaped with an icosahedral head approximately 70 nm in diameter and a contractile tail approximately 160 nm in length.Using one-step growth experiments,the latent period and burst size of MaMV-DC were estimated to be 24–48 hours and approximately 80infectious units per cell,respectively.Restriction endonuclease digestion and agarose gel electrophoresis were performed using purified MaMV-DC genomic DNA,and the genome size was estimated to be approximately 160 kb.Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE)analysis revealed four major structural proteins.These results support the growing interest in using freshwater cyanophages to control bloom-forming cyanobacterium.
文摘Growth and uptake of exogenous phosphate by Microcystis aeruginosa in batch culture under different temperature, photoperiod, and turbulence were studied by the method of phosphate isotope tracer. Relatively high temperature, long photoperiod and strong turbulence increased the cell density of M. aeruginosa in these batch cultures. The initial rapid uptake of phosphate by M. aeruginosa was independent of the temperature, photoperiod, and turbulence. Similarly, maximum exogenous phosphate uptake was not related to these environmental factors. However, elevated temperature and turbulence shortened the time, required to obtain maximum P accumulation. The growth of M. aeruginosa could alleviate the phosphorous leakage. Total amounts of exogenous phosphate uptake to M. aeruginosa and the phosphorus leakage of M. aeruginosa were significantly influenced by the growth state of M. aeruginosa closely correlated with the environmental factors. The maximum volume of exogenous phosphate uptake to M. aeruginosa was 46% of added exogenous phosphate in water with 16 hours of photoperiod. Thus, total amounts of exogenous phosphate uptake to M. aeruginosa were more strongly affected by the photoperiod length than temperature and turbulence.
基金Supported by the National Natural Science Foundation of China(Nos.31070355,31370418)
文摘Microcystis often dominates phytoplankton in eutrophic lakes and must survive a long period of cold or dark conditions. However, the survival strategies of Microcystis to withstand cold or dark stress are less well known. In this study, we conducted experiments on the responses of two toxic Microcystis aeruginosa strains (FACHB-905 and FACHB-915) and their microcystin release in conditions of low temperature (15℃ or 4℃, with illumination) or darkness, and subsequent recovery in standard conditions (25℃ with illumination). On exposure to 15℃, a small decrease in cell viability was observed, but the cell number increased gradually, suggesting that M. aeruginosa FACHB-905 and FACHB-915 cells seem in general tolerant in 15℃. Interestingly, our results show that a higher carotenoid content and microcystin release potentially enhance the fitness of surviving cells at 15℃. M. aeruginosa cells exposed to lower temperature light stress (4℃) did not completely lose viability and retained the ability to reinitiate growth. In darkness, the maximum quantum yield (Fv/Fm) and the maximum electron transport rate (ETRmax) values and cell viability of M. aeruginosa cells gradually decreased with time. During the recovery period, the photosynthetic efficiency of M. aeruginosa reverted to the normal level. Additionally, M. aeruginosa FACHB-905 and FACHB-915 exposed to low temperature had increased caspase-3-1ike activity and DNA fragmentation, which suggests the occurrence of a type of cell death in M. aeruginosa cells under cold stress similar to programmed cell death. Overall, our findings could confer certain advantages on the Microcystis for surviving cold or dark conditions encountered in the annual cycle, and help explain its repeated occurrence in water blooms in large and shallow lakes.
基金supported by the National Natural Science Foundation of China (Grant No. 50979028)the Special Fund of Research for Public Welfare Industry of the Ministry of Water Resources of China (Grant No. 200801065)
文摘Microcystis aeruginosa, generally occurring in large colonies under natural conditions, mainly exists as single cells in laboratory cultures. The mechanisms involved in colony formation in Microcystis aeruginosa and their roles in algal blooms remain unknown. In this study, based on previous research findings that fluid motion may stimulate the colony formation in green algae, cul^are experiments were conducted under axenic conditions in a circular water chamber where the flow rate, temperature, light, and nutrients were controlled. The number of cells of Microcystis aeruginosa, the number of cells per colony, and the colonial characteristics in various growth phases were observed and measured. The results indicated that the colony formation in Microcystis aeruginosa, which was not observed under stagnant conditions, was evident when there was fluid motion, with the number of cells per largest colony reaching 120 and the proportion of the number of cells in colonial form to the total number of cells and the mean number of cells per colony reaching their peak values at a flow rate of 35 crn/s. Based on the analysis of colony formation process, fluid motion stimulates the colony formation in Microcystis aeruginosa in the lag growth phase, while flushes and disaggregates the colonies in the exponential growth phase. The stimulation effect in the lag growth phase may be attributable to the involvement of fluid motion in a series of physiological processes, including the uptake of trace elements and the synthesis and secretion of polysaccharides. In addition, the experimental groups exhibiting typical colonial characteristics in the lag growth phase were found to have higher cell biomass in the later phase.
