The Cu2ZnSnS4 (CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation soft- ware analysis of microelectronic and photonic structures (AMPS-1D). The device structure used in the ...The Cu2ZnSnS4 (CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation soft- ware analysis of microelectronic and photonic structures (AMPS-1D). The device structure used in the simulation is Al/ZnO:Al/nZn(O,S)/pCZTS/Mo. The primary motivation of this simulation work is to optimize the composition in the ZnO1-xSx buffer layer, which would yield higher conversion efficiency. By varying S/(S+O) ratio x, the conduction band offset (CBO) at CZTS/Zn(O,S) interface can range from -0.23 eV to 1.06eV if the full range of the ratio is considered. The optimal CBO of 0.23eV can be achieved when the ZnO1-xSx buffer has an S/(S+O) ratio of 0.6. The solar cell efficiency first increases with increasing sulfur content and then decreases abruptly for x〉 0.6, which reaches the highest value of 17.55% by our proposed optimal sulfur content x= 0.6. Our results provide guidance in dealing with the ZnO1-xSx buffer layer deposition for high efficiency CZTS solar cells.展开更多
We demonstrate the temperature-dependent fluorescence properties of Pr:LiGdF4 crystal tor the first time, to the best of our knowledge, and its blue diode pumped cw red laser at 720 nm at room temperature. The fluore...We demonstrate the temperature-dependent fluorescence properties of Pr:LiGdF4 crystal tor the first time, to the best of our knowledge, and its blue diode pumped cw red laser at 720 nm at room temperature. The fluorescence lifetime and polarized emission cross sections in the visible range are measured and calculated in a temperature range from 77K to 300 K, and the variations of the fluorescence lifetime and spectra are discovered. The reasons for these changes are explained accordingly. The output wavelength of the 720nm laser is first reported on the laser performance by using a fiber-coupled laser diode at the wavelength of 442nm as the pump source, and the maximum cw output power is about 303roW.展开更多
An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and f...An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite ceramic tool material can get both higher flexural strength and fracture toughness than that of A1203/TiC (LZ) ceramic tool material without nano-scale TiN particle, especially the fracture toughness can reach to 7.8 MPa . m^0.5. The nano-scale TiN can lead to the grain fining effect and promote the sintering process to get a higher density. The coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN, and the homogeneous and densified microstructure can result in a remarkable strengthening and toughening effect. The cutting performance and wear mechanisms of the advanced multi-scale and multi-phase nanocomposite ceramic cutting tool are researched.展开更多
Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h,based on an improved chemical vapor deposition method.As-prepared fibers are further post-treated by acid.According to the SEM images an...Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h,based on an improved chemical vapor deposition method.As-prepared fibers are further post-treated by acid.According to the SEM images and Raman spectra,the acid treatment results in the compaction and surface modification of the CNTs in fibers,which are beneficial for the electron and load transfer.Compared to the HNO3 treatment,HClSO_3 or H_2SO_4 treatment is more effective for the improvement of the fibers' properties.After HCISO_3 treatment for 2 h,the fibers' strength and electrical conductivity reach up to-2 GPa and-4.3 MS/m,which are promoted by-200%and almost one order of magnitude than those without acid treatment,respectively.The load-bearing status of the CNT fibers are analyzed based on the downshifts of the G' band and the strain transfer factor of the fibers under tension.The results reveal that acid treatment could greatly enhance the load transfer and inter-bundle strength.With the HCISO3 treatment,the strain transfer factor is enhanced from-3.9%to-53.6%.展开更多
Property tax income of local authorities has become more challenging due to robust developments. Property tax revenue is the main income for local authorities that are used to pay for services and maintenance in the l...Property tax income of local authorities has become more challenging due to robust developments. Property tax revenue is the main income for local authorities that are used to pay for services and maintenance in the local authority administrative areas. However, the amount of revenue collected is decreasing due to the serious problem of property tax arrears that affects the administrative system and as a corollary, the delivery of services by local authorities. The performance measurement of property tax is very important in order to manage the services, and for maintenance and development of sustainable local authorities. Therefore, this paper represents a review of the Malaysian local authority property tax collection performance. The rating system is applied to address the performance of property tax collection in Malaysia. The result revealed that most of the property tax collection in Malaysia performed under inadequate level. Property tax collection statistics for the research include the total revenue and property tax arrears for each local authority in Malaysia within five years from 2004 to 2007. It is expected that this property tax performance will be employed as a basis to pursue the appropriate, innovative, and creative approaches for local authorities in Malaysia.展开更多
