期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
CFD prediction of physical field for multi-air channel pulverized coal burner in rotary kiln 被引量:8
1
作者 马爱纯 周孑民 +1 位作者 欧俭平 李旺兴 《Journal of Central South University of Technology》 EI 2006年第1期75-79,共5页
A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and tempera... A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and temperature distribution were investigated. A thermal measurement was conducted on a rotary kiln (4.5m in diameter, 90m in length) with four-air channel coal burner to determine the boundary conditions and to verify the simulation results. The calculation result shows that the distribution of velocity near burner exit is saddle-like; recirculation zones near nozzle and wall are useful for mixture primary air with coal and high temperature fume. A little central airflow can avoid coal backing up and cool nozzle. Adjusting the ratio of internal airflow to outer airflow is an effective and major means to regulate flame and temperature distribution in sintering region. Large whirlcone angle can intensify disturbution range at flame root to accelerate ignition and mixture. Large coal size can reduce high temperature region and result in coal combusting insufficiently. Too much combustion air will lengthen flame and increase heat loss. 展开更多
关键词 CFD numerical simulation CFX physical field multi-air channel coal burner rotary kiln
下载PDF
Comparison of structure and physical fields in 400 kA aluminum reduction cells 被引量:1
2
作者 丁吉林 李劼 +3 位作者 张红亮 徐宇杰 杨帅 刘业翔 《Journal of Central South University》 SCIE EI CAS 2014年第11期4097-4103,共7页
To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure p... To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure parameters were firstly compared, and then three-dimensional models of electric-magnetic-flow field were built and solved with finite element method(FEM). The comparison of the structures reveals that the cell bodies are similar while the current flow path and distribution ratio of bus bars are different. It appears that most of the current(70%-80%) in side A are used as the magnetic field compensation current and flow through two ends. The numerical simulation results indicate that the distributions of magnetic fields are different but all satisfy with the magnetohydrodynamics(MHD) stabilization, and the flow patterns are all two or multi vortexes with appropriate velocities. The comparison shows that all studied cells can satisfy with the physical field requirement, and the commercial applications also verify that the 400 kA cells have become the product of the mature and world's leading technology. 展开更多
关键词 aluminum electrolysis numerical simulation bus structure physical field
下载PDF
Hydrogel-based catalysts for hydrogen generation by the hydrolysis of B–H compounds under external physical fields
3
作者 Chunling Qin Wenliu Wu +4 位作者 Hassanien Gomaa Shuai Wu Cuihua An Qibo Deng Ning Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期518-535,I0011,共19页
Hydrogen is a popular clean high-energy-density fuel.However,its utilization is limited by the challenges toward low-cost hydrogen production and safe hydrogen storage.Fortunately,these issues can be addressed using p... Hydrogen is a popular clean high-energy-density fuel.However,its utilization is limited by the challenges toward low-cost hydrogen production and safe hydrogen storage.Fortunately,these issues can be addressed using promising hydrogen storage materials such as B–H compounds.Hydrogen stored in B–H compounds can be released by hydrolysis at room temperature,which requires catalysts to increase the rate of the reaction.Recently,several effective approaches have been developed for hydrogen generation by catalyzing the hydrolysis of B–H compounds.This review summarizes the existing research on the use of nanoparticles loaded on hydrogels as catalysts for the hydrolysis of B–H compounds.First,the factors affecting the hydrolysis rate,such as temperature,p H,reactant concentration,and type of nano particles,were investigated.Further,the preparation methods(in situ reduction,one-pot method,template adsorption,etc.)for the hydrogel catalysts and the types of loaded catalysts were determined.Additionally,the hydrogel catalysts that can respond to magnetic fields,ultrasound fields,optical fields,and other physical fields are introduced.Finally,the issues and future developments of hydrogel-based catalysts are discussed.This review can inspire deeper investigations and provide guidance for the study of hydrogel catalysts in the field of hydrogen production via hydrolysis. 展开更多
关键词 HYDROGEL Nanoparticlec atalyst B-H compounds Hydrolysis reaction External physical field
下载PDF
Drinking Water Treatment: pH Adjustment Using Natural Physical Field
4
作者 Hesham Mohamed Abdal-Salam Yehia Said Mahmoud Said 《Journal of Biosciences and Medicines》 2021年第6期55-66,共12页
