A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method, are given. Their convergence properties are proved. They are at least third order convergence nea...A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method, are given. Their convergence properties are proved. They are at least third order convergence near simple root and one order convergence near multiple roots. In the end, numerical tests are given and compared with other known Newton's methods. The results show that the proposed methods have some more advantages than others. They enrich the methods to find the roots of non-linear equations and they are important in both theory and application.展开更多
The current theory in NF EN 1995-1-1/NA of Eurocode 5, which is based on maximum deflection, has been investigated on softwoods. Therefore, this theory is not adapted for slender glulam beam columns made of tropical h...The current theory in NF EN 1995-1-1/NA of Eurocode 5, which is based on maximum deflection, has been investigated on softwoods. Therefore, this theory is not adapted for slender glulam beam columns made of tropical hardwood species from the Congo Basin. This maximum deflection is caused by a set of loads applied to the structure. However, Eurocode 5 doesn’t provide how to predict this deflection in case of long-term load for such structures. This can be done by studying load-displacement (P-Δ) behaviour of these structures while taking into account second order effects. To reach this goal, a nonlinear analysis has been performed on a three-dimensional beam column embedded on both ends. Since conducting experimental investigations on large span structural products is time-consuming and expensive especially in developing countries, a numerical model has been implemented using the Newton-Raphson method to predict load-displacement (P-Δ) curve on a slender glulam beam column made of tropical hardwood species. On one hand, the beam has been analyzed without wood connection. On the other hand, the beam has been analyzed with a bolted wood connection and a slotted-in steel plate. The load cases considered include self-weight and a uniformly applied long-term load. Combinations of serviceability limit states (SLS) and ultimate limit states (ULS) have also been considered, among other factors. A finite-element software RFEM 5 has been used to implement the model. The results showed that the use of steel can reduce displacement by 20.96%. Additionally, compared to the maximum deflection provided by Eurocode 5 for softwoods, hardwoods can exhibit an increasing rate of 85.63%. By harnessing the plastic resistance of steel, the bending resistance of wood can be increased by 32.94%.展开更多
The convergence criterion of Newton’s method to find the zeros of a map f from a Lie group to its corresponding Lie algebra is established under the assumption that f satisfies the classical Lipschitz condition, and ...The convergence criterion of Newton’s method to find the zeros of a map f from a Lie group to its corresponding Lie algebra is established under the assumption that f satisfies the classical Lipschitz condition, and that the radius of convergence ball is also obtained. Furthermore, the radii of the uniqueness balls of the zeros of f are estimated. Owren and Welfert (2000) stated that if the initial point is close sufficiently to a zero of f, then Newton’s method on Lie group converges to the zero; while this paper provides a Kantorovich’s criterion for the convergence of Newton’s method, not requiring the existence of a zero as a priori.展开更多
The convergence properties of Newton's method for systems of equations with constant rank derivatives are studied under the hypothesis that the derivatives satisfy some weak Lipschitz conditions. The unified converge...The convergence properties of Newton's method for systems of equations with constant rank derivatives are studied under the hypothesis that the derivatives satisfy some weak Lipschitz conditions. The unified convergence results, which include Kantorovich type theorems and Smale's point estimate theorems as special cases, are obtained.展开更多
In order to calculate the electronic structure of correlated materials, we propose implementation of the LDA+Gutzwiller method with Newton's method. The self-consistence process, efficiency and convergence of calcul...In order to calculate the electronic structure of correlated materials, we propose implementation of the LDA+Gutzwiller method with Newton's method. The self-consistence process, efficiency and convergence of calculation are improved dramatically by using Newton's method with golden section search and other improvement approaches.We compare the calculated results by applying the previous linear mix method and Newton's method. We have applied our code to study the electronic structure of several typical strong correlated materials, including SrVO3, LaCoO3, and La2O3Fe2Se2. Our results fit quite well with the previous studies.展开更多
Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improv...Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improve greatly. To increase the springback compensate speed of designing age forming mold, process of calculating springback for a certain mold with finite element method is analyzed. Springback compensation is abstracted as finding a solution for a set of nonlinear functions and a springback compensation algorithm is presented on the basis of quasi Newton method. The accuracy of algorithm is verified by developing an ABAQUS secondary development program with MATLAB. Three rectangular integrated panels of dimensions 710 mmx750 mm integrated panels with intersected ribs of 10 mm are selected to perform case studies. The algorithm is used to compute mold contours for the panels with cylinder, sphere and saddle contours respectively and it takes 57%, 22% and 33% iterations as compared to that of displacement adjustment (DA) method. At the end of iterations, maximum deviations on the three panels are 0.618 4 mm, 0.624 1 mm and 0.342 0 mm that are smaller than the deviations determined by DA method (0.740 8 mm, 0.740 8 mm and 0.713 7 mm respectively). In following experimental verification, mold contour for another integrated panel with 400 ram^380 mm size is designed by the algorithm. Then the panel is age formed in an autoclave and measured by a three dimensional digital measurement devise. Deviation between measuring results and the panel's design contour is less than 1 mm. Finally, the iterations with different mesh sizes (40 mm, 35 mm, 30 mm, 25 mm, 20 mm) in finite element models are compared and found no considerable difference. Another possible compensation method, Broyden-Fletcher-Shanmo method, is also presented based on the solving nonlinear fimctions idea. The Broyden-Fletcher-Shanmo method is employed to compute mold contour for the second panel. It only takes 50% iterations compared to that of DA. The proposed method can serve a faster mold contour compensation method for sheet metal forming.展开更多
Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of...Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.展开更多
The box constrained variational inequality problem can be reformulated as a nonsmooth equation by using median operator.In this paper,we present a smoothing Newton method for solving the box constrained variational in...The box constrained variational inequality problem can be reformulated as a nonsmooth equation by using median operator.In this paper,we present a smoothing Newton method for solving the box constrained variational inequality problem based on a new smoothing approximation function.The proposed algorithm is proved to be well defined and convergent globally under weaker conditions.展开更多
In this paper, we present a family of general New to n-like methods with a parametric function for finding a zero of a univariate fu nction, permitting f′(x)=0 in some points. The case of multiple roots is n ot treat...In this paper, we present a family of general New to n-like methods with a parametric function for finding a zero of a univariate fu nction, permitting f′(x)=0 in some points. The case of multiple roots is n ot treated. The methods are proved to be quadratically convergent provided the w eak condition. Thus the methods remove the severe condition f′(x)≠0. Based on the general form of the Newton-like methods, a family of new iterative meth ods with a variable parameter are developed.展开更多
Gain based predistorter (PD) is a highly effective and simple digital baseband predistorter which compensates for the nonlinear distortion of PAs. Lookup table (LUT) is the core of the gain based PD. This paper presen...Gain based predistorter (PD) is a highly effective and simple digital baseband predistorter which compensates for the nonlinear distortion of PAs. Lookup table (LUT) is the core of the gain based PD. This paper presents a discrete Newton’s method based adaptive technique to modify LUT. We simplify and convert the hardship of adaptive updating LUT to the roots finding problem for a system of two element real equations on athematics. And we deduce discrete Newton’s method based adaptive iterative formula used for updating LUT. The iterative formula of the proposed method is in real number field, but secant method previously published is in complex number field. So the proposed method reduces the number of real multiplications and is implemented with ease by hardware. Furthermore, computer simulation results verify gain based PD using discrete Newton’s method could rectify nonlinear distortion and improve system performance. Also, the simulation results reveal the proposed method reaches to the stable statement in fewer iteration times and less runtime than secant method.展开更多
Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured...Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.展开更多
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna...Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.展开更多
