期刊文献+
共找到365篇文章
< 1 2 19 >
每页显示 20 50 100
Prediction of ILI following the COVID-19 pandemic in China by using a partial differential equation
1
作者 Xu Zhang Yu-Rong Song Ru-Qi Li 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期118-128,共11页
The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory in... The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease. 展开更多
关键词 partial differential equations INFLUENZA SIS model PREDICTION
下载PDF
Results Involving Partial Differential Equations and Their Solution by Certain Integral Transform
2
作者 Rania Saadah Mohammed Amleh +2 位作者 Ahmad Qazza Shrideh Al-Omari Ahmet Ocak Akdemir 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1593-1616,共24页
In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, exi... In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables. 展开更多
关键词 ARA transform double ARA transform triple ARA transform partial differential equations integral transform
下载PDF
Meta-Auto-Decoder:a Meta-Learning-Based Reduced Order Model for Solving Parametric Partial Differential Equations
3
作者 Zhanhong Ye Xiang Huang +1 位作者 Hongsheng Liu Bin Dong 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1096-1130,共35页
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational... Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods. 展开更多
关键词 Parametric partial differential equations(PDEs) META-LEARNING Reduced order modeling Neural networks(NNs) Auto-decoder
下载PDF
Oscillation for Solutions of Systems of High Order Partial Differential Equations of Neutral Type 被引量:8
4
作者 LIN Wen-xian(Department of Mathematics, Hanshan Teacher’s College, Chaozhou 521041, China) 《Chinese Quarterly Journal of Mathematics》 CSCD 2003年第2期168-174,共7页
In this paper, sane sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
关键词 neutral type system of partial differential equations OSCILLATION
下载PDF
Finite-time consensus of multi-agent systems driven by hyperbolic partial differential equations via boundary control 被引量:2
5
作者 Xuhui WANG Nanjing HUANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第12期1799-1816,共18页
The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the un... The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the unique solvability result for the first-order linear hyperbolic PDE are used to obtain some sufficient conditions for ensuring the finite-time consensus of the leaderless and leader-following MASs driven by first-order linear hyperbolic PDEs.Finally,two numerical examples are provided to verify the effectiveness of the proposed methods. 展开更多
关键词 finite-time consensus hyperbolic partial differential equation(PDE) leaderless multi-agent system(MAS) leader-following MAS boundary control
下载PDF
Data-driven and physical-based identification of partial differential equations for multivariable system 被引量:1
6
作者 Wenbo Cao Weiwei Zhang 《Theoretical & Applied Mechanics Letters》 CSCD 2022年第2期127-131,共5页
Data-driven partial differential equation identification is a potential breakthrough to solve the lack of physical equations in complex dynamic systems.However,existing equation identification methods still cannot eff... Data-driven partial differential equation identification is a potential breakthrough to solve the lack of physical equations in complex dynamic systems.However,existing equation identification methods still cannot effectively identify equations from multivariable complex systems.In this work,we combine physical constraints such as dimension and direction of equation with data-driven method,and successfully identify the Navier-Stocks equations from the flow field data of Karman vortex street.This method provides an effective approach to identify partial differential equations of multivariable complex systems. 展开更多
关键词 partial differential equation identification DATA-DRIVEN Multivariable system Dimensional analysis
下载PDF
A SOLVING METHOD FOR A SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS WITH AN APPLICATION TO THE BENDING PROBLEM OF A THICK PLATE
7
作者 尹益辉 陈刚 陈裕泽 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第11期1259-1265,共7页
A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is ... A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is interpreted briefly. As an example, the theorem is applied to solve the problem of thermo-force bending of a thick plate. 展开更多
关键词 partial differential equations integrating method thick plate thermo-force bending
下载PDF
A SYMBOLIC COMPUTATION METHOD TO DECIDE THE COMPLETENESS OF THE SOLUTIONS TO THE SYSTEM OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS
8
作者 张鸿庆 谢福鼎 陆斌 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第10期1134-1139,共6页
A symbolic computation method to decide whether the solutions to the system Of linear partial differential equation is complete via using differential algebra and characteristic set is presented. This is a mechanizati... A symbolic computation method to decide whether the solutions to the system Of linear partial differential equation is complete via using differential algebra and characteristic set is presented. This is a mechanization method, and it can be carried out on the computer in the Maple environment. 展开更多
关键词 differential algebra system of partial differential equation symbolic computation characteristic set
下载PDF
SINGULARLY PERTURBED METHODS IN THE THEORY OF OPTIMAL CONTROL OF SYSTEMS GOVERNED BY PARTIAL DIFFERENTIAL EQUATIONS
9
作者 田根宝 林宗池 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1994年第8期713-719,共7页
In this paper, the various problems associaled with the optimal control of systemsgoverned by partial differential equations are introduced by using singularly perturbedmethods for analysis based on stale equations,... In this paper, the various problems associaled with the optimal control of systemsgoverned by partial differential equations are introduced by using singularly perturbedmethods for analysis based on stale equations, or the cost funtction and also stateequations defined in perturbed domains. 展开更多
关键词 optimal control perturbation techniques partial differential equations
下载PDF
Remarks on Oscillation for Systems of High Order Partial Differential Equations of Neutral Type
10
作者 LIN Wen-xian 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第4期537-542,共6页
In this paper, some sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
关键词 neutral type system of partial differential equations OSCILLATION
下载PDF
Domain-based noise removal method using fourth-order partial differential equation
11
作者 曾维理 谭湘花 路小波 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期154-158,共5页
Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the secon... Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method. 展开更多
关键词 fourth-order partial differential equation conductance coefficient speckle domain image denoising
下载PDF
An Extension of Mapping Deformation Method and New Exact Solution for Three Coupled Nonlinear Partial Differential Equations 被引量:11
12
作者 LIHua-Mei 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第4期395-400,共6页
In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat... In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained. 展开更多
关键词 coupled nonlinear partial differential equations cubic nonlinear Klein-Gordon equation exact solution
下载PDF
REDUCTION OF NONLINEAR PARTIAL DIFFERENTIAL EQUATION AND EXACT SOLUTIONS 被引量:4
13
作者 Ye Caier Pan ZuliangDept. of Math.,Zhejiang Univ.,Hangzhou 310027,China. 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2003年第2期179-185,共7页
Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equation... Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained. 展开更多
关键词 nonlinear partial differential equation ordinary differential equation exact solutions solitary solutions.
