Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whe...Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation.展开更多
Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity ...Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity of the composites were evaluated by their ability to photodegrade methylene blue and dimethyl phthalate(DMP) under visible-light irradiation. Compared with pure V2O5 and MoO 3,the V2O5/MoO 3 composites showed enhanced visible-light photocatalytic activity because of a V 3d impurity energy level and the formation of heterostructures at the interface between V2O5 and MoO 3. The optimal molar ratio of V to Mo in the V2O5/MoO 3 composites was found to be around 1/2. Furthermore,high-performance liquid chromatographic monitoring revealed that phthalic acid was the main intermediate in the photocatalytic degradation process of DMP.展开更多
Photodegradation of nonylphenol ethoxylates (NPloEO) was investigated in laboratory scale under UV irradiation. The intermediate photodegradation products were analyzed by LC-ESI-MS. Three kinds of intermediate prod...Photodegradation of nonylphenol ethoxylates (NPloEO) was investigated in laboratory scale under UV irradiation. The intermediate photodegradation products were analyzed by LC-ESI-MS. Three kinds of intermediate products including aldehydic compounds, carboxylic compounds and cyclohexanyl compounds were identified. Five main degradation routes involving the oxidation of the alkyl chain and ethoxylate unit, shortening of the alkyl chain and ethoxylate unit, hydrogenation of the benzene ring were proposed.展开更多
The sunlight photodegradation half-lives of 20 mg/L acetochlor were 151, 154 and 169 days in de-ionized water, river water and paddy water, respectively. When exposed to ultraviolet (UV) light, acetochlor in aqueous s...The sunlight photodegradation half-lives of 20 mg/L acetochlor were 151, 154 and 169 days in de-ionized water, river water and paddy water, respectively. When exposed to ultraviolet (UV) light, acetochlor in aqueous solution was rapidly degraded. The half-lives were 7.1, 10.1, and 11.5 min in de-ionized water, river water and paddy water, respectively. Photoproducts of acetochlor were identified by gas chromatography/mass spectrometry(GC/MS) and found at least twelve photoproducts resulted from dechlorination with subsequent hydroxylation and cyclization processes. The chemical structures of ten photoproducts were presumed on the basis of mass spectrum interpretation and literature data. Photoproducts are identified as 2-ethyl-6-methylaniline; N,N-diethylaniline; 4,8-dimethyl-2-oxo-1,2,3,4- tetrahydroquino-line; 2-oxo-N-(2-ethyl-6-methylphenyl)-N-(ethoxymethyl)acetamide; N-(ethoxymethyl)-2′-ethyl-6′-methylformanilide;1-hydroxyacetyl-2-ethoxyl-7-ethylind ole; 8-ethyl-1-ethoxymethyl-2-oxo-1,2,3,4-tetrahydroquinoline; 4,8-dimethyl-1-ethoxymethyl-2-oxo-1,2,3,4-tetrahydroquinoline; 2-hydroxy-2′-ethyl-6′-methyl-N-(ethoxymethyl)acetanilide and a compound related to acetochlor. The other two photoproducts were detected by GC/MS although their chemical structure was unknown.展开更多
Ohjective To determine the visible light-induced photodegradation kinetics of two xanthene photosensitizers, phloxine B and uranine, in solution and on the surface of silica TLC plates, and to examine the phototoxicit...Ohjective To determine the visible light-induced photodegradation kinetics of two xanthene photosensitizers, phloxine B and uranine, in solution and on the surface of silica TLC plates, and to examine the phototoxicity of residues of degradation, which could provide valuable safety data on the two photosensitizers and other xanthene chemicals when applied in the environment. Methods UV-Vis absorption during photodegradation was monitored with a Unico 2102 spectrophotometer. Organic content of samples was measured with a Shimadzu TOC 4100. Phototoxicity tests were carried out using Saccharomyces cerevisiae with the methods modified from Daniels. Results When phloxine B and uraniue degraded in solution, their apparent rate constant k was 0.0019 and 0.0027 min^-1, respectively. The total organic carbon (TOC) content decreased by approximately 50% during the 8 h irradiation period, which led to a gradual decrease in phototoxicity of the residues. The photodegradation of photosensitizers on the surface of silica TLC plates was much faster than that in the solution. The apparent rate constant k and the half life of phloxine B were 0.0073 min^-1 and 95 min, respectively. Conclusion Visible light can rapidly induce photodegradation of phloxine B and uranine. The phototoxicity of residues is also decreased. The environmental risk of applications of phloxine B and uranine is minimal.展开更多
Photodegradation ofpentachlorophenol (PCP) and p-nitrophenol (PNP) in soil was carried out in a designed rotary reactor, which can provide the soil particles with continually uniform irradiation, and on a series o...Photodegradation ofpentachlorophenol (PCP) and p-nitrophenol (PNP) in soil was carried out in a designed rotary reactor, which can provide the soil particles with continually uniform irradiation, and on a series of thin soil layers. TiO2, as a kind of environmental friendly photocatalyst, was introduced to the soil to enhance the processes. Compared with that on the soil layers, photodegradation of PCP at initial concentration of 60 mg/kg was improved dramatically in the rotary reactor no matter whether TiO2 was added, with an increase of 3.0 times in the apparent first-order rate constants. The addition of 1 wt% TiO2 furthered the improvement by 1.4 times. Without addition of TiO2, PNP (initial concentration of 60 