In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic ...In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic Kerr response,and the nonlinear delayed Raman molecular vibrational response.Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al.(J Comput Phys 350:420–452,2017)and Lyu et al.(J Sci Comput 89:1–42,2021),a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part(i.e.,the auxiliary differential equations)modeling the linear and nonlinear dispersion in the material.The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization.A nodal discontinuous Galerkin(DG)method is further applied in space for efficiently handling nonlinear terms at the algebraic level,while preserving the energy stability and achieving high-order accuracy.Indeed with d_(E)as the number of the components of the electric field,only a d_(E)×d_(E)nonlinear algebraic system needs to be solved at each interpolation node,and more importantly,all these small nonlinear systems are completely decoupled over one time step,rendering very high parallel efficiency.We evaluate the proposed schemes by comparing them with the methods in Bokil et al.(2017)and Lyu et al.(2021)(implemented in nodal form)regarding the accuracy,computational efficiency,and energy stability,by a parallel scalability study,and also through the simulations of the soliton-like wave propagation in one dimension,as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric(TE)mode of the equations.展开更多
A new decoupled two-gird algorithm with the Newton iteration is proposed for solving the coupled Navier-Stokes/Darcy model which describes a fluid flow filtrating through porous media. Moreover the error estimate is g...A new decoupled two-gird algorithm with the Newton iteration is proposed for solving the coupled Navier-Stokes/Darcy model which describes a fluid flow filtrating through porous media. Moreover the error estimate is given, which shows that the same order of accuracy can be achieved as solving the system directly in the fine mesh when h = H2. Both theoretical analysis and numerical experiments illustrate the efficiency of the algorithm for solving the coupled problem.展开更多
With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After f...With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After fully analyzing the features of quasi- Newton methods, the paper improves BP neural network algorithm. And the adjustment is made for the problems in the improvement process. The paper makes empirical analysis and proves the effectiveness of BP neural network algorithm based on quasi-Newton method. The improved algorithms are compared with the traditional BP algorithm, which indicates that the imoroved BP algorithm is better.展开更多
In 2022,four earthquakes with M_(S)≥6.0 including the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes occurred in the North-South Seismic Zone(NSSZ),which demonstrated high and strong seismicity.Pattern Informatics(...In 2022,four earthquakes with M_(S)≥6.0 including the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes occurred in the North-South Seismic Zone(NSSZ),which demonstrated high and strong seismicity.Pattern Informatics(PI)method,as an effective long and medium term earthquake forecasting method,has been applied to the strong earthquake forecasting in Chinese mainland and results have shown the positive performance.The earthquake catalog with magnitude above M_(S)3.0 since 1970 provided by China Earthquake Networks Center was employed in this study and the Receiver Operating Characteristic(ROC)method was applied to test the forecasting efficiency of the PI method in each selected region related to the North-South Seismic Zone systematically.Based on this,we selected the area with the best ROC testing result and analyzed the evolution process of the PI hotspot map reflecting the small seismic activity pattern prior to the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes.A“forward”forecast for the area was carried out to assess seismic risk.The study shows the following.1)PI forecasting has higher forecasting efficiency in the selected study region where the difference of seismicity in any place of the region is smaller.2)In areas with smaller differences of seismicity,the activity pattern of small earthquakes prior to the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes can be obtained by analyzing the spatio-temporal evolution process of the PI hotspot map.3)The hotspot evolution in and around the southern Tazang fault in the study area is similar to that prior to the strong earthquakes,which suggests the possible seismic hazard in the future.This study could provide some ideas to the seismic hazard assessment in other regions with high seismicity,such as Japan,Californi,Turkey,and Indonesia.展开更多
Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are comp...Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are computationally intensive and require a long processing time. Recently, with the increasing density and arithmetic cores, field programmable gate array(FPGA) has become an attractive alternative to the acceleration of scientific computation. This paper aims to accelerate Davidon-Fletcher-Powell quasi-Newton(DFP-QN) method by proposing a customized and pipelined hardware implementation on FPGAs. Experimental results demonstrate that compared with a software implementation, a speed-up of up to 17 times can be achieved by the proposed hardware implementation.展开更多