Water has a pH of around (7.0), making it neither alkaline nor acidic. Alkaline is defined as a pH value greater than (7.0). The power of water to neutralize acids is measured by its alkalinity. The pH scale ranges fr... Water has a pH of around (7.0), making it neither alkaline nor acidic. Alkaline is defined as a pH value greater than (7.0). The power of water to neutralize acids is measured by its alkalinity. The pH scale ranges from (pH = 0 to 14), with anything above (pH = 7.0) being alkaline, and anything below (7.0) being acidic. Much of the research up to now has been investigating the effect of adding alkaline substances to the water to increase the pH levels. Recent evidence suggests that using baking soda (sodium bicarbonate), which is an alkaline substance with a pH of about (9). While studies have shown that adding soda to water increases its alkalinity, it has a number of negative health consequences. For instance, Hypokalemia, Hypochloremia, High levels of sodium in the blood, Worsening kidney disease, Worsening heart failure, Muscle weakness and spasm, and Increased stomach acid production. The main aim of this study is to investigate a natural substance consisting of environmental elements i.e., it is derived from silica by the thermal fusion method (prepared by the authors) that raises the pH of water with a physical field of 80 cm without adding any components to the water. The results showed the effectiveness of this natural substance in its solid and liquid forms in raising the pH of water to reach 8.5 from a distance range = 80 cm, without any side effects on human health. 展开更多
关键词 ALKALINE ACIDIC Water pH Value BIOTECHNOLOGY physical field
下载PDF
Analysis of 1989/1990 main physical fields for air-sea coupled system in the tropical western Pacific
5
作者 Yao Huadong Jiang Dayong and Liu Yimin Chinese Academy of Meteorological Sciences, Beijing 100081, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1993年第1期93-105,共13页
In this paper, the marine ship observation data sets in the seventh (October 16-December 4. 1989) and eighth (June 1-July 16, 1990) cruises of PRC -US tropical ocean and global atmosphere (TOGA) joint scientific inves... In this paper, the marine ship observation data sets in the seventh (October 16-December 4. 1989) and eighth (June 1-July 16, 1990) cruises of PRC -US tropical ocean and global atmosphere (TOGA) joint scientific investigation in the tropical western Pacific are used to analyze the elements such as sea surface temperature (SST), surface wind field, fluxes and net heat budget, which are important physical parameters of underlying earth's surface influencing the global mean circulation evolution on seasonal and interannual time scales. These diagnostic analyses are very beneficial to the understanding of the regional climate characteristics and the air-sea interaction mechanism, and the improving of surface flux parameterizations and regional or global climate model. 展开更多
关键词 Analysis of 1989/1990 main physical fields for air-sea coupled system in the tropical western Pacific Nino
下载PDF
Study on Multi-Scale Tensile Strength and Tensile Strain of Calcium Silicate Hydrate Layered Nanocomposites Under External Physical Field
6
作者 Lei FAN Lele ZHANG 《Research and Application of Materials Science》 2023年第1期1-4,共4页
Calcium silicate hydrate(C-S-H)is the mainly strength source of cement-based materials,but there is little basic research.In this paper,molecular dynamics method is applied to analyze the multi-scale tensile strength ... Calcium silicate hydrate(C-S-H)is the mainly strength source of cement-based materials,but there is little basic research.In this paper,molecular dynamics method is applied to analyze the multi-scale tensile strength and tensile strain of C-S-H layered materials under the condition of external physical fields(temperature and strain rate).The results show that the tensile strength and strain of C-S-H model decrease with temperature raises.The temperature(from 1 K to 600 K)has obvious influence on the tensile strain and strength of C-S-H layered materials.In addition,at(0.00025 ps^(-1)-0.001 ps^(-1)),the tensile strain and strength of C-S-H layered materials are less sensitive to strain rate.The whole model is closer to a 3-dimensional deformation.However,at(0.001 ps^(-1)-0.005 ps^(-1)),the dynamic load effect begins to increase,and the work done by the load per unit time increased.The tensile strain and strength of C-S-H layered materials indicates intensified by the change of strain rate.The energies are randomly distributed in the system,not concentrated in a certain area. 展开更多
关键词 Hydrated calcium silicate External physical field Multiscale Mechanical properties Molecular dynamics
下载PDF
External physical field-driven nanocatalytic cancer therapy 被引量:1
7
作者 Qingyuan Wu Haoyuan Zhang Huiyu Liu 《BMEMat(BioMedical Engineering Materials)》 2023年第1期52-69,共18页