mg/kg) photodegradation rate in the rotary reactor was similar to that on the soil layers. When 1 wt% additional TiO2 was added, PNP photodegradation was enhanced obviously, and the enhancement in the rotary reactor was 2 times of that on the soil layers, which may be attributed to the higher frequency of the contact between PNP on soil particles and the photocatalyst. The effect of soil pH and initial concentrations of the target compounds on the photodegradation in the rotary reactor was investigated. The order of the degradation rate at different soil pH was relative to the aggregation of soil particles during mixing in the rotary reactor. Photodegradation of PCP and PNP at different initial concentrations showed that addition of TiO2 to enhance the photodegradation was more suitable for contaminated soil with higher concentration of PCP, while was effective for contaminated soil at each PNP concentration tested in our study.展开更多
This paper reports the photochemical degradation of Methylene Blue(MB)in natural seawater(NSW).The photode-gradation reaction conformed to the first-order reaction kinetics with the rate constant 0.0158 min-1.MB was p...This paper reports the photochemical degradation of Methylene Blue(MB)in natural seawater(NSW).The photode-gradation reaction conformed to the first-order reaction kinetics with the rate constant 0.0158 min-1.MB was photochemically de-gradated faster under high-pressure mercury lamp(HPML)than under sunlight.When MB was in lower concentrations,salinitycould inhibit the photoreaction whereas MB in higher concentration,salinity could accelerate the photoreaction.Humid acid couldalso inhibit the photoreactions.Toxicity tests with marine phytoplankton Skeletonema costatum(Sk)and Heterosigma akashiwo Hada(Ha)showed decreased acute toxicity after photodegradation.展开更多
The photodegradation of 17α-ethynylestradiol (EE2) induced by highpressure mercury lamp (λ≥313 nm, 250 W) in aqueous solution with algae (e. g.Nitzschia hantzschiana andChlorella vulgaris) and Fe3+ was ineestigated...The photodegradation of 17α-ethynylestradiol (EE2) induced by highpressure mercury lamp (λ≥313 nm, 250 W) in aqueous solution with algae (e. g.Nitzschia hantzschiana andChlorella vulgaris) and Fe3+ was ineestigated initially. The affecting factors on the photodegradation were studied and described in details, such as algae concentration, Fe3+, exposure time, and so on. The concentration of EE2 in distilled water was determined using fluorescence spectrophotometer. The photodegradation of EE2 in aqueous solution exposed to 250 W high-pressure mercury lamp was evident in the presence of algae and Fe3+. With the algae concentration increasing, photodegradation rate increased. Fe3+ could accelerate the photocatalytic degradation of EE2 in aqueous solution with algae. The colloidal ferric hydroxide particles that might have absorbed on the algae cells could enhance the photocatalytic degradation of EE2 by algae. The catalysis in photocatalytic degradation reaction mainly resulted from the active oxygen (H2O2,1O2 and ·OH) that was caused by algae and Fe3+ under 250 W HPML. In this paper, the mechanism of photocatalytic degradation of EE2 by algae and Fe3+ is discussed theoretically in details. Key words 17α-ethynylestradiol - photodegradation - high-pressure mercury lamp - Nitzschia hantzschiana - Chlorella vulgaris - Fe3+ CLC number X 131. 2 Foundation item: Supported by the Scientific Research Foundation of Wuhan Environmental Protection Bureau and the National Natural Science Foundation of China (20177017)Biography: Liu Xian-li (1965-), male, Ph. D candidate, Associate professor, research direction: environmental chemistry展开更多
Based on the quantum chemical descriptors,quantitative structure-property relationship(QSPR) models have been developed to estimate and predict the photodegradation rate constant(logK) of polycyclic aromatic hydro...Based on the quantum chemical descriptors,quantitative structure-property relationship(QSPR) models have been developed to estimate and predict the photodegradation rate constant(logK) of polycyclic aromatic hydrocarbons(PAHs) by use of linear method(multiple linear regression,MLR) and non-linear method(back propagation artificial neural network,BP-ANN).A BP-ANN with 3-3-1 architecture was generated by using three quantum chemical descriptors appearing in the MLR model.The standard heat of formation(HOF),the gap of frontier molecular orbital energies(ΔELH) and total energy(TE) were inputs and its output was logK.Leave-One-Out(LOO) Cross-Validated correlation coefficient(R^2CV) of the established MLR and BP-ANN models were 0.6383 and 0.7843,respectively.The nonlinear BP-ANN model has better predictive ability compared to the linear MLR model with the root mean square error(RMSE) for training and validation sets to be 0.1071,0.1514 and the squared correlation coefficient(R^2) of 0.9791,0.9897,respectively.In addition,some insights into the molecular structural features affecting the photodegradation of PAHs were also discussed.展开更多
Budesonide is a corticosteroid used for the treatment of asthma via various matrices and inhalation mechanisms. An unknown peak of Budesonide aqueous formulation has been investigated during stability study wherein th...Budesonide is a corticosteroid used for the treatment of asthma via various matrices and inhalation mechanisms. An unknown peak of Budesonide aqueous formulation has been investigated during stability study wherein the impurity level observed around 0.1% well below the threshold 0.5%. The approach to identify anonymous species was adopted as first to generate the impurity in sample, isolate, enrich and was subjected to LC-MS/MS and NMR for spectral studies. Based on the spectral data the anonymous species were identified as a “Lumibudesonide’’ ((5aR,5bS,5cS,6S,7aS,7bS,10aR,11aS,11bS)-6-hydroxy-7b-(2-hydroxyacetyl)-5b,7a-dimethyl-9-propyl 1,5a,5b,5c,6,7,7a,7b,10a,11,11a,11b dodecahydrocyclopenta[2'',3'']cyclopropa [1'',2'':3', 4']benzo [1',2':4,5]indeno [1,2-d][1,3]dioxol-5(2H)-one), which is observed in photolysis of Budesonide.展开更多