In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the ...In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the constituted algorithm with either Wolfe-type or Armijotype line search converges globally and Q-superlinearly if the function to be minimized has Lipschitz continuous gradient.展开更多
Microseismic event location is one of the core parameters in microseismic monitoring,and the accuracy of localization will directly affect the effectiveness of engineering applications.However,limited by spatial facto...Microseismic event location is one of the core parameters in microseismic monitoring,and the accuracy of localization will directly affect the effectiveness of engineering applications.However,limited by spatial factors,the geometry of the sensor installation will be close to linear,which makes the localization equation suffer from the pathological problem,and the localization accuracy is greatly reduced.To address this problem,the reasons for the pathological problem are analyzed from the perspective of the objective function residuals and coefficient matrix.The pathological problem is caused by the combined effect of the poorer sensor array and data errors,and its residual isosurface shows a conical distribution,and as the residual value decreases,the apex of the isosurface gradually extends to the far side,and the localization results do not converge.For this reason,an improved regularized Newton downhill localization algorithm is proposed.In this method,firstly,the Newtonian downhill method is improved so that the magnitudes of the seismic source parameters are the same,and the condition number of the coefficient matrix is reduced;then,the L-curve method is used to calculate the regularization factor for the pathological equations,and the coefficient matrix is improved;finally,the pathological equations are regularized,and the seismic source coordinates are obtained by the improved Newtonian downhill method.The results of engineering applications show that compared with the traditional algorithm based on automatic of P-arrival picking,the number of effective microseismic events calculated by the proposed localization algorithm is increased by 194.7%,and the localization accuracy is substantially improved.The proposed algorithm reduces the problem of low accuracy of S-arrival picking and allows localization using only P-wave arrival.The method reduces the quality requirements of the data and significantly improves the utilization of microseismic events and positioning accuracy.展开更多
基金Foundation item: Supported by the National Science Foundation of China(10701066)
文摘A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method, are given. Their convergence properties are proved. They are at least third order convergence near simple root and one order convergence near multiple roots. In the end, numerical tests are given and compared with other known Newton's methods. The results show that the proposed methods have some more advantages than others. They enrich the methods to find the roots of non-linear equations and they are important in both theory and application.
文摘The current theory in NF EN 1995-1-1/NA of Eurocode 5, which is based on maximum deflection, has been investigated on softwoods. Therefore, this theory is not adapted for slender glulam beam columns made of tropical hardwood species from the Congo Basin. This maximum deflection is caused by a set of loads applied to the structure. However, Eurocode 5 doesn’t provide how to predict this deflection in case of long-term load for such structures. This can be done by studying load-displacement (P-Δ) behaviour of these structures while taking into account second order effects. To reach this goal, a nonlinear analysis has been performed on a three-dimensional beam column embedded on both ends. Since conducting experimental investigations on large span structural products is time-consuming and expensive especially in developing countries, a numerical model has been implemented using the Newton-Raphson method to predict load-displacement (P-Δ) curve on a slender glulam beam column made of tropical hardwood species. On one hand, the beam has been analyzed without wood connection. On the other hand, the beam has been analyzed with a bolted wood connection and a slotted-in steel plate. The load cases considered include self-weight and a uniformly applied long-term load. Combinations of serviceability limit states (SLS) and ultimate limit states (ULS) have also been considered, among other factors. A finite-element software RFEM 5 has been used to implement the model. The results showed that the use of steel can reduce displacement by 20.96%. Additionally, compared to the maximum deflection provided by Eurocode 5 for softwoods, hardwoods can exhibit an increasing rate of 85.63%. By harnessing the plastic resistance of steel, the bending resistance of wood can be increased by 32.94%.