文摘Nephrotoxic potential of laboratory cultures of freshwater cyanobacterium (blue-green al ga) Microcystis aeruginosa PCC 7806 (Pasteur Institute) was assessed in male rats. The ani mals were injected intraperitoneally with 0. 5, 1. 0 and 2. 0 LD50 doses of lyophilized cell ex tract. Elevated plasma urea and creatinine levels were accompanied by decrease in protein and albumin levels, followed by hematuria, proteinuria and bilirubinuria. Also decrease in kidney lactate dehydrogenase and glutamic oxaloacetic transaminase indicated possible nephrotoxic po tential of the cyanobacteria. The extract also produced various hematological changes associat ed with stagnant type of hypoxia. High perfomance liquid chromatography of the culture I dentified the active principle (toxin) as Microcystin-LR
基金supported by the Basic Research Program of Jiangsu Province(Grant No.BK2012828)the grant of Greater Nagoya Project in Environmental Sciencethe Open Laboratory Project of Nanjing University of Technology(Grant No.2012-2013-138)
文摘The aim of this study was to isolate algicidal bacteria so as to control harmful cyanobacterium Microcystis aeruginosa (M. aeruginosa) blooms using biological methods. Nine bacterial strains were isolated to inhibit the growth ofM. aeruginosa, among which the Mail 1-5 bacterial strain exhibited remarkable algicidal activity against M. aeruginosa cells during the test. Based on the 16S rDNA analysis, the isolated Mail 1-5 was identified as Pedobacter sp. through morphology and homology research. The results of cocultivation of the cyanobacteria with MaI 11-5 algicidal isolates showed obvious algicidal activity against cyanobacterial cells. The algicidal effect of Mail 1-5 exceeded 50% after two days, exceeded 70% after four days, and reached 80% after seven days. The observation results with a scanning electron microscope showed that the cyanobacterial cells aggregated and produced mucous-like substances when cocultivated with the algicidal bacteria. The results indicated that the Mail 1-5 bacterial strain may possess a novel function for controlling harmful blooms and further studies will provide new insights into its role in water environment.
文摘Laboratory cultures of freshwater cyanobacterium (blue-green alga) Microcystis aeruginosa PCC 7806 was cvaluated for its hepatotoxic effects in rats. The lyophilized cell extract injected intraperitoneally at 1 and 2 LD50 (15.8 and 31.6 mg/kg, respectively) produced significant increase in liver-specific enzymes viz. plasma alkaline phosphatase,γ-glutamyl transferase, lactate dehydrogenase with a concomitant decrease in hepatic glutamic pyruvic transaminase. A corresponding increase in liver body weight index and histopathological changes in liver (degeneration of hepatocytes, congestion and hemorrhage etc.) are indicative of a dose and time dependent hepatotoxic nature of the algal extract
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KSCX2-YW-G-073)
文摘In this study, the 454 pyrosequencing technology was used to analyze the DNA of the Microcystis aeruginosa symbiosis system from cyanobacterial algal blooms in Taihu Lake, China. We generated 183 228 reads with an average length of 248 bp. Running the 454 assembly algorithm over our sequences yielded 22 239 significant contigs. After excluding the M. aeruginosa sequences, we obtained 1 322 assembled contigs longer than 1 000 bp. Taxonomic analysis indicated that four kingdoms were represented in the community: Archaea (n = 9; 0.01%), Bacteria (n = 98 921; 99.6%), Eukaryota (n = 373; 3.7%), and Viruses (n = 18; 0.02%). The bacterial sequences were predominantly Alphaproteobacteria (n = 41 805; 83.3%), Betaproteobacteria (n = 5 254; 10.5%) and Gammaproteobacteria (n = 1 180; 2.4%). Gene annotations and assignment of COG (clusters of orthologous groups) functional categories indicate that a large number of the predicted genes are involved in metabolic, genetic, and environmental information processes. Our results demonstrate the extraordinary diversity of a microbial community in an ectosymbiotic system and further establish the tremendous utility of pyrosequencing.