Recently,variable nanocatalysts have provided novel,highly selective,mini-mally invasive strategies driven by external physical fields for cancer therapy.In the catalytic reaction,less toxic or nontoxic substances can... Recently,variable nanocatalysts have provided novel,highly selective,mini-mally invasive strategies driven by external physical fields for cancer therapy.In the catalytic reaction,less toxic or nontoxic substances can be in situ converted into toxic agents for cancer suppression.In this review,we systematically summarize the catalytic cancer therapy based on different types of external physical fields,including light,ultrasound,electricity,temperature,X-ray,magnetic field,and microwave.The properties,mechanisms,and advantages of the corresponding external physical fields in cancer therapy are also intro-duced.Importantly,considering the rapid development of catalytic nano-medicine,the research progress of catalytic cancer therapy driven by external physical fields is discussed.Finally,the remaining challenges and outlooks that catalytic cancer therapy faced are also outlined.We believe that the emerging external physical fields-driven nanocatalytic cancer therapy will provide a new avenue for cancer treatment. 展开更多
关键词 biomaterial cancer therapy external physical field nanocatalytic medicine
原文传递
Application of the Physical Quantity Field Evolution under Numerical Model in Precipitation Forecast of Yantai 被引量:1
8
作者 SUN Dian-guang,HUANG Ben-feng Yantai Meteorological Bureau in Shandong Province,Yantai 264003,China 《Meteorological and Environmental Research》 CAS 2011年第11期1-4,7,共5页
[Objective] The research aimed to understand role of the forecast data about physical quantity field in precipitation forecast.[Method] By contrasting forecast and actual situation of the precipitation in Yantai durin... [Objective] The research aimed to understand role of the forecast data about physical quantity field in precipitation forecast.[Method] By contrasting forecast and actual situation of the precipitation in Yantai during 2-3 July and 12-15 September,2011,advantages and disadvantages of the different numerical forecast models (Japan fax chart,European center,MM5,Grapes and T639) were analyzed.[Result] MICAPS system could provide live situation of the physical quantity field,but couldn't provide the future evolution situation.Japan fax chart,European center,MM5,Grapes and T639 could provide future evolution situation of the physical quantity field.[Conclusion] The contrasts and analyses on forecast situations of the physical quantity fields in many precipitation processes showed that evolutions of the vertical velocity,temperature dew point difference,relative humidity and wind field at the different heights could improve forecast accuracy of the precipitation in Yantai. 展开更多
关键词 Numerical model Evolution of the physical quantity field Application of precipitation forecast China
下载PDF
Physical Simulation of Nonmetallic Particle Movement in Al Melt under Electromagnetic Field
9
作者 Tianxiao LI, Zhenming XU,Baode SUN,Da SHU and Yaohe ZHOU School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200030, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第4期463-465,共3页
Physical simulation is used to study the movement of nonmetallic particles in Al melt in electro- magnetic field. It is found that the terminal velocity of particles in different Reynolds number range has different fu... Physical simulation is used to study the movement of nonmetallic particles in Al melt in electro- magnetic field. It is found that the terminal velocity of particles in different Reynolds number range has different functions. By confirming drag force coefficient of nonmetallic particles with Reynolds number in the range of 0.2-10 and 10-25 respectively, two functions of terminal ve- locity for spherical nonmetallic particles have been got accordingly, which provide a theoretical basis for separating nonmetallic inclusions from Al melt in electromagnetic field. 展开更多
关键词 AL physical Simulation of Nonmetallic Particle Movement in Al Melt under Electromagnetic field SIMULATION
下载PDF
Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells 被引量:2
10
作者 张阔 吴锡令 +1 位作者 闫景富 蔡家铁 《Applied Geophysics》 SCIE CSCD 2017年第1期40-48,189,共10页
Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography... Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields. 展开更多
关键词 electromagnetic holographic sensitivity field (EMHSF) holographic physical detection field finite-element method holographic imaging
下载PDF
Electron-positron pair production in ultrastrong laser fields 被引量:6
11
作者 Bai Song Xie Zi Liang Li Suo Tang 《Matter and Radiation at Extremes》 SCIE EI CAS 2017年第5期225-242,共18页