In the present study, Cu-modified pipeline steels were fabricated to mitigate MIC by the antimicrobial ability of Cu element. The microstructure, mechanical properties and the antimircobial performance of the Cu-modif...In the present study, Cu-modified pipeline steels were fabricated to mitigate MIC by the antimicrobial ability of Cu element. The microstructure, mechanical properties and the antimircobial performance of the Cu-modified steel were systematically investigated. The Cu-modified steels showed good antimicrobial performance with remarkable strength enhancement by nanoscale Cu-rich precipitates and good impact toughness without changing the original base microstructures after the optimal aging treatment of 500 °C/1 h.展开更多
The present study dealt with investigations on the effects of annealing on the hydrogen storage properties of La 1.6 Ti 0.4 MgNi 9 alloys.The experimental alloys were prepared by magnetic levitation melting followed b...The present study dealt with investigations on the effects of annealing on the hydrogen storage properties of La 1.6 Ti 0.4 MgNi 9 alloys.The experimental alloys were prepared by magnetic levitation melting followed by annealing treatment.For La 1.6 Ti 0.4 MgNi 9 alloys,LaNi 5,LaNi 3 and LaMg 2 Ni 9 were the main phases,Ti 2 Ni phase appeared at 900℃.Annealing not only enhanced the maximum and effective hydrogen storage capacity,improved the hydrogen absorption/desorption kinetics,but also increased the discharge capacity.The cyclic stability had been improved markedly by annealing,e.g.,when the discharge capacity reduced to 60% of maximum discharge capacity,the charge/discharge cycles increased from 66(as-cast) to 89(annealed at 800℃) and 127 times(annealed at 900℃).La 1.6 Ti 0.4 MgNi 9 alloy annealed at 900℃ exhibited better electrochemical properties compared to the other two alloy electrodes.展开更多
Strong correlations exist between property rights and governance. Such correlations are embodied in and measured through organizational units, and can therefore be examined in depth through such units. The correlation...Strong correlations exist between property rights and governance. Such correlations are embodied in and measured through organizational units, and can therefore be examined in depth through such units. The correlation between a property unit and a governance unit is mainly expressed in symmetry: if the symmetry is strong, both perform better; if it is weak, both perform poorly. The symmetry between organizational units is mainly determined and influenced by structural equilibrium, equivalence of levels, suitability of scale, completeness of boundaries, correspondence between functions and rights, and endogeneity of unit construction. Of these six factors, structural equilibrium, equivalence of levels and suitability of scale are determining factors; completeness of boundaries and correspondence between functions and rights are influencing factors derived from the former three and playing important roles in certain cases; and endogeneity of unit construction is an external conditional influencing factor. The separate or combined effects of these six factors impact upon and determine the symmetry among units, and thus influence property rights, governance performance and developmental modes.展开更多
In recent years, zinc based alloys as a new biodegradable metal material aroused intensive interests. However, the processing of Zn alloys micro-tubes (named slender-diameter and thin-walled tubes) is very difficult...In recent years, zinc based alloys as a new biodegradable metal material aroused intensive interests. However, the processing of Zn alloys micro-tubes (named slender-diameter and thin-walled tubes) is very difficult due to their HCP crystal structure and unfavorable mechanical properties. This study aimed to develop a novel technique to produce micro-tube of Zn alloy with good performance for biodegrad- able vascular stent application. In the present work, a processing method that combined drilling, cold rolling and optimized drawing was proposed to produce the novel Zn-5Mg-1Fe (wt%) alloy micro- tubes. The micro-tube with outer diameter of 2.5 mm and thickness of 130 μm was fabricated by this method and its dimension errors are within 10 μm. The micro-tube exhibits a fine and homogeneous microstructure, and the ultimate tensile strength and ductility are more than 220 MPa and 20% respectively. In addition, the micro-tube and stents of Zn alloy exhibit superior in vitro corrosion and expansion performance. It could be concluded that the novel Zn alloy micro-tube fabricated by above method might be a promising candidate material for biodegradable stent.展开更多
基金Supported by the Guiding Project of Strategic Emerging Industries of Fujian Provincial Department of Science and Technology under Grant No 2015H0010the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure of Shanghai Institute of Ceramics of Chinese Academy of Sciences under Grant No SKL201404SICthe Natural Science Foundation of Fujian Province under Grant No 2016J01751