下载PDF
Oscillation of Nonlinear Impulsive Delay Hyperbolic Partial Differential Equations 被引量:2
14
作者 罗李平 彭白玉 欧阳自根 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第3期439-444,共6页
In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differen... In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained. 展开更多
关键词 NONLINEAR IMPULSE DELAY hyperbolic partial differential equations OSCILLATION
下载PDF
A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations 被引量:1
15
作者 陈林婕 马昌凤 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第1期148-155,共8页
This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model... This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions. 展开更多
关键词 nonlinear partial differential equation lattice Boltzmann method Chapman-Enskog expansion Taylor expansion
下载PDF
Symbolic computation and exact traveling solutions for nonlinear partial differential equations 被引量:1
16
作者 吴国成 夏铁成 《Journal of Shanghai University(English Edition)》 CAS 2008年第6期481-485,共5页
In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he so... In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he solved. Especially, as applications, a compound KdV-mKdV equation and the Broer-Kaup equations are considered successfully, and many solutions including periodic solutions, triangle solutions, and rational solutions are obtained. The method can also be applied to other NPDEs. 展开更多
关键词 nonlinear partial differential equations (NPDEs) rational solution soliton solution doubly periodic solution Wu method
下载PDF
Crank-Nicolson ADI Galerkin Finite Element Methods for Two Classes of Riesz Space Fractional Partial Differential Equations 被引量:1
17
作者 An Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期917-939,共23页
In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the... In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the classical wave equation in two space dimensions.Combining with the Crank-Nicolson method in temporal direction,efficient alternating direction implicit Galerkin finite element methods for solving these two fractional models are developed,respectively.The corresponding stability and convergence analysis of the numerical methods are discussed.Numerical results are provided to verify the theoretical analysis. 展开更多
关键词 Fractional partial differential equations Galerkin approximation alternating direction implicit method STABILITY CONVERGENCE
下载PDF
Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics 被引量:1
18
作者 杜明婧 孙宝军 凯歌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期53-57,共5页
This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)metho... This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)method which deals with this problem is very troublesome.This paper proposes a new method by adaptive multi-step piecewise interpolation reproducing kernel(AMPIRK)method for the first time.This method has three obvious advantages which are as follows.Firstly,the piecewise number is reduced.Secondly,the calculation accuracy is improved.Finally,the waste time caused by too many fragments is avoided.Then four numerical examples show that this new method has a higher precision and it is a more timesaving numerical method than the others.The research in this paper provides a powerful mathematical tool for solving time-fractional option pricing model which will play an important role in financial economics. 展开更多
关键词 time-fractional partial differential equation adaptive multi-step reproducing kernel method method numerical solution
下载PDF
Relationship Between Soliton-like Solutions and Soliton Solutions to a Class of Nonlinear Partial Differential Equations 被引量:1
19
作者 LIUChun-Ping LINGZhi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第6期969-974,共6页
By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified wa... By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified way. When the module m → 1, these solutions exactly degenerate to the soliton solutions of the equations. Then we reveal the relationship between the soliton-like solutions obtained by other authors and these soliton solutions of the equations. 展开更多
关键词 nonlinear partial differential equation doubly periodic solution soliton solution
下载PDF
The Adomian Decomposition Method for Solving Nonlinear Partial Differential Equation Using Maple 被引量:1
20
作者 Dalal Adnan Maturi Honaida Mohammed Malaikah 《Advances in Pure Mathematics》 2021年第6期595-603,共9页
The nonlinear partial differential equation is solved using the Adomian decomposition method (ADM) in this article. A number of examples have been provided to illustrate the numerical results, which is the comparison ... The nonlinear partial differential equation is solved using the Adomian decomposition method (ADM) in this article. A number of examples have been provided to illustrate the numerical results, which is the comparison of the exact and numerical solutions, and it has been discovered through the tables that the amount of error between the exact and numerical solutions is very small and almost non-existent, and the graph also shows how the exact solution of absolutely applies to the numerical solution. This demonstrates the precision of the Adomian decomposition method (ADM) for solving the nonlinear partial differential equation with Maple18. And that in terms of obtaining numerical results, this approach is characterized by ease, speed, and high accuracy. 展开更多
关键词 Nonlinear partial differential equation Adomian Decomposition Method Maple18
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部