Electronepositron pair production due to the decay of vacuum in ultrastrong laser fields is an interesting topic which is revived recently because of the rapid development of current laser technology.The theoretical a... Electronepositron pair production due to the decay of vacuum in ultrastrong laser fields is an interesting topic which is revived recently because of the rapid development of current laser technology.The theoretical and numerical research progress of this challenging topic is reviewed.Many new findings are presented by different approaches such as the worldline instantons,the S-matrix theory,the kinetic method by solving the quantum Vlasov equation or/and the real-time DiraceHeisenbergeWigner formalism,the computational quantum field theory by solving the Dirac equation and so on.In particular,the effects of electric field polarizations on pair production are unveiled with different patterns of created momentum spectra.The effects of polarizations on the number density of created particles and the nonperturbative signatures of multiphoton process are also presented.The competitive interplay between the multiphoton process and nonperturbation process plays a key role in these new findings.These newly discovered phenomena are valuable to deepen the understanding of pair production in complex fields and even have an implication to the study of strong-field ionization.More recent studies on the pair production in complex fields as well as beyond laser fields are briefly presented in the view point of perspective future. 展开更多
关键词 Strong field physics Vacuum pair production Nonlinear quantum electrodynamics
下载PDF
HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr?dinger equation for two-electron helium subjected to strong laser fields
12
作者 Xi Zhao Gangtai Zhang +2 位作者 Tingting Bai Jun Wang Wei-Wei Yu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期216-225,共10页
Electron–electron correlation plays an important role in the underlying dynamics in physics and chemistry.Helium is the simplest and most fundamental two-electron system.The dynamic process of helium in a strong lase... Electron–electron correlation plays an important role in the underlying dynamics in physics and chemistry.Helium is the simplest and most fundamental two-electron system.The dynamic process of helium in a strong laser field is still a challenging issue because of the large calculation cost.In this study,a graphic processing unit(GPU)open ACC based ab initio numerical simulations package He TDSE is developed to solve the full-dimensional time-dependent Schrodinger equation of helium subjected to a strong laser pulse.He TDSE uses B-spline basis sets expansion method to construct the radial part of the wavefunction,and the spherical harmonic functions is used to express for the angular part.Adams algorithm is employed for the time propagation.Our example shows that He TDSE running on an NVIDIA Kepler K20 GPU can outperform the one on an Intel E5-2640 single CPU core by a factor of 147.He TDSE code package can be obtained from the author or from the author's personal website(doi:10.13140/RG.2.2.15334.45128)directly under the GPL license,so He TDSE can be downloaded,used and modified freely. 展开更多
关键词 strong field physics TDSE OPENACC GPU electron correlation HELIUM
下载PDF
Nonadiabatic molecular dynamics simulation of C2H^2+2 in a strong laser field
13
作者 Ji-Gen Chen Gang-Tai Zhang +4 位作者 Ting-Ting Bai Jun Wang Ping-Ping Chen Wei-Wei Yu Xi Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第11期303-307,共5页
We investigate the alignment dependence of the strong laser dissociation dynamics of molecule C2H2^2+ in the frame of real-time and real-space time-dependent density function theory coupled with nonadiabatic quantum m... We investigate the alignment dependence of the strong laser dissociation dynamics of molecule C2H2^2+ in the frame of real-time and real-space time-dependent density function theory coupled with nonadiabatic quantum molecular dynamics(TDDFT-MD) simulation.This work is based on a recent experiment study "ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene" [Wolter et al.Science 354,308-3 12(2016)].Our simulations are in excellent agreement with the experimental data and the analysis confirms that the alignment dependence of the proton dissociation dynamics comes from the electron response of the driving laser pulse.Our results validate the ability of the TDDFT-MD method to reveal the underlying mechanism of experimentally observed and control molecular dissociation dynamics. 展开更多
关键词 strong field physics molecular dynamics TDDFT attosecond science ultra fast optics
下载PDF
Comparative Analysis on Physical Quantity Diagnosis and Wind Profile Radar Data of Two Heavy Rainfalls
14
作者 Yunfeng Zhu Mengxi Yang +2 位作者 Jie Liu Beiyuan Wang Haiwei Duo 《Meteorological and Environmental Research》 CAS 2013年第5期9-13,16,共6页