Photodegradation of nitrobenzene and nitrophenols in aqueous solutions by means of UV/H2 O2 process was studied in the Rayox batch reactors. Three nitrophenol isomers were identified as main photoproducts in the irrad...Photodegradation of nitrobenzene and nitrophenols in aqueous solutions by means of UV/H2 O2 process was studied in the Rayox batch reactors. Three nitrophenol isomers were identified as main photoproducts in the irradiated NB aqueous solutions. The distribution of nitrophenol isomers follows the order p-〉 m-〉 o-nitrophenol. Other intermediates detected include nitrohydroquinone, nitrocatechol, catechol, benzoquinone, phenol, nitrate/nitrite ions, formic acid, glyoxylic acid, maleic acid, oxalic acid and some aliphatic ketones and aldehydes. The degradation of nitrobenzene and nitrophenols at initial stages follows the first-order kinetics and the decay rate constants for nitrobenzene(NB) are around l0^-3-10^-2 s^-1 and for nitrophenols are around 10^-2 s^-1. The decomposition of H2 O2 in the presence of NB and each nitrophenol isomers follows zero-order kinetics. The quantum yields at initial stages for NB decay were estimated around 0.30 to 0.36, and for NPs decay is around 0.31-0.54.展开更多
The relationship between adsorption behavior and photocatalytic mechanism of the two dyes was investigated. Adsorption isotherms showed that the adsorption of cationic pink FG was Langmuir type behavior, while the rea...The relationship between adsorption behavior and photocatalytic mechanism of the two dyes was investigated. Adsorption isotherms showed that the adsorption of cationic pink FG was Langmuir type behavior, while the reactive brilliant red k-2G was Freundlich type behavior. The increasing pH favored the adsorption of FG but have little effect on the photodegradation. The increasing pH favored the adsorption and the photodegradation of k-2G. The presence of scavenger of h + vb and OH· radical potassium iodide inhibited the degradation of k-2G, free radicals scavenger tetranitromethane inhibited the photodegradation of FG. These results indicated that the photodegradation of FG mainly via free radicals in solution, and the photodegradation of k-2G was mainly on the catalysts surface or near the interface of solid and solution by react with h + vb and surface-bound OH·. The different effect of SO 2- 4, HCO - 3 on the adsorp tion and photodegradation of two dyes confirmed these results.展开更多
The emerging contaminants(ECs)are organic compounds including pharmaceuticals.These products are consumed in large quantities,favoring their continuous entrance to the environment and affecting the health of living be...The emerging contaminants(ECs)are organic compounds including pharmaceuticals.These products are consumed in large quantities,favoring their continuous entrance to the environment and affecting the health of living beings.Diclofenac is a non-steroidal anti-inflammatory drug with analgesic properties of prolonged release.It is the commonest postoperative analgesic,and it is highly consumed without prescription.In recent years,the capability of microalgae to remove pharmaceuticals in water has been tested as a promising tool.In this work,the removal efficiency of diclofenac(16µg/mL)by the microalga Nannochloropsis oculata CCAP 186/7 was evaluated.The major nutrient concentrations in Bold’s Basal Medium were modified(nitrogen and carbon:50 and 100%of their original concentration)to know their effect in the removal of diclofenac.Drug degradation by light was also evaluated.The maximum removal capacity of diclofenac in the medium was 68.8%.The percentage of diclofenac adsorbed on the cell wall was between 6 and 12.7%.Around 23.6%of diclofenac was degraded by light after 18 days.N.oculata did not show growth inhibition due to the presence of diclofenac.The results obtained point to the promissory application of N.oculata as a bioremediation system for diclofenac removal.展开更多
The photodegradation mechanism of fenvalerate in water has been investigated by density functional theory(DFT).The geometries of reactants,transition states,intermediates and products are optimized at the B3LYP/6-31...The photodegradation mechanism of fenvalerate in water has been investigated by density functional theory(DFT).The geometries of reactants,transition states,intermediates and products are optimized at the B3LYP/6-31G* level.The calculated results indicate that the reaction process mainly includes the nucleophilic attack and the substitution reaction by hydroxyl radical to the carbonyl group.By vibrational frequency analysis and intrinsic reaction coordinate(IRC) method,the transition state and its reaction pathway are confirmed.Moreover,the changes of natural population analysis(NPA),calculated using the Natural bond orbital(NBO) method,are analyzed along with the degradation reaction which can explain the variation of chemical bonds.Additionally,the solvent effect is also investigated and the results show that the reaction preferably takes place in water.展开更多
The photocatalytic degradation of polyvinyl chloride (PVC) films by tungstophosphoric acid (HPW) was investigated. The main reason for highly enhanced photodegradation of HPW-doped PVC film was studied and discussed.
