In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cere...In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography.At each measured time point,the total photoacoustic signal was significantly higher on the affected side than on the healthy side.Twelve hours after reperfusion,cerebral perfusion on the affected side increased,cerebrovascular injury worsened,and anti-tropomyosin 4 expression increased.Twenty-four hours after reperfusion and later,perfusion on the affected side declined slowly and stabilized after 1 week;brain injury was also alleviated.Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes.The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression.展开更多
New ionization and detection techniques in mass spectrometry have been successfully applied for efficient analyses of complex biological systems. It is, however, still difficult to trace structural changes of a specif...New ionization and detection techniques in mass spectrometry have been successfully applied for efficient analyses of complex biological systems. It is, however, still difficult to trace structural changes of a specific molecular species in such systems. In the present study, a molecular probe strategy in combination with tandem electrospray ionization mass spectrometry has been examined using synthetic deuterium-labeled phosphatidylcholine hydroperoxide (PC-OOH/D3) and ethyl-labeled phosphatidylcholine having docosahexaenoic acid side chain (DHA-PC/Et). Administration of a mixture of PC-OOH/D3 and DHA-PC/Et to human blood and human skin surface, followed by extraction and analysis with collision-induced tandem electrospray ionization mass spectrometry demonstrated that metabolites of both molecular probes can be detected simultaneously with strict selectivity. The present method is also found to be useful in tracing chemical changes of the unstable docosahexaenoyl group on the surface of processed fish. The activity of phospholipase A2 can also be assessed using a phospholipid molecular probe with a linoleoyl and a deuteriomethyl group via selective detection of the lyso-phospholipid product by mass spectrometry. The advantage of the present method is that no chromatographic separation is required and analysis can be performed under strictly the same condition for different molecular probes, affording multiple data by one experiment. The present strategy may be useful for tracing time-dependent phenomena in dynamic phospholipid biochemistry, and can be widely used for any biological and food systems.展开更多
Macrophage is a kind of immune cell and performs multiple functions including pathogen phagocytosis,antigen presentation and tissue remodeling.To fulfll their functionally distinct roles,macrophages undergo polarizati...Macrophage is a kind of immune cell and performs multiple functions including pathogen phagocytosis,antigen presentation and tissue remodeling.To fulfll their functionally distinct roles,macrophages undergo polarization towards a spectrum of phenotypes,particularly the classically activated(M1)and alternatively activated(M2)subtypes.However,the binary M1/M2 phenotype fails to capture the complexity of macrophages subpopulations in vivo.Hence,it is crucial to employ spatiotemporal imaging techniques to visualize macrophage phenotypes and polarization,enabling the monitoring of disease progression and assessment of therapeutic responses to drug candidates.This review begins by discussing the origin,function and diversity of macrophage under physiological and pathological conditions.Subsequently,we summarize the identifed macrophage phenotypes and their specifc biomarkers.In addition,we present the imaging probes locating the lesions by visualizing macrophages with specifc phenotype in vivo.Finally,we discuss the challenges and prospects associated with monitoring immune microenvironment and disease progression through imaging of macrophage phenotypes.展开更多
Labelling and identification of proliferating cells is important for the study of physiological or pathological processes in high-content screening (HCS) assays. Here we describe ethynyl deoxyuridine (EdU) as a biomar...Labelling and identification of proliferating cells is important for the study of physiological or pathological processes in high-content screening (HCS) assays. Here we describe ethynyl deoxyuridine (EdU) as a biomarker for the assessment of cell proliferation and clearly demonstrate the feasibility of the EdU-labelling method for use in HCS assays. EdU detection is highly robust, reproducible, technically simple, and well suited for automated segmentation, which provides an excellent al- ternative for setting up multiplexed HCS assays of siRNA, miRNA and small-molecule libraries.展开更多
A summer-autumn (1994) molecular epidemiological study of enteric adenoviruses (EAds) in stool specimens collected in Wuhan area was conducted by using Digoxigenin-labelled DNA probes specific to EAd40, and EAd41, res...A summer-autumn (1994) molecular epidemiological study of enteric adenoviruses (EAds) in stool specimens collected in Wuhan area was conducted by using Digoxigenin-labelled DNA probes specific to EAd40, and EAd41, respectively.44 of 602 specimens were positive, among which 23 cases were identified as EAd40, 14 were EAd41, infection and 7 were dual infection. The ratio of males to females for the positive specimens was 1. 44. The infection rate of EAd40 and EAd41 each displayed no marked difference in seasons (summer and autumn) and similar age distribution was found between them. All of the two types of EAds in-fections predominated in patients with diarrhea under 3 years old- The results indicated that the Digoxigenin probe could detect DNA quantities as low as 1 pgwith satis factory specificity and the technique can be used for both clinical and ex-perimental purposes.展开更多
The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with res...The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with response functions.The responsive mechanism is explored. It is found that the calculated OPA and TPA properties are quite consistent with experimental data. Because the intra-molecular charge transfer(ICT) increases upon zinc ion binding, the TPA intensity is enhanced dramatically. According to the model sensor, we design a series of zinc ion probes which differ by conjugation center, acceptor and donor moieties. The properties of OPA, emission and TPA of the designed molecules are calculated at the same computational level. Our results demonstrate that the OPA and emission wavelengths of the designed probes have large red-shifts after zinc ions have been bound. Comparing with the model sensor, the TPA intensities of the designed probes are enhanced significantly and the absorption positions are red-shifted to longer wavelength range. Furthermore, the TPA intensity can be improved greatly upon zinc ion binding due to the increased ICT mechanism. These compounds are potential excellent candidates for two-photon fluorescent zinc ion probes.展开更多
基金supported by the National Natural Science Foundation of China,No.81730050(to WH).