[ Objective] The research aimed to contrast physical quantity diagnosis and wind profile radar data of two heavy rainfalls. [ Method ] From circulation background, physical quantity field and wind profile radar data, ... [ Objective] The research aimed to contrast physical quantity diagnosis and wind profile radar data of two heavy rainfalls. [ Method ] From circulation background, physical quantity field and wind profile radar data, we analyzed two big rainstorm weather processes (8 -9 July and August 10) in Lianyungang City in 2012. [ Result] Rainstorm generation was related to favorable large-scale circulation situation. The first-stage precipitation during 8 -9 July was warm-zone precipitation, and the precipitation at the second stage was triggered by shear line. Precipitation on August 10 was generated by typhoon low-pressure inverted trough and cold air. Sufficient water vapor content and strong water vapor transportation were favorable for generation of the heavy precipitation. Suction effect by divergence at high layer and convergence at middle and low layers was favorable for maintenance of the strong ascending motion. Occurrence of the heavy precipitation must have ascending motion condition. But it was not that the stronger the ascending motion, the stronger the rainfall intensity. Kindex and θse500 -θse 850 were closely related to rainstorm occurrence. Horizontal wind data of the wind profile radar provided fine structure of the atmospheric horizontal motion at vertical direction, could clearly display vertical structure of the wind field in rainstorm process, and directly reflected change characteristics of the wind field in precipitation process. [ Conclusion] The research could provide reference for future forecast work. 展开更多
关键词 Heavy rainfall Circulation background physical quantity field Wind profile radar China
下载PDF
MY WORK IN THE FIELD OF NUCLEAR PHYSICS
15
作者 Hu Renyu(Chinese Academy of Engineering Physics in Chengdu) 《Bulletin of the Chinese Academy of Sciences》 1995年第1期107-108,共2页
After graduating from the physics department of Qinghua University in 1952, I started working in the development of nuclear detectors (including cloud chambers and scintillometers) under the instruction of Profs. Yang... After graduating from the physics department of Qinghua University in 1952, I started working in the development of nuclear detectors (including cloud chambers and scintillometers) under the instruction of Profs. Yang Chengzhong and Dai Chuanzeng at the CAS Institute of Modern Physics.From 1956 to 1958,I studied at Lebedev’s Institute of Physics under the Soviet Academy 展开更多
关键词 CAS MY WORK IN THE field OF NUCLEAR PHYSICS HIGH
下载PDF
RENEWAL OF BASIC LAWS AND PRINCIPLES FOR POLAR CONTINUUM THEORIES (X) -MASTER BALANCE LAW 被引量:3
16
作者 戴天民 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第2期167-174,共8页
Through a comparison between the expressions of master balance laws and the conservation laws derived by Noether's theorem, a unified master balance law and six physically possible balance equations for micropolar co... Through a comparison between the expressions of master balance laws and the conservation laws derived by Noether's theorem, a unified master balance law and six physically possible balance equations for micropolar continuum mechanics are naturally deduced. Among them, by extending the well-known conventional concept of energymomentum tensor, the rather general conservation laws and balance equations named after energy-momentum, energy-angular momentum and energy-energy are obtained. It is clear that the forms of the physical field quantities in the master balance law for the last three cases could not be assumed directly by perceiving through the intuition. Finally, some existing results are reduced immediately as special cases. 展开更多
关键词 unified master balance law physical field quantities conservation laws ENERGY-MOMENTUM energy-angular momentum energy-energy
下载PDF
Simulation Monitoring for Rainfall Infiltration in Soil Based on High Density Electrical Method
17
作者 Shanshan Lv Dengke He 《Journal of Geoscience and Environment Protection》 2021年第5期1-7,共7页
<div style="text-align:justify;"> Rainfall infiltration is a porous medium flow problem with variable saturation. Based on the theoretical analysis of the flow field, electrical conductivity of rocks, ... <div style="text-align:justify;"> Rainfall infiltration is a porous medium flow problem with variable saturation. Based on the theoretical analysis of the flow field, electrical conductivity of rocks, the electrical field, the paper simulates the coupling relationship between the water saturation in soil and the apparent resistivity distribution. It combines the Richards equation, the Archie formula and the Laplace equation. The experiment simulates the potential field data by the Wenner setting in electrical exploration on a two-layer geologic model with continuous rainfall during 5 days, which shows that the effective saturation in soil is increasing with the rainfall time, while the apparent resistivity is decreasing. This can provide a theoretical basis for the analyzing the rainfall infiltration and porosity of the soil by using high-density electrical method in the future. </div> 展开更多
关键词 Rainfall Infiltration Multi physical field Coupling Numerical Simulation High Density Electrical Method
下载PDF
Integrated unified phase-field modeling(UPFM) 被引量:1
18
作者 Yuhong Zhao 《Materials Genome Engineering Advances》 2024年第2期25-38,共14页