The batch photodegradation reactor was used to investigate the influence of the common coexisting substances in wastewater,such as H+,anions (HCO3-,Cl-and NO3-) and organic compounds (methanol and bisphenol A),on the ...The batch photodegradation reactor was used to investigate the influence of the common coexisting substances in wastewater,such as H+,anions (HCO3-,Cl-and NO3-) and organic compounds (methanol and bisphenol A),on the photodegradation behaviors of EE2 in the UV/H2O2 process.The results indicated that the addition of coexisting substances can influence the photodegradation behaviors of EE2 and it also follows the first-order kinetics.The acidic (pH 2-4) and alkaline (pH 10-12) medium benefit the photodegradation of EE2,but the photodegradation rate constant of EE2 keeps almost constant in the pH value of 4-10.The addition of anions,such as HCO3-,Cl-and NO3-,can inhibit the photodegradation of EE2,and the rate constant has a negative linear relationship with the concentration of the anions.However,the reduction degrees vary with the anions kinds,and the inhibition effect of the three anions is in the order of HCO3->NO3->Cl-.Addition of 5 mg/L methanol and bisphenol A can reduce the photodegradation rate constant of EE2by 84.31% and 72%,respectively.By comparison,the retardant effect of methanol is much more evident.In the studied concentrations range,the photodegradation rate constant of EE2 is the unary quadratic function of the organic compounds concentrations.展开更多
The apparent 1^st order rate constant of photodegradation of formaldehyde by carbon containing TiO2 nanoparticles has been investigated by numerical integration of mass transfer equation with measured degradation degr...The apparent 1^st order rate constant of photodegradation of formaldehyde by carbon containing TiO2 nanoparticles has been investigated by numerical integration of mass transfer equation with measured degradation degree using a tubular photoreactor. The carbon containing TiO2 nanoparticles are synthesized by the oxidation of TiCl4 in propane/air flame CVD process with futile fraction up to 0.3 and carbon mass fractions up to 0.22, respectively. Thin TiO2 film is coated on the wall of the tubular reactor by sedimentation method. Effects of rutile mass fraction and carbon content have been examined on the apparent 1 ^st order rate constant and results show that, at 570ppm of formaldehyde loaded air stream, 80% relative humidity and about 100nm thin TiOa film, the 1^st order rate constant increases with increasing rutile mass fraction up to 0.3, occurs a maximum at the carbon content of about 5% by weight and is about 2.5 times of that at carbon content about zero or above 10%.展开更多
The photodegradation of irradiated thin films of poly (para-methylstyrene) with 265 nm radiations in the presence of airand as a function of irradiation time has been studied using UV-VIS, fluorescence and FT-IR Spect...The photodegradation of irradiated thin films of poly (para-methylstyrene) with 265 nm radiations in the presence of airand as a function of irradiation time has been studied using UV-VIS, fluorescence and FT-IR Spectroscopic techniques. The influence of phthalate and terephthalate plasticizers on stability of poly (para-methylstyrene) towards irradiations was also investigated. Blending with phthalate plasticizers was found to cause a higher efficiency of photodegradation than that obtained in doping with terephthalate plasticizers. The intensity of absorption was also found to increase with time of irradiation and in change in the shape of the spectra at longer wavelength, thus indicating a possibility of photodegradation of polymer chains. The analysis of the FT-IR spectra of the irradiated and non-irradiated samples, shows a predominant absorption associated with carbonyl compounds with 1740 cm-1. In addition, the observed increase in the intensities of the carbonyl and hydroxyl regions of the FT-IR spectra, have provided an evidence for the photodegradation as well as photo-oxidation of polymeric chains. The presence of the plasticizer in the polymer backbone was found to accelerate the photodegradation of polymeric chains.展开更多
The relationship between chemical structures and photodegradation activity of 12 PAHs is studied using DFT and HF methods, and stepwise multiple linear regression analysis method. The equilibrium geometries and vibrat...The relationship between chemical structures and photodegradation activity of 12 PAHs is studied using DFT and HF methods, and stepwise multiple linear regression analysis method. The equilibrium geometries and vibration frequency have been investigated by considering Solvent effects using a selfconsistent reaction field based on the polarizable continuum model. With DFT and HF methods, different quantum chemical structural descriptors are obtained by quantum chemical calculation and the results with DFT method are better for QSAR model. It is concluded that the photodegradation activity is closely related to its molecular structure. In the regression analysis, the main factors affecting photodegradation rate include the energy of the highest occupied orbital EHOMO and the number of six-carbon benzene ring N1, and the QSAR model successfully established is logkb = 6.046 + 54.830EHOMO + 0.272N1. Statistical evaluation of the developed QSAR shows that the relationships are statistically significant and the model has good predictive ability. EHOMO is the most important factor influcing the photodegradation of PAHs, because the higher EHOMO is, the more easily electron will be excited and the more easily molecular will be degraded. Comparison of the photodegradation of PAHs with their biodegradation shows that the committed step of biodegradation is that the effects of microorganisms make the chemical bond break, while in the committed step of photodegradation PAHs eject electrons.展开更多
To understand the degradation of endocrine disrupting chemicals (EDCs) in natural environment with existence of iron oxides and carboxylic acids, the dependence of bisphenol A (BPA) photodegradation on the initial...To understand the degradation of endocrine disrupting chemicals (EDCs) in natural environment with existence of iron oxides and carboxylic acids, the dependence of bisphenol A (BPA) photodegradation on the initial concentration of oxalate (Cox) in lepidocrocite (y-FeOOH) aqueous suspension was investigated under both UV and visible lights in this study. Lepidocrocite powder was home-prepared by a hydrothermal process. It was found that BPA degradation was promoted greatly in the presence of oxalate owing to the formation of lepidocrocite-oxalate complex. And there was an optimal Cox, which was 2.0 and 2.4 mmol/L, under UV and visible lights, respectively. The first-order kinetic constant, k value increased 38 times from 0.17 × 10^-2 min^-1 in the absence of oxalate to 6.39 × 10^-2 min^-1 in the presence of oxalate with an optimal Cox (2.0 mmol/L) under UV irradiation, and almost 306 times from 0.02 × 10^-2 min^-1 in the absence of oxalate to 6.11 × 10^-2 min^-1 in the presence of oxalate with an optimal Cox (2.4 mmol/L) under visible irradiation. The BPA degradation rate increased and the first-order kinetic constants decreased with the increase in BPA initial concentration. The dependence of the variation of pH value, total-Fe and Fe^2+ during the photoreaction on Cox was also investigated. The pH value increased obviously with the reaction time. Total-Fe increased dramatically at the first 5 min and then decreased quickly under UV irradiation and slowly under visible irradiation. The initial concentration of oxalate is a main factor to affect BPA photodegradation in aqueous suspension under both UV and visible lights.展开更多
基金Project(1254G024)supported by the Young Core Instructor Foundation from Heilongjiang Educational Committee,ChinaProject(2012RFQXS113)supported by Scientific and Technological Innovation Talents of Harbin,China
文摘Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation.