基金Supported by the National Key R&D Program of China(No.2018YFE0103700)the National Natural Science Foundation of China(Nos.41876124,61871293,42007372)the Zhejiang Provincial Natural Science Foundation of China(Nos.LZ21C030001,LQ20C030008,LD21C030001,LQ18C030002)。
文摘Microcystis aeruginosa has always been regarded as the main culprit of cyanobacterial blooms in freshwater.However,in recent years,Raphidiopsis raciborskii has gradually replaced M.aeruginosa as the culprit of cyanobacterial blooms in some tropical and subtropical shallow lakes.To reveal which one plays a more dominant role,interactions between cylindrospermospin(CYN)-producing R.raciborskii and microcystins(MCs)-producing or non-MCs-producing M.aeruginosa strains were studied using bialgal cultures at different initial ratios of biomasses of the two species at 25℃.During the co-cultivation,the M.aeruginosa strains inhibited the growth and heterocyst formation of R.raciborskii filaments,and thus occupied a dominant position during the co-cultivation regardless of the initial biomass ratios in the cultures.In addition,the MCs-producing M aeruginosa strain contributed to a higher portion of the total biomass and exerted a stronger inhibitory effect on R.raciborskii compared with the non-MCs-producing strain.However,the growth of both MCs-producing and non-MCs-producing M.aeruginosa strains was stimulated by R.raciborskii in the co-cultures compared with M.aeruginosa monoculture,indicating that M.aeruginosa could outcompete R.raciborskii if given enough time,enabling it to develop into the dominant species even in very low initial concentration.To our best knowledge,this is the first report on the loss of heterocyst formation by a species of cyanobacteria that resulted from interactions between two different species of cyanobacteria.These findings indicate that it is difficult for R.raciborskii to replace the dominant position of M.aeruginosa under the experimental environmental condition,and the allelopathic effects of M.aeruginosa on R.raciborskii could significantly contribute to the success of M.aeruginosa.
基金Project(035703011) supported by the Scientific Research Double Support Program of SICAU,China
文摘In order to explore a novel and potential method using carbon nanotubes (CNTs) for controlling blue-green algal blooms efficiently in future, effects of single-walled carbon nanotubes (SWCNTs) on Microcystis aeruginosa growth control were investigated under lab cultured conditions. Related physiological changes were tested involving several important enzyme of antioxidant defense system (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), malondiadehyde (MDA), photosynthetic pigments, protein, soluble sugar and extracellular microcystin toxins (MC-LR)). Algal cell density was significantly inhibited by SWCNTs at high concentration (〉5.00 mg/L), and the inhibition rate was dose-dependent. For treatment with 100 mg/L SWCNTs, the inhibitory rates even reached above 90%. 96 h IC50 was determined as 22 mg/L. Antioxidant enzyme activities were dramatically dropped with increasing lipid peroxidation at higher SWCNTs concentration, indicating intracellular generation of reactive oxygen species (ROS) and oxidative stress damage in algae. Reduction of photosynthetic pigments, soluble sugar and protein contents suggested that SWCNTs may severely ruin algal photosynthesis system, destroy the metabolism-related structure of cell, and thus lead to negative physiological status in M. aeruginosa. Besides, SWCNTs can effectively decrease the amount of extracellular microcystins in culture medium.
基金Projects(51178172,51308076)supported by the National Natural Science Foundation of ChinaProject(13JJ4107)supported by Hunan Provincial Natural Science Foundation,ChinaProject(K1207026-31)supported by Changsha Planning Project of Science and Technology,China
文摘Based on ecological niche theory, Microcystis Aeruginosa(MA) immobilized in the complex of polyvinyl alcohol(PVA)and sodium alginate(SA) crosslinked by CaCl2, was treated as a new kind of special species, and its properties were investigated.Chlorophyll a was used to characterize the bioactivity of the immobilized MA. Results reveal that the gel beads have mechanical strength and chemical stability even under non-sterile harsh conditions, which may be attributed to the rarely seen structure(including three different layers: dense surface, tubular-shaped divergent structure and honeycomb crystal lattice layer) of the immobilized MA determined by scanning electron microscope(SEM). SEM also displays that more quantity of MA is attached to the inwall after cultivation, which demonstrates that the MA within beads maintains high bioactivity. Removal capacities on phosphorous(P) removal in wastewater in the presence and absence of the BG-11 medium were examined, and the removal ratios are 80.3% and76.7%, respectively, which indicates that the beads without providing ample nutrients still have high capacity of P removal. In addition, control experiment, utilizing polyvinyl alcohol and sodium alginate(PVA-SA) beads without immobilized MA,demonstrates that MA within beads plays the key role in absorbing P.
基金Supported by the ARRS Project L1-5456(Control of Harmful Cyanobacteria Bloom in Fresh-Water Bodies)LIFE+Project:LIFE12 ENV/SI/00083 LIFE Stop CyanoBloom
文摘The increasing occurrence of cyanobacterial blooms in water bodies is a serious threat to the environment. Efficient in-lake treatment methods for the control of cyanobacteria proliferation are needed, their in-vivo detection to obtain a real-time response to their presence, as well as the information about their physiological state after the applied treatment. In-vivo fluorescence measurements of photosynthetic pigments have proved to be effective for quantitative and qualitative detection of phytoplankton in a water environment. In the experiment, chlorophyll and phycocyanin fluorescence sensors were used concurrently to detect stress caused by electrochemical oxidation applying an electrolytic cell equipped with borondoped diamond electrodes on a laboratory culture of cyanobacteria Microcystis aeruginosa PCC 7806. The inflicted injuries were reflected in a clear transient increase in the phycocyanin fluorescence signal(for 104 %? 43%) 24 h after the treatment, which was not the case for the chlorophyll fluorescence signal. In the next 72 h of observation, the fluorescence signals decreased(on 40% of the starting signal) indicating a reduction of cell number, which was confirmed by cell count(24% reduction of the starting concentration) and analysis of extracted chlorophyll and phycocyanin pigment. These results demonstrate the viability of the combined application of two sensors as a useful tool for in-vivo detection of induced stress, providing real-time information needed for the evaluation of the efficiency of the in-lake treatment and decision upon the necessity of its repetition. The electrochemical treatment also resulted in a lower free microcystins concentration compared to control.