基金Project supported by the National Natural Science Foundation of China (No. 10271025)the Program for New Century Excellent Talents in University of China
文摘The convergence criterion of Newton’s method to find the zeros of a map f from a Lie group to its corresponding Lie algebra is established under the assumption that f satisfies the classical Lipschitz condition, and that the radius of convergence ball is also obtained. Furthermore, the radii of the uniqueness balls of the zeros of f are estimated. Owren and Welfert (2000) stated that if the initial point is close sufficiently to a zero of f, then Newton’s method on Lie group converges to the zero; while this paper provides a Kantorovich’s criterion for the convergence of Newton’s method, not requiring the existence of a zero as a priori.
基金Acknowledgments. This work was supported in part by the National Natural Science Foundation of China (Grant No. 10671175) and Program for New Century Excellent Talents in Universities. The first author was also supported in part by the Education Ministry of Zhejiang Province (Grant No. 20060492).
文摘The convergence properties of Newton's method for systems of equations with constant rank derivatives are studied under the hypothesis that the derivatives satisfy some weak Lipschitz conditions. The unified convergence results, which include Kantorovich type theorems and Smale's point estimate theorems as special cases, are obtained.
基金supported by the National Natural Science Foundation of China(Grant No.2011CBA00108)the National Basic Research Program of China(Grant No.2013CB921700)the Foundation of LCP
文摘In order to calculate the electronic structure of correlated materials, we propose implementation of the LDA+Gutzwiller method with Newton's method. The self-consistence process, efficiency and convergence of calculation are improved dramatically by using Newton's method with golden section search and other improvement approaches.We compare the calculated results by applying the previous linear mix method and Newton's method. We have applied our code to study the electronic structure of several typical strong correlated materials, including SrVO3, LaCoO3, and La2O3Fe2Se2. Our results fit quite well with the previous studies.
文摘Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improve greatly. To increase the springback compensate speed of designing age forming mold, process of calculating springback for a certain mold with finite element method is analyzed. Springback compensation is abstracted as finding a solution for a set of nonlinear functions and a springback compensation algorithm is presented on the basis of quasi Newton method. The accuracy of algorithm is verified by developing an ABAQUS secondary development program with MATLAB. Three rectangular integrated panels of dimensions 710 mmx750 mm integrated panels with intersected ribs of 10 mm are selected to perform case studies. The algorithm is used to compute mold contours for the panels with cylinder, sphere and saddle contours respectively and it takes 57%, 22% and 33% iterations as compared to that of displacement adjustment (DA) method. At the end of iterations, maximum deviations on the three panels are 0.618 4 mm, 0.624 1 mm and 0.342 0 mm that are smaller than the deviations determined by DA method (0.740 8 mm, 0.740 8 mm and 0.713 7 mm respectively). In following experimental verification, mold contour for another integrated panel with 400 ram^380 mm size is designed by the algorithm. Then the panel is age formed in an autoclave and measured by a three dimensional digital measurement devise. Deviation between measuring results and the panel's design contour is less than 1 mm. Finally, the iterations with different mesh sizes (40 mm, 35 mm, 30 mm, 25 mm, 20 mm) in finite element models are compared and found no considerable difference. Another possible compensation method, Broyden-Fletcher-Shanmo method, is also presented based on the solving nonlinear fimctions idea. The Broyden-Fletcher-Shanmo method is employed to compute mold contour for the second panel. It only takes 50% iterations compared to that of DA. The proposed method can serve a faster mold contour compensation method for sheet metal forming.
基金Supported by the National Natural Science Foundation of China(12001395)the special fund for Science and Technology Innovation Teams of Shanxi Province(202204051002018)+1 种基金Research Project Supported by Shanxi Scholarship Council of China(2022-169)Graduate Education Innovation Project of Taiyuan Normal University(SYYJSYC-2314)。
文摘Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.
基金Supported by the NNSF of China(11071041)Supported by the Fujian Natural Science Foundation(2009J01002)Supported by the Fujian Department of Education Foundation(JA11270)
文摘The box constrained variational inequality problem can be reformulated as a nonsmooth equation by using median operator.In this paper,we present a smoothing Newton method for solving the box constrained variational inequality problem based on a new smoothing approximation function.The proposed algorithm is proved to be well defined and convergent globally under weaker conditions.