基金supported by the National Natural Science Foundation of China(2137312021471022)+5 种基金the Development of Science and Technology Plan of Jilin ProvinceChina(2010154920130102001JC)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT13022)of Chinathe Program of Jilin Provincial Education Department(20131302013146)~~
文摘Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity of the composites were evaluated by their ability to photodegrade methylene blue and dimethyl phthalate(DMP) under visible-light irradiation. Compared with pure V2O5 and MoO 3,the V2O5/MoO 3 composites showed enhanced visible-light photocatalytic activity because of a V 3d impurity energy level and the formation of heterostructures at the interface between V2O5 and MoO 3. The optimal molar ratio of V to Mo in the V2O5/MoO 3 composites was found to be around 1/2. Furthermore,high-performance liquid chromatographic monitoring revealed that phthalic acid was the main intermediate in the photocatalytic degradation process of DMP.
文摘Photodegradation of nonylphenol ethoxylates (NPloEO) was investigated in laboratory scale under UV irradiation. The intermediate photodegradation products were analyzed by LC-ESI-MS. Three kinds of intermediate products including aldehydic compounds, carboxylic compounds and cyclohexanyl compounds were identified. Five main degradation routes involving the oxidation of the alkyl chain and ethoxylate unit, shortening of the alkyl chain and ethoxylate unit, hydrogenation of the benzene ring were proposed.
文摘The sunlight photodegradation half-lives of 20 mg/L acetochlor were 151, 154 and 169 days in de-ionized water, river water and paddy water, respectively. When exposed to ultraviolet (UV) light, acetochlor in aqueous solution was rapidly degraded. The half-lives were 7.1, 10.1, and 11.5 min in de-ionized water, river water and paddy water, respectively. Photoproducts of acetochlor were identified by gas chromatography/mass spectrometry(GC/MS) and found at least twelve photoproducts resulted from dechlorination with subsequent hydroxylation and cyclization processes. The chemical structures of ten photoproducts were presumed on the basis of mass spectrum interpretation and literature data. Photoproducts are identified as 2-ethyl-6-methylaniline; N,N-diethylaniline; 4,8-dimethyl-2-oxo-1,2,3,4- tetrahydroquino-line; 2-oxo-N-(2-ethyl-6-methylphenyl)-N-(ethoxymethyl)acetamide; N-(ethoxymethyl)-2′-ethyl-6′-methylformanilide;1-hydroxyacetyl-2-ethoxyl-7-ethylind ole; 8-ethyl-1-ethoxymethyl-2-oxo-1,2,3,4-tetrahydroquinoline; 4,8-dimethyl-1-ethoxymethyl-2-oxo-1,2,3,4-tetrahydroquinoline; 2-hydroxy-2′-ethyl-6′-methyl-N-(ethoxymethyl)acetanilide and a compound related to acetochlor. The other two photoproducts were detected by GC/MS although their chemical structure was unknown.
基金the National Natural Science Funds with contract No. 30471506the "Eleventh Five-Year Programme" Science and Technology Foundation of Forest with contract No. 2006BAD03A15
文摘Ohjective To determine the visible light-induced photodegradation kinetics of two xanthene photosensitizers, phloxine B and uranine, in solution and on the surface of silica TLC plates, and to examine the phototoxicity of residues of degradation, which could provide valuable safety data on the two photosensitizers and other xanthene chemicals when applied in the environment. Methods UV-Vis absorption during photodegradation was monitored with a Unico 2102 spectrophotometer. Organic content of samples was measured with a Shimadzu TOC 4100. Phototoxicity tests were carried out using Saccharomyces cerevisiae with the methods modified from Daniels. Results When phloxine B and uraniue degraded in solution, their apparent rate constant k was 0.0019 and 0.0027 min^-1, respectively. The total organic carbon (TOC) content decreased by approximately 50% during the 8 h irradiation period, which led to a gradual decrease in phototoxicity of the residues. The photodegradation of photosensitizers on the surface of silica TLC plates was much faster than that in the solution. The apparent rate constant k and the half life of phloxine B were 0.0073 min^-1 and 95 min, respectively. Conclusion Visible light can rapidly induce photodegradation of phloxine B and uranine. The phototoxicity of residues is also decreased. The environmental risk of applications of phloxine B and uranine is minimal.