基金Project(41271332) supported by the National Natural Science Foundation of ChinaProject(11JJ2031) supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2012SK2021) supported by the Science and Technology Planning Program of Hunan Province,ChinaProject(CX2012B138) supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The Microcystis aeruginosa(MA) was immobilized on sodium alginate and used as biosorbent for removal of Cd(Ⅱ) ions from aqueous solution.The biosorption process is pH dependent,and the optimum biosorption was observed at pH 6.0 with the biosorption capacity of 98.38 mg/g.Among Langmuir,Freundlich and Temkin isotherm models,the Freundlich and the Temkin isotherm fit well with the experimental data.Cd(Ⅱ) ions biosorption follows the pseudo-second-order kinetic model.The rate controlling mechanism study reveals that film diffusion is the rate-limiting step and intraparticle diffusion is also involved in biosorption.Thermodynamic parameters,such as Gibbs free energy(ΔG°),the enthalpy(ΔH°) and entropy(ΔS°) were calculated,and revealed that the biosorption process is spontaneous,exothermic and random.Furthermore,the immobilized MA can be regenerated using 0.1 mol/L HCl solutions.
文摘The degradation kinetics of strains P05 and P07 and the degradation effects of mixed strain on Microcystis aeruginosa were studied. The results showed that: (1) The degradation processes of strains P05 and P07 on Microcystis aeruginosa accorded with the first-order reaction model when the range of Chl-a concentration was from 0 to 1500 μg/L. (2) The initial bacterium densities had a strong influence on the degradation velocity. The greater the initial bacterium density was, the faster the degradation was. The degradation velocity constants of P05 were 0.1913, 0.2175 and 0.3092 respectively, when bacterium densities were 4.8×10 5, 4.8×10 6, 2.4×10 7 cells/ml. For strain P07, they were 0.1509, 0.1647 and 0.2708. The degradation velocity constant of strain P05 was higher than that of P07 when the bacterium density was under 4.8×10 5 cells/ml, but the constant increasing of P07 was quicker than that of P05. (3) The degradation effects of P05 and P07 strains did not antagonize. When the concentration of Chl-a was high, the degradation effects of mixed strain excelled that of any single strains. But with the decrease of the Chl-a concentration, this advantage was not clear. When the concentration was less than 180 μg/L, the degradation effects of mixed were consistent with that of strain P07.
基金Supported by the National Key Research and Development Program of China(No.2017YFA0605201)the Major Project of Natural Science Foundation of Zhejiang Province(No.LD21C030001)+2 种基金the National Natural Science Foundation of China(No.51779247)the Controlling Technology of Cyanobacterial Bloom in the Major Lakes of Wuhan city(No.HBT-16200117-201482)the Featured Institute Service Project from Institute of Hydrobiology,Chinese Academy of Sciences(No.Y85Z061601)。
文摘Cyanobacterial blooms have become a serious global environmental issue due to their potential risk for releasing detrimental secondary metabolites into aquatic ecosystems,posing a great threat to water quality management for public health authorities.Aphanizomenon,a common filamentous cyanobacterial genus belonging to Nostocales,is under particular concern because its several members are able to form harmful blooms.Furthermore,succession of bloom between A.flos-aquae and Microcystis occurs in many natural lakes.To evaluate the competitiveness of A.flos-aquae vs.M.aeruginosa,two sets of experiments at different ratios of biomass at 15℃and 25℃were conducted.Results show that at 15℃,the two species were able to coexist,and A.flos-aquae showed a specific higher growth rate,and its growth was promoted by the presence of M.aeruginosa.At 25℃,the growth of A.flos-aquae was inhibited by the biomass of M.aeruginosa,and M.aeruginosa suppressed A.flos-aquae in competition.Additionally,the vegetative cell size of A.flos-aquae was significantly influenced by the co-culture with M.aeruginosa,whereas the filament length of A.flos-aquae was not significantly affected.This study confirms that temperature is the dominating factor on the succession of A.flos-aquae and M.aeruginosa of a different biomass.