文摘In this paper, we present a family of general New to n-like methods with a parametric function for finding a zero of a univariate fu nction, permitting f′(x)=0 in some points. The case of multiple roots is n ot treated. The methods are proved to be quadratically convergent provided the w eak condition. Thus the methods remove the severe condition f′(x)≠0. Based on the general form of the Newton-like methods, a family of new iterative meth ods with a variable parameter are developed.
文摘Gain based predistorter (PD) is a highly effective and simple digital baseband predistorter which compensates for the nonlinear distortion of PAs. Lookup table (LUT) is the core of the gain based PD. This paper presents a discrete Newton’s method based adaptive technique to modify LUT. We simplify and convert the hardship of adaptive updating LUT to the roots finding problem for a system of two element real equations on athematics. And we deduce discrete Newton’s method based adaptive iterative formula used for updating LUT. The iterative formula of the proposed method is in real number field, but secant method previously published is in complex number field. So the proposed method reduces the number of real multiplications and is implemented with ease by hardware. Furthermore, computer simulation results verify gain based PD using discrete Newton’s method could rectify nonlinear distortion and improve system performance. Also, the simulation results reveal the proposed method reaches to the stable statement in fewer iteration times and less runtime than secant method.
基金financially supported by the National Natural Science Foundation of China(No.41774125)Key Program of National Natural Science Foundation of China(No.41530320)+1 种基金the Key National Research Project of China(Nos.2016YFC0303100 and 2017YFC0601900)the Strategic Priority Research Program of Chinese Academy of Sciences Pilot Special(No.XDA 14020102)
文摘Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.
文摘Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.
基金supported by China Postdoctoral Science Foundation grant 2020TQ0344the NSFC grants 11871139 and 12101597the NSF grants DMS-1720116,DMS-2012882,DMS-2011838,DMS-1719942,DMS-1913072.
文摘In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic Kerr response,and the nonlinear delayed Raman molecular vibrational response.Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al.(J Comput Phys 350:420–452,2017)and Lyu et al.(J Sci Comput 89:1–42,2021),a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part(i.e.,the auxiliary differential equations)modeling the linear and nonlinear dispersion in the material.The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization.A nodal discontinuous Galerkin(DG)method is further applied in space for efficiently handling nonlinear terms at the algebraic level,while preserving the energy stability and achieving high-order accuracy.Indeed with d_(E)as the number of the components of the electric field,only a d_(E)×d_(E)nonlinear algebraic system needs to be solved at each interpolation node,and more importantly,all these small nonlinear systems are completely decoupled over one time step,rendering very high parallel efficiency.We evaluate the proposed schemes by comparing them with the methods in Bokil et al.(2017)and Lyu et al.(2021)(implemented in nodal form)regarding the accuracy,computational efficiency,and energy stability,by a parallel scalability study,and also through the simulations of the soliton-like wave propagation in one dimension,as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric(TE)mode of the equations.
基金supported by National Foundation of Natural Science(11471092,11326231)Zhejiang Provincial Natural Science Foundation of China(LZ13A010003)
文摘A new decoupled two-gird algorithm with the Newton iteration is proposed for solving the coupled Navier-Stokes/Darcy model which describes a fluid flow filtrating through porous media. Moreover the error estimate is given, which shows that the same order of accuracy can be achieved as solving the system directly in the fine mesh when h = H2. Both theoretical analysis and numerical experiments illustrate the efficiency of the algorithm for solving the coupled problem.
文摘With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After fully analyzing the features of quasi- Newton methods, the paper improves BP neural network algorithm. And the adjustment is made for the problems in the improvement process. The paper makes empirical analysis and proves the effectiveness of BP neural network algorithm based on quasi-Newton method. The improved algorithms are compared with the traditional BP algorithm, which indicates that the imoroved BP algorithm is better.