For a long time,the phase-field method has been considered a mesoscale phenomenological method that lacks physical accuracy and is unable to be closely linked to the mechanical or functional properties of materials.So... For a long time,the phase-field method has been considered a mesoscale phenomenological method that lacks physical accuracy and is unable to be closely linked to the mechanical or functional properties of materials.Some misunderstandings existing in these viewpoints need to be clarified.Therefore,it is necessary to propose or adopt the perspective of“unified phase-field modeling(UPFM)”to address these issues,which means that phase-field modeling has multiple unified characteristics.Specifically,the phase-field method is the perfect unity of thermodynamics and kinetics,the unity of multi-scale models from microto meso and then to macro,the unity of internal or/and external driving energy with order parameters as field variables,the unity of multiple physical fields,and thus the unity of material composition design,process optimization,microstructure control,and performance prediction.It is precisely because the phase-field approach has these unified characteristics that,after more than 40 years of development,it has been increasingly widely applied in materials science and engineering. 展开更多
关键词 entire process gradient potential driving force multi physical fields multiscale/multiple order parameters thermodynamics and kinetics unified phase-field modeling
原文传递
Analysis on A Heavy Rain to Rainstorm Weather Process in Liaoning Province 被引量:2
19
作者 李东 许宁 韩蓓蓓 《Meteorological and Environmental Research》 CAS 2010年第9期25-28,共4页
By using the synoptic chart,the physical quantity field,the satellite cloud image and the meteorological elements in the single station,a typical heavy rain to rainstorm weather process which occurred in Liaoning duri... By using the synoptic chart,the physical quantity field,the satellite cloud image and the meteorological elements in the single station,a typical heavy rain to rainstorm weather process which occurred in Liaoning during August 18-20 in 2009 was comprehensively analyzed.The results showed that this process was a weather process which was affected by the upper trough and the subtropical high.Baikal Lake split cold air and Hetao cold air shifted eastward and formed the vortex.The subtropical high extended westward,lifted northward,and the warm wet airflow in the edge cut in.The low-altitude jet stream accelerated the transportation of water vapor,and several active meso-scale convective cloud clusters which appeared in 588 line periphery in the right side of high-altitude jet stream outlet gradually merged with the westerlies system.It caused that the strong mixed precipitation process occurred. 展开更多
关键词 Heavy rain to rainstorm physical quantity field Satellite cloud image Meteorological elements China
下载PDF
Temporal-spatial Distribution and Short-range Prediction Indicators of Hail Weather in East Central Haixi Prefecture of Qinghai Province 被引量:2
20
作者 Xiuping Cheng Chengtao Shan +1 位作者 Gasang Pei Na Wang 《Meteorological and Environmental Research》 CAS 2013年第4期21-25,共5页
[ Objective] The study aimed to discuss the temporal-spatial distribution and short-range prediction indicators of hail weather in east central Haixi Prefecture of Qinghai Province. [Method] Using hail data of six sta... [ Objective] The study aimed to discuss the temporal-spatial distribution and short-range prediction indicators of hail weather in east central Haixi Prefecture of Qinghai Province. [Method] Using hail data of six stations in east central Haixi Prefecture from 1960 to 2010, the temporal and spatial distribution of hail weather was analyzed firstly. Afterwards, based on the high-altitude factual data of 30 case studies of hail during 2006 -2010, its high-altitude and ground weather situation and physical quantity field were studied to summarize short-term circulation pattern and shod- range prediction characteristics of hail weather. [ Result] In east central Haixi, hail appeared from April to September, and it was most frequently from May to August. Meanwhile, hail was frequent from 14:00 to 20:00. Among the six stations, hail was most frequent in Tianjun but least frequent in Wulan. Moreover, hail disaster mainly occurred in Wulan and Tianjun. In addition, there were three typos of circulation pattern of hail weather at 500 hPa. Hail mainly occurred under the effect of northwest airflow, and it had shortwave trough, cold center or trough, jet stream core or one of the three. Hail appeared frequently under the situation of upper-level divergence and low-level convergence, and abundant water vapor and water vapor flux convergence at low levels were important conditions for hailing. [ Conclusion] The research could provide scientific references for improving the accuracy of hail forecast. 展开更多
关键词 East central Haixi Prefecture HAIL Temporal-spatial distribution physical quantity field Short-range prediction indicators China
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部