基金The National Basic Research Program of China (No. 2004CB418504 2003CB415006)
文摘Photodegradation ofpentachlorophenol (PCP) and p-nitrophenol (PNP) in soil was carried out in a designed rotary reactor, which can provide the soil particles with continually uniform irradiation, and on a series of thin soil layers. TiO2, as a kind of environmental friendly photocatalyst, was introduced to the soil to enhance the processes. Compared with that on the soil layers, photodegradation of PCP at initial concentration of 60 mg/kg was improved dramatically in the rotary reactor no matter whether TiO2 was added, with an increase of 3.0 times in the apparent first-order rate constants. The addition of 1 wt% TiO2 furthered the improvement by 1.4 times. Without addition of TiO2, PNP (initial concentration of 60 mg/kg) photodegradation rate in the rotary reactor was similar to that on the soil layers. When 1 wt% additional TiO2 was added, PNP photodegradation was enhanced obviously, and the enhancement in the rotary reactor was 2 times of that on the soil layers, which may be attributed to the higher frequency of the contact between PNP on soil particles and the photocatalyst. The effect of soil pH and initial concentrations of the target compounds on the photodegradation in the rotary reactor was investigated. The order of the degradation rate at different soil pH was relative to the aggregation of soil particles during mixing in the rotary reactor. Photodegradation of PCP and PNP at different initial concentrations showed that addition of TiO2 to enhance the photodegradation was more suitable for contaminated soil with higher concentration of PCP, while was effective for contaminated soil at each PNP concentration tested in our study.
基金supported by the Key Project of the Ministry of Education,China(Grant No.105105)the Program for New Century Excellent Talents in Universities,the Ministry of Education,China(Grant No.NCET-04-0643)+1 种基金the National Natural Science Foundation of China(Grant No.40525017)the Key Project of Science and Technology of Shandong Province(Grant No.2006GG2205024)
文摘This paper reports the photochemical degradation of Methylene Blue(MB)in natural seawater(NSW).The photode-gradation reaction conformed to the first-order reaction kinetics with the rate constant 0.0158 min-1.MB was photochemically de-gradated faster under high-pressure mercury lamp(HPML)than under sunlight.When MB was in lower concentrations,salinitycould inhibit the photoreaction whereas MB in higher concentration,salinity could accelerate the photoreaction.Humid acid couldalso inhibit the photoreactions.Toxicity tests with marine phytoplankton Skeletonema costatum(Sk)and Heterosigma akashiwo Hada(Ha)showed decreased acute toxicity after photodegradation.
文摘The photodegradation of 17α-ethynylestradiol (EE2) induced by highpressure mercury lamp (λ≥313 nm, 250 W) in aqueous solution with algae (e. g.Nitzschia hantzschiana andChlorella vulgaris) and Fe3+ was ineestigated initially. The affecting factors on the photodegradation were studied and described in details, such as algae concentration, Fe3+, exposure time, and so on. The concentration of EE2 in distilled water was determined using fluorescence spectrophotometer. The photodegradation of EE2 in aqueous solution exposed to 250 W high-pressure mercury lamp was evident in the presence of algae and Fe3+. With the algae concentration increasing, photodegradation rate increased. Fe3+ could accelerate the photocatalytic degradation of EE2 in aqueous solution with algae. The colloidal ferric hydroxide particles that might have absorbed on the algae cells could enhance the photocatalytic degradation of EE2 by algae. The catalysis in photocatalytic degradation reaction mainly resulted from the active oxygen (H2O2,1O2 and ·OH) that was caused by algae and Fe3+ under 250 W HPML. In this paper, the mechanism of photocatalytic degradation of EE2 by algae and Fe3+ is discussed theoretically in details. Key words 17α-ethynylestradiol - photodegradation - high-pressure mercury lamp - Nitzschia hantzschiana - Chlorella vulgaris - Fe3+ CLC number X 131. 2 Foundation item: Supported by the Scientific Research Foundation of Wuhan Environmental Protection Bureau and the National Natural Science Foundation of China (20177017)Biography: Liu Xian-li (1965-), male, Ph. D candidate, Associate professor, research direction: environmental chemistry
基金supported by the Natural Science Foundation of Fujian Province (D0710019)the Natural Science Foundation of Overseas Chinese Affairs Office of the State Council (06QZR09)
文摘Based on the quantum chemical descriptors,quantitative structure-property relationship(QSPR) models have been developed to estimate and predict the photodegradation rate constant(logK) of polycyclic aromatic hydrocarbons(PAHs) by use of linear method(multiple linear regression,MLR) and non-linear method(back propagation artificial neural network,BP-ANN).A BP-ANN with 3-3-1 architecture was generated by using three quantum chemical descriptors appearing in the MLR model.The standard heat of formation(HOF),the gap of frontier molecular orbital energies(ΔELH) and total energy(TE) were inputs and its output was logK.Leave-One-Out(LOO) Cross-Validated correlation coefficient(R^2CV) of the established MLR and BP-ANN models were 0.6383 and 0.7843,respectively.The nonlinear BP-ANN model has better predictive ability compared to the linear MLR model with the root mean square error(RMSE) for training and validation sets to be 0.1071,0.1514 and the squared correlation coefficient(R^2) of 0.9791,0.9897,respectively.In addition,some insights into the molecular structural features affecting the photodegradation of PAHs were also discussed.
