采用PVD陶瓷覆膜工艺对控压钻井节流阀阀芯表面处理,通过实验对比研究不同表面覆膜处理的阀芯耐冲蚀性能。结果表明,经过冲蚀后,Ti Al N涂层材料阀芯的质量损失约为Ti N涂层材料的1/3,Ti Al N涂层材料阀芯冲蚀最严重处表面轮廓损失约为T...采用PVD陶瓷覆膜工艺对控压钻井节流阀阀芯表面处理,通过实验对比研究不同表面覆膜处理的阀芯耐冲蚀性能。结果表明,经过冲蚀后,Ti Al N涂层材料阀芯的质量损失约为Ti N涂层材料的1/3,Ti Al N涂层材料阀芯冲蚀最严重处表面轮廓损失约为Ti N涂层材料的1/2,Ti Al N涂层材料在提升控压钻井节流阀耐冲蚀性能和使用可靠性上较Ti N涂层材料优越。展开更多
提出kinetic Monte Carlo模拟物理气相沉积(physical vapor deposition,简写为PVD)薄膜生长的新算法:用红黑树搜索实现跃迁路径选择及系统跃迁概率更新,通过比较红黑树搜索、线性查找、满二元树搜索的计算效率,综合分析了这3种方法的时...提出kinetic Monte Carlo模拟物理气相沉积(physical vapor deposition,简写为PVD)薄膜生长的新算法:用红黑树搜索实现跃迁路径选择及系统跃迁概率更新,通过比较红黑树搜索、线性查找、满二元树搜索的计算效率,综合分析了这3种方法的时间复杂度和空间复杂度。结果表明红黑树搜索优于其它两种搜索方法,模拟效率最高,更适合用于执行大系统的kinetic Monte Carlo模拟。展开更多
采用物理气相沉积(Physical vapor deposition,PVD)工艺在氮化硅陶瓷刀具表面分别沉积Ti Al N和Ti Al Si N涂层。采用扫描电子显微镜(SEM)研究Ti Al N和Ti Al Si N涂层表面形貌和微观结构,X射线衍射仪(XRD)研究涂层晶体结构,显微硬度计...采用物理气相沉积(Physical vapor deposition,PVD)工艺在氮化硅陶瓷刀具表面分别沉积Ti Al N和Ti Al Si N涂层。采用扫描电子显微镜(SEM)研究Ti Al N和Ti Al Si N涂层表面形貌和微观结构,X射线衍射仪(XRD)研究涂层晶体结构,显微硬度计表征涂层硬度。采用Ti Al N和Ti Al Si N涂层氮化硅刀具对灰铸铁进行连续干切削试验,分别研究Ti Al N和Ti Al Si N涂层对刀具寿命、磨损性能的影响,并探讨涂层刀具磨损机理。实验结果表明:Ti Al Si N涂层晶粒比Ti Al N涂层细小,从而具有更高的表面硬度。Ti Al N涂层可将氮化硅陶瓷刀具寿命提高50%左右,Ti Al Si N涂层可将刀具寿命提高1倍。切削过程中,Ti Al N涂层刀具在磨损初期的主要磨损机理是磨粒磨损和少量粘结磨损,而后转为严重的粘结磨损;而Ti Al Si N涂层刀具主要的磨损机制为磨粒磨损和粘结磨损。展开更多
采用动态蒙特卡罗(kinetic Monte Carlo,简称KMC)方法研究物理气相沉积(physical vapor deposition,简称PVD)制备Ni薄膜过程中入射角度对薄膜微观结构的影响。该KMC模型中既包括入射原子与表面之间的碰撞,又包括被吸附原子的扩散。模拟...采用动态蒙特卡罗(kinetic Monte Carlo,简称KMC)方法研究物理气相沉积(physical vapor deposition,简称PVD)制备Ni薄膜过程中入射角度对薄膜微观结构的影响。该KMC模型中既包括入射原子与表面之间的碰撞,又包括被吸附原子的扩散。模拟中用动量机制确定被吸附原子在表面上的初始构型,用分子稳态(molecular statics,简称MS)计算方法计算扩散模型中跃迁原子的激活能。对于模拟结果,采用表面粗糙度和堆积密度作为沉积构型评价指标。研究结果表明:当沉积速率是5μm/min,基板温度是300K和500K时,表面粗糙度和堆积密度曲线在入射角度等于35?时出现拐点;入射角度小于35?时,入射角度增大对表面粗糙度增加和堆积密度减小的影响很少;但是入射角度大于35?时,随入射角度增大表面粗糙度迅速增加、堆积密度迅速减小。另外,当基板温度是300K时,入射角度对薄膜微观结构的影响程度大于基板温度为500K时的影响程度。说明高基板温度促使原子更加充分地扩散,从而能削弱自阴影效应的作用。但是,在保证足够高基板温度和合理沉积速率的情况下,入射角度过大同样不利于致密结构形成。展开更多
文摘采用PVD陶瓷覆膜工艺对控压钻井节流阀阀芯表面处理,通过实验对比研究不同表面覆膜处理的阀芯耐冲蚀性能。结果表明,经过冲蚀后,Ti Al N涂层材料阀芯的质量损失约为Ti N涂层材料的1/3,Ti Al N涂层材料阀芯冲蚀最严重处表面轮廓损失约为Ti N涂层材料的1/2,Ti Al N涂层材料在提升控压钻井节流阀耐冲蚀性能和使用可靠性上较Ti N涂层材料优越。
文摘提出kinetic Monte Carlo模拟物理气相沉积(physical vapor deposition,简写为PVD)薄膜生长的新算法:用红黑树搜索实现跃迁路径选择及系统跃迁概率更新,通过比较红黑树搜索、线性查找、满二元树搜索的计算效率,综合分析了这3种方法的时间复杂度和空间复杂度。结果表明红黑树搜索优于其它两种搜索方法,模拟效率最高,更适合用于执行大系统的kinetic Monte Carlo模拟。
文摘采用物理气相沉积(Physical vapor deposition,PVD)工艺在氮化硅陶瓷刀具表面分别沉积Ti Al N和Ti Al Si N涂层。采用扫描电子显微镜(SEM)研究Ti Al N和Ti Al Si N涂层表面形貌和微观结构,X射线衍射仪(XRD)研究涂层晶体结构,显微硬度计表征涂层硬度。采用Ti Al N和Ti Al Si N涂层氮化硅刀具对灰铸铁进行连续干切削试验,分别研究Ti Al N和Ti Al Si N涂层对刀具寿命、磨损性能的影响,并探讨涂层刀具磨损机理。实验结果表明:Ti Al Si N涂层晶粒比Ti Al N涂层细小,从而具有更高的表面硬度。Ti Al N涂层可将氮化硅陶瓷刀具寿命提高50%左右,Ti Al Si N涂层可将刀具寿命提高1倍。切削过程中,Ti Al N涂层刀具在磨损初期的主要磨损机理是磨粒磨损和少量粘结磨损,而后转为严重的粘结磨损;而Ti Al Si N涂层刀具主要的磨损机制为磨粒磨损和粘结磨损。