基金the National Natural Science Foundation of China Study on the Theory and Methods of Deterministic-Probabilistic(No.U2039207)the National Key Research and Development Program of China‘CSEP China in the Context of China Seismic Experimental Site’(No.2018YFE0109700).
文摘In 2022,four earthquakes with M_(S)≥6.0 including the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes occurred in the North-South Seismic Zone(NSSZ),which demonstrated high and strong seismicity.Pattern Informatics(PI)method,as an effective long and medium term earthquake forecasting method,has been applied to the strong earthquake forecasting in Chinese mainland and results have shown the positive performance.The earthquake catalog with magnitude above M_(S)3.0 since 1970 provided by China Earthquake Networks Center was employed in this study and the Receiver Operating Characteristic(ROC)method was applied to test the forecasting efficiency of the PI method in each selected region related to the North-South Seismic Zone systematically.Based on this,we selected the area with the best ROC testing result and analyzed the evolution process of the PI hotspot map reflecting the small seismic activity pattern prior to the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes.A“forward”forecast for the area was carried out to assess seismic risk.The study shows the following.1)PI forecasting has higher forecasting efficiency in the selected study region where the difference of seismicity in any place of the region is smaller.2)In areas with smaller differences of seismicity,the activity pattern of small earthquakes prior to the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes can be obtained by analyzing the spatio-temporal evolution process of the PI hotspot map.3)The hotspot evolution in and around the southern Tazang fault in the study area is similar to that prior to the strong earthquakes,which suggests the possible seismic hazard in the future.This study could provide some ideas to the seismic hazard assessment in other regions with high seismicity,such as Japan,Californi,Turkey,and Indonesia.
基金Supported by the National Natural Science Foundation of China(No.61574099)
文摘Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are computationally intensive and require a long processing time. Recently, with the increasing density and arithmetic cores, field programmable gate array(FPGA) has become an attractive alternative to the acceleration of scientific computation. This paper aims to accelerate Davidon-Fletcher-Powell quasi-Newton(DFP-QN) method by proposing a customized and pipelined hardware implementation on FPGAs. Experimental results demonstrate that compared with a software implementation, a speed-up of up to 17 times can be achieved by the proposed hardware implementation.
文摘In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the constituted algorithm with either Wolfe-type or Armijotype line search converges globally and Q-superlinearly if the function to be minimized has Lipschitz continuous gradient.
基金the financial support from the National Natural Science Foundation of China(Grant no.42077263).
文摘Microseismic event location is one of the core parameters in microseismic monitoring,and the accuracy of localization will directly affect the effectiveness of engineering applications.However,limited by spatial factors,the geometry of the sensor installation will be close to linear,which makes the localization equation suffer from the pathological problem,and the localization accuracy is greatly reduced.To address this problem,the reasons for the pathological problem are analyzed from the perspective of the objective function residuals and coefficient matrix.The pathological problem is caused by the combined effect of the poorer sensor array and data errors,and its residual isosurface shows a conical distribution,and as the residual value decreases,the apex of the isosurface gradually extends to the far side,and the localization results do not converge.For this reason,an improved regularized Newton downhill localization algorithm is proposed.In this method,firstly,the Newtonian downhill method is improved so that the magnitudes of the seismic source parameters are the same,and the condition number of the coefficient matrix is reduced;then,the L-curve method is used to calculate the regularization factor for the pathological equations,and the coefficient matrix is improved;finally,the pathological equations are regularized,and the seismic source coordinates are obtained by the improved Newtonian downhill method.The results of engineering applications show that compared with the traditional algorithm based on automatic of P-arrival picking,the number of effective microseismic events calculated by the proposed localization algorithm is increased by 194.7%,and the localization accuracy is substantially improved.The proposed algorithm reduces the problem of low accuracy of S-arrival picking and allows localization using only P-wave arrival.The method reduces the quality requirements of the data and significantly improves the utilization of microseismic events and positioning accuracy.