文摘Budesonide is a corticosteroid used for the treatment of asthma via various matrices and inhalation mechanisms. An unknown peak of Budesonide aqueous formulation has been investigated during stability study wherein the impurity level observed around 0.1% well below the threshold 0.5%. The approach to identify anonymous species was adopted as first to generate the impurity in sample, isolate, enrich and was subjected to LC-MS/MS and NMR for spectral studies. Based on the spectral data the anonymous species were identified as a “Lumibudesonide’’ ((5aR,5bS,5cS,6S,7aS,7bS,10aR,11aS,11bS)-6-hydroxy-7b-(2-hydroxyacetyl)-5b,7a-dimethyl-9-propyl 1,5a,5b,5c,6,7,7a,7b,10a,11,11a,11b dodecahydrocyclopenta[2'',3'']cyclopropa [1'',2'':3', 4']benzo [1',2':4,5]indeno [1,2-d][1,3]dioxol-5(2H)-one), which is observed in photolysis of Budesonide.
文摘Photodegradation of nitrobenzene and nitrophenols in aqueous solutions by means of UV/H2 O2 process was studied in the Rayox batch reactors. Three nitrophenol isomers were identified as main photoproducts in the irradiated NB aqueous solutions. The distribution of nitrophenol isomers follows the order p-〉 m-〉 o-nitrophenol. Other intermediates detected include nitrohydroquinone, nitrocatechol, catechol, benzoquinone, phenol, nitrate/nitrite ions, formic acid, glyoxylic acid, maleic acid, oxalic acid and some aliphatic ketones and aldehydes. The degradation of nitrobenzene and nitrophenols at initial stages follows the first-order kinetics and the decay rate constants for nitrobenzene(NB) are around l0^-3-10^-2 s^-1 and for nitrophenols are around 10^-2 s^-1. The decomposition of H2 O2 in the presence of NB and each nitrophenol isomers follows zero-order kinetics. The quantum yields at initial stages for NB decay were estimated around 0.30 to 0.36, and for NPs decay is around 0.31-0.54.
文摘The relationship between adsorption behavior and photocatalytic mechanism of the two dyes was investigated. Adsorption isotherms showed that the adsorption of cationic pink FG was Langmuir type behavior, while the reactive brilliant red k-2G was Freundlich type behavior. The increasing pH favored the adsorption of FG but have little effect on the photodegradation. The increasing pH favored the adsorption and the photodegradation of k-2G. The presence of scavenger of h + vb and OH· radical potassium iodide inhibited the degradation of k-2G, free radicals scavenger tetranitromethane inhibited the photodegradation of FG. These results indicated that the photodegradation of FG mainly via free radicals in solution, and the photodegradation of k-2G was mainly on the catalysts surface or near the interface of solid and solution by react with h + vb and surface-bound OH·. The different effect of SO 2- 4, HCO - 3 on the adsorp tion and photodegradation of two dyes confirmed these results.
文摘The emerging contaminants(ECs)are organic compounds including pharmaceuticals.These products are consumed in large quantities,favoring their continuous entrance to the environment and affecting the health of living beings.Diclofenac is a non-steroidal anti-inflammatory drug with analgesic properties of prolonged release.It is the commonest postoperative analgesic,and it is highly consumed without prescription.In recent years,the capability of microalgae to remove pharmaceuticals in water has been tested as a promising tool.In this work,the removal efficiency of diclofenac(16µg/mL)by the microalga Nannochloropsis oculata CCAP 186/7 was evaluated.The major nutrient concentrations in Bold’s Basal Medium were modified(nitrogen and carbon:50 and 100%of their original concentration)to know their effect in the removal of diclofenac.Drug degradation by light was also evaluated.The maximum removal capacity of diclofenac in the medium was 68.8%.The percentage of diclofenac adsorbed on the cell wall was between 6 and 12.7%.Around 23.6%of diclofenac was degraded by light after 18 days.N.oculata did not show growth inhibition due to the presence of diclofenac.The results obtained point to the promissory application of N.oculata as a bioremediation system for diclofenac removal.
基金supported by the National Natural Science Foundation of China (Nos.40976041 and 20775074)
文摘The photodegradation mechanism of fenvalerate in water has been investigated by density functional theory(DFT).The geometries of reactants,transition states,intermediates and products are optimized at the B3LYP/6-31G* level.The calculated results indicate that the reaction process mainly includes the nucleophilic attack and the substitution reaction by hydroxyl radical to the carbonyl group.By vibrational frequency analysis and intrinsic reaction coordinate(IRC) method,the transition state and its reaction pathway are confirmed.Moreover,the changes of natural population analysis(NPA),calculated using the Natural bond orbital(NBO) method,are analyzed along with the degradation reaction which can explain the variation of chemical bonds.Additionally,the solvent effect is also investigated and the results show that the reaction preferably takes place in water.
基金This work was supported by the National Natural Science Foundation of China(No.20076004)
文摘The photocatalytic degradation of polyvinyl chloride (PVC) films by tungstophosphoric acid (HPW) was investigated. The main reason for highly enhanced photodegradation of HPW-doped PVC film was studied and discussed.