文摘The Cu2ZnSnS4 (CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation soft- ware analysis of microelectronic and photonic structures (AMPS-1D). The device structure used in the simulation is Al/ZnO:Al/nZn(O,S)/pCZTS/Mo. The primary motivation of this simulation work is to optimize the composition in the ZnO1-xSx buffer layer, which would yield higher conversion efficiency. By varying S/(S+O) ratio x, the conduction band offset (CBO) at CZTS/Zn(O,S) interface can range from -0.23 eV to 1.06eV if the full range of the ratio is considered. The optimal CBO of 0.23eV can be achieved when the ZnO1-xSx buffer has an S/(S+O) ratio of 0.6. The solar cell efficiency first increases with increasing sulfur content and then decreases abruptly for x〉 0.6, which reaches the highest value of 17.55% by our proposed optimal sulfur content x= 0.6. Our results provide guidance in dealing with the ZnO1-xSx buffer layer deposition for high efficiency CZTS solar cells.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51025210,51102156 and 51272131the Young and Middle-Aged Scientists Research Awards Fund of Shandong Province under Grant No BS2011CL024
文摘We demonstrate the temperature-dependent fluorescence properties of Pr:LiGdF4 crystal tor the first time, to the best of our knowledge, and its blue diode pumped cw red laser at 720 nm at room temperature. The fluorescence lifetime and polarized emission cross sections in the visible range are measured and calculated in a temperature range from 77K to 300 K, and the variations of the fluorescence lifetime and spectra are discovered. The reasons for these changes are explained accordingly. The output wavelength of the 720nm laser is first reported on the laser performance by using a fiber-coupled laser diode at the wavelength of 442nm as the pump source, and the maximum cw output power is about 303roW.
基金Selected from Proceedings of the 7th International Conference on Frontiers of DesignManufacturing(ICFDM'2006)This project is supported by National Natural Science Foundation of China(No.50275086)the University of New South Wales Visiting Professorship Scheme,Australia.
文摘An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite ceramic tool material can get both higher flexural strength and fracture toughness than that of A1203/TiC (LZ) ceramic tool material without nano-scale TiN particle, especially the fracture toughness can reach to 7.8 MPa . m^0.5. The nano-scale TiN can lead to the grain fining effect and promote the sintering process to get a higher density. The coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN, and the homogeneous and densified microstructure can result in a remarkable strengthening and toughening effect. The cutting performance and wear mechanisms of the advanced multi-scale and multi-phase nanocomposite ceramic cutting tool are researched.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB932302)the National Natural Science Foundation of China(Grant Nos.11634014,51172271,51372269,and 51472264)the“Strategic Priority Research Program”of the Chinese Academy of Sciences(Grant No.XDA09040202)
文摘Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h,based on an improved chemical vapor deposition method.As-prepared fibers are further post-treated by acid.According to the SEM images and Raman spectra,the acid treatment results in the compaction and surface modification of the CNTs in fibers,which are beneficial for the electron and load transfer.Compared to the HNO3 treatment,HClSO_3 or H_2SO_4 treatment is more effective for the improvement of the fibers' properties.After HCISO_3 treatment for 2 h,the fibers' strength and electrical conductivity reach up to-2 GPa and-4.3 MS/m,which are promoted by-200%and almost one order of magnitude than those without acid treatment,respectively.The load-bearing status of the CNT fibers are analyzed based on the downshifts of the G' band and the strain transfer factor of the fibers under tension.The results reveal that acid treatment could greatly enhance the load transfer and inter-bundle strength.With the HCISO3 treatment,the strain transfer factor is enhanced from-3.9%to-53.6%.
文摘Property tax income of local authorities has become more challenging due to robust developments. Property tax revenue is the main income for local authorities that are used to pay for services and maintenance in the local authority administrative areas. However, the amount of revenue collected is decreasing due to the serious problem of property tax arrears that affects the administrative system and as a corollary, the delivery of services by local authorities. The performance measurement of property tax is very important in order to manage the services, and for maintenance and development of sustainable local authorities. Therefore, this paper represents a review of the Malaysian local authority property tax collection performance. The rating system is applied to address the performance of property tax collection in Malaysia. The result revealed that most of the property tax collection in Malaysia performed under inadequate level. Property tax collection statistics for the research include the total revenue and property tax arrears for each local authority in Malaysia within five years from 2004 to 2007. It is expected that this property tax performance will be employed as a basis to pursue the appropriate, innovative, and creative approaches for local authorities in Malaysia.