文摘In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography.At each measured time point,the total photoacoustic signal was significantly higher on the affected side than on the healthy side.Twelve hours after reperfusion,cerebral perfusion on the affected side increased,cerebrovascular injury worsened,and anti-tropomyosin 4 expression increased.Twenty-four hours after reperfusion and later,perfusion on the affected side declined slowly and stabilized after 1 week;brain injury was also alleviated.Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes.The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression.
文摘New ionization and detection techniques in mass spectrometry have been successfully applied for efficient analyses of complex biological systems. It is, however, still difficult to trace structural changes of a specific molecular species in such systems. In the present study, a molecular probe strategy in combination with tandem electrospray ionization mass spectrometry has been examined using synthetic deuterium-labeled phosphatidylcholine hydroperoxide (PC-OOH/D3) and ethyl-labeled phosphatidylcholine having docosahexaenoic acid side chain (DHA-PC/Et). Administration of a mixture of PC-OOH/D3 and DHA-PC/Et to human blood and human skin surface, followed by extraction and analysis with collision-induced tandem electrospray ionization mass spectrometry demonstrated that metabolites of both molecular probes can be detected simultaneously with strict selectivity. The present method is also found to be useful in tracing chemical changes of the unstable docosahexaenoyl group on the surface of processed fish. The activity of phospholipase A2 can also be assessed using a phospholipid molecular probe with a linoleoyl and a deuteriomethyl group via selective detection of the lyso-phospholipid product by mass spectrometry. The advantage of the present method is that no chromatographic separation is required and analysis can be performed under strictly the same condition for different molecular probes, affording multiple data by one experiment. The present strategy may be useful for tracing time-dependent phenomena in dynamic phospholipid biochemistry, and can be widely used for any biological and food systems.
基金the National Natural Science Foundation of China(Nos.92159304,82227806)the National Science Fund for Distinguished Young Scholars(No.82025019)the Shanghai Municipal Health Commission Project(202040106).
文摘Macrophage is a kind of immune cell and performs multiple functions including pathogen phagocytosis,antigen presentation and tissue remodeling.To fulfll their functionally distinct roles,macrophages undergo polarization towards a spectrum of phenotypes,particularly the classically activated(M1)and alternatively activated(M2)subtypes.However,the binary M1/M2 phenotype fails to capture the complexity of macrophages subpopulations in vivo.Hence,it is crucial to employ spatiotemporal imaging techniques to visualize macrophage phenotypes and polarization,enabling the monitoring of disease progression and assessment of therapeutic responses to drug candidates.This review begins by discussing the origin,function and diversity of macrophage under physiological and pathological conditions.Subsequently,we summarize the identifed macrophage phenotypes and their specifc biomarkers.In addition,we present the imaging probes locating the lesions by visualizing macrophages with specifc phenotype in vivo.Finally,we discuss the challenges and prospects associated with monitoring immune microenvironment and disease progression through imaging of macrophage phenotypes.
基金supported by the National Natural Science Foundation of China (30870535 and 90913017) (B. Zhang) Introduced Innovative R&D Team Program of Guangdong Province (Gene Silencing Technology and Therapeutics)
文摘Labelling and identification of proliferating cells is important for the study of physiological or pathological processes in high-content screening (HCS) assays. Here we describe ethynyl deoxyuridine (EdU) as a biomarker for the assessment of cell proliferation and clearly demonstrate the feasibility of the EdU-labelling method for use in HCS assays. EdU detection is highly robust, reproducible, technically simple, and well suited for automated segmentation, which provides an excellent al- ternative for setting up multiplexed HCS assays of siRNA, miRNA and small-molecule libraries.
文摘A summer-autumn (1994) molecular epidemiological study of enteric adenoviruses (EAds) in stool specimens collected in Wuhan area was conducted by using Digoxigenin-labelled DNA probes specific to EAd40, and EAd41, respectively.44 of 602 specimens were positive, among which 23 cases were identified as EAd40, 14 were EAd41, infection and 7 were dual infection. The ratio of males to females for the positive specimens was 1. 44. The infection rate of EAd40 and EAd41 each displayed no marked difference in seasons (summer and autumn) and similar age distribution was found between them. All of the two types of EAds in-fections predominated in patients with diarrhea under 3 years old- The results indicated that the Digoxigenin probe could detect DNA quantities as low as 1 pgwith satis factory specificity and the technique can be used for both clinical and ex-perimental purposes.
基金Project supported by the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2014AM026)the National Natural Science Foundation of China(Grant Nos.11374195 and 11404193)the Taishan Scholar Project of Shandong Province,China
文摘The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with response functions.The responsive mechanism is explored. It is found that the calculated OPA and TPA properties are quite consistent with experimental data. Because the intra-molecular charge transfer(ICT) increases upon zinc ion binding, the TPA intensity is enhanced dramatically. According to the model sensor, we design a series of zinc ion probes which differ by conjugation center, acceptor and donor moieties. The properties of OPA, emission and TPA of the designed molecules are calculated at the same computational level. Our results demonstrate that the OPA and emission wavelengths of the designed probes have large red-shifts after zinc ions have been bound. Comparing with the model sensor, the TPA intensities of the designed probes are enhanced significantly and the absorption positions are red-shifted to longer wavelength range. Furthermore, the TPA intensity can be improved greatly upon zinc ion binding due to the increased ICT mechanism. These compounds are potential excellent candidates for two-photon fluorescent zinc ion probes.