基金Sponsored by the Key Project of National Science Foundation of China (Grant NO.50638020)the National High Technology Research and Development Program of China (Grant No.2007AA06A411)the State Key Laboratory of Urban Water Resource & Environment (Grant No.2009TS04)
文摘The batch photodegradation reactor was used to investigate the influence of the common coexisting substances in wastewater,such as H+,anions (HCO3-,Cl-and NO3-) and organic compounds (methanol and bisphenol A),on the photodegradation behaviors of EE2 in the UV/H2O2 process.The results indicated that the addition of coexisting substances can influence the photodegradation behaviors of EE2 and it also follows the first-order kinetics.The acidic (pH 2-4) and alkaline (pH 10-12) medium benefit the photodegradation of EE2,but the photodegradation rate constant of EE2 keeps almost constant in the pH value of 4-10.The addition of anions,such as HCO3-,Cl-and NO3-,can inhibit the photodegradation of EE2,and the rate constant has a negative linear relationship with the concentration of the anions.However,the reduction degrees vary with the anions kinds,and the inhibition effect of the three anions is in the order of HCO3->NO3->Cl-.Addition of 5 mg/L methanol and bisphenol A can reduce the photodegradation rate constant of EE2by 84.31% and 72%,respectively.By comparison,the retardant effect of methanol is much more evident.In the studied concentrations range,the photodegradation rate constant of EE2 is the unary quadratic function of the organic compounds concentrations.
文摘The apparent 1^st order rate constant of photodegradation of formaldehyde by carbon containing TiO2 nanoparticles has been investigated by numerical integration of mass transfer equation with measured degradation degree using a tubular photoreactor. The carbon containing TiO2 nanoparticles are synthesized by the oxidation of TiCl4 in propane/air flame CVD process with futile fraction up to 0.3 and carbon mass fractions up to 0.22, respectively. Thin TiO2 film is coated on the wall of the tubular reactor by sedimentation method. Effects of rutile mass fraction and carbon content have been examined on the apparent 1 ^st order rate constant and results show that, at 570ppm of formaldehyde loaded air stream, 80% relative humidity and about 100nm thin TiOa film, the 1^st order rate constant increases with increasing rutile mass fraction up to 0.3, occurs a maximum at the carbon content of about 5% by weight and is about 2.5 times of that at carbon content about zero or above 10%.
文摘The photodegradation of irradiated thin films of poly (para-methylstyrene) with 265 nm radiations in the presence of airand as a function of irradiation time has been studied using UV-VIS, fluorescence and FT-IR Spectroscopic techniques. The influence of phthalate and terephthalate plasticizers on stability of poly (para-methylstyrene) towards irradiations was also investigated. Blending with phthalate plasticizers was found to cause a higher efficiency of photodegradation than that obtained in doping with terephthalate plasticizers. The intensity of absorption was also found to increase with time of irradiation and in change in the shape of the spectra at longer wavelength, thus indicating a possibility of photodegradation of polymer chains. The analysis of the FT-IR spectra of the irradiated and non-irradiated samples, shows a predominant absorption associated with carbonyl compounds with 1740 cm-1. In addition, the observed increase in the intensities of the carbonyl and hydroxyl regions of the FT-IR spectra, have provided an evidence for the photodegradation as well as photo-oxidation of polymeric chains. The presence of the plasticizer in the polymer backbone was found to accelerate the photodegradation of polymeric chains.
基金supported by the National Natural Science Foundation of China(Nos.40976041 and 20775074)
文摘The relationship between chemical structures and photodegradation activity of 12 PAHs is studied using DFT and HF methods, and stepwise multiple linear regression analysis method. The equilibrium geometries and vibration frequency have been investigated by considering Solvent effects using a selfconsistent reaction field based on the polarizable continuum model. With DFT and HF methods, different quantum chemical structural descriptors are obtained by quantum chemical calculation and the results with DFT method are better for QSAR model. It is concluded that the photodegradation activity is closely related to its molecular structure. In the regression analysis, the main factors affecting photodegradation rate include the energy of the highest occupied orbital EHOMO and the number of six-carbon benzene ring N1, and the QSAR model successfully established is logkb = 6.046 + 54.830EHOMO + 0.272N1. Statistical evaluation of the developed QSAR shows that the relationships are statistically significant and the model has good predictive ability. EHOMO is the most important factor influcing the photodegradation of PAHs, because the higher EHOMO is, the more easily electron will be excited and the more easily molecular will be degraded. Comparison of the photodegradation of PAHs with their biodegradation shows that the committed step of biodegradation is that the effects of microorganisms make the chemical bond break, while in the committed step of photodegradation PAHs eject electrons.
文摘To understand the degradation of endocrine disrupting chemicals (EDCs) in natural environment with existence of iron oxides and carboxylic acids, the dependence of bisphenol A (BPA) photodegradation on the initial concentration of oxalate (Cox) in lepidocrocite (y-FeOOH) aqueous suspension was investigated under both UV and visible lights in this study. Lepidocrocite powder was home-prepared by a hydrothermal process. It was found that BPA degradation was promoted greatly in the presence of oxalate owing to the formation of lepidocrocite-oxalate complex. And there was an optimal Cox, which was 2.0 and 2.4 mmol/L, under UV and visible lights, respectively. The first-order kinetic constant, k value increased 38 times from 0.17 × 10^-2 min^-1 in the absence of oxalate to 6.39 × 10^-2 min^-1 in the presence of oxalate with an optimal Cox (2.0 mmol/L) under UV irradiation, and almost 306 times from 0.02 × 10^-2 min^-1 in the absence of oxalate to 6.11 × 10^-2 min^-1 in the presence of oxalate with an optimal Cox (2.4 mmol/L) under visible irradiation. The BPA degradation rate increased and the first-order kinetic constants decreased with the increase in BPA initial concentration. The dependence of the variation of pH value, total-Fe and Fe^2+ during the photoreaction on Cox was also investigated. The pH value increased obviously with the reaction time. Total-Fe increased dramatically at the first 5 min and then decreased quickly under UV irradiation and slowly under visible irradiation. The initial concentration of oxalate is a main factor to affect BPA photodegradation in aqueous suspension under both UV and visible lights.