The two dimensional quantum dipole springs in background uniform electric and magnetic fields are first studied in the conventional commutative coordinate space, leading to rigorous results. Then, the model is studied...The two dimensional quantum dipole springs in background uniform electric and magnetic fields are first studied in the conventional commutative coordinate space, leading to rigorous results. Then, the model is studied in the framework of the noncommutative (NC) phase space. The NC Hamiltonian and angular momentum do not commute any more in this space. By the means of the su(1,1) symmetry and the similarity transformation, exact solutions are obtained for both the NC angular momentum and the NC Hamiltonian.展开更多
文摘The two dimensional quantum dipole springs in background uniform electric and magnetic fields are first studied in the conventional commutative coordinate space, leading to rigorous results. Then, the model is studied in the framework of the noncommutative (NC) phase space. The NC Hamiltonian and angular momentum do not commute any more in this space. By the means of the su(1,1) symmetry and the similarity transformation, exact solutions are obtained for both the NC angular momentum and the NC Hamiltonian.