基金financial support by the National Key Technologies R&D Program of China (No. 2011BAE25B03)
文摘In the present study, Cu-modified pipeline steels were fabricated to mitigate MIC by the antimicrobial ability of Cu element. The microstructure, mechanical properties and the antimircobial performance of the Cu-modified steel were systematically investigated. The Cu-modified steels showed good antimicrobial performance with remarkable strength enhancement by nanoscale Cu-rich precipitates and good impact toughness without changing the original base microstructures after the optimal aging treatment of 500 °C/1 h.
基金supported by National Natural Science Foundation of China (50861003,51071054)Natural Science Foundation of Guangxi(2010GXNSFD013004,2012GXNSFBA053149)+1 种基金the Foundation of Key Laboratory of National Education Ministry for Nonferrous Metals and Materials Processing Technology (GXKFJ09-15)the Guangxi University Program for Science and Technology Research (XBZ110379)
文摘The present study dealt with investigations on the effects of annealing on the hydrogen storage properties of La 1.6 Ti 0.4 MgNi 9 alloys.The experimental alloys were prepared by magnetic levitation melting followed by annealing treatment.For La 1.6 Ti 0.4 MgNi 9 alloys,LaNi 5,LaNi 3 and LaMg 2 Ni 9 were the main phases,Ti 2 Ni phase appeared at 900℃.Annealing not only enhanced the maximum and effective hydrogen storage capacity,improved the hydrogen absorption/desorption kinetics,but also increased the discharge capacity.The cyclic stability had been improved markedly by annealing,e.g.,when the discharge capacity reduced to 60% of maximum discharge capacity,the charge/discharge cycles increased from 66(as-cast) to 89(annealed at 800℃) and 127 times(annealed at 900℃).La 1.6 Ti 0.4 MgNi 9 alloy annealed at 900℃ exhibited better electrochemical properties compared to the other two alloy electrodes.
文摘Strong correlations exist between property rights and governance. Such correlations are embodied in and measured through organizational units, and can therefore be examined in depth through such units. The correlation between a property unit and a governance unit is mainly expressed in symmetry: if the symmetry is strong, both perform better; if it is weak, both perform poorly. The symmetry between organizational units is mainly determined and influenced by structural equilibrium, equivalence of levels, suitability of scale, completeness of boundaries, correspondence between functions and rights, and endogeneity of unit construction. Of these six factors, structural equilibrium, equivalence of levels and suitability of scale are determining factors; completeness of boundaries and correspondence between functions and rights are influencing factors derived from the former three and playing important roles in certain cases; and endogeneity of unit construction is an external conditional influencing factor. The separate or combined effects of these six factors impact upon and determine the symmetry among units, and thus influence property rights, governance performance and developmental modes.
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2012CB619102)the National Science Foundation of China(Grant No.31400821)the innovation fund of Western Metal Materials(Grant No.XBCL-3-14)
文摘In recent years, zinc based alloys as a new biodegradable metal material aroused intensive interests. However, the processing of Zn alloys micro-tubes (named slender-diameter and thin-walled tubes) is very difficult due to their HCP crystal structure and unfavorable mechanical properties. This study aimed to develop a novel technique to produce micro-tube of Zn alloy with good performance for biodegrad- able vascular stent application. In the present work, a processing method that combined drilling, cold rolling and optimized drawing was proposed to produce the novel Zn-5Mg-1Fe (wt%) alloy micro- tubes. The micro-tube with outer diameter of 2.5 mm and thickness of 130 μm was fabricated by this method and its dimension errors are within 10 μm. The micro-tube exhibits a fine and homogeneous microstructure, and the ultimate tensile strength and ductility are more than 220 MPa and 20% respectively. In addition, the micro-tube and stents of Zn alloy exhibit superior in vitro corrosion and expansion performance. It could be concluded that the novel Zn alloy micro-tube fabricated by above method might be a promising candidate material for biodegradable stent.