Background The benefits of combining benzoic acid and essential oils(BAO)to mitigate intestinal impairment during the weaning process have been well established,while the detailed underlying mechanism has not been ful...Background The benefits of combining benzoic acid and essential oils(BAO)to mitigate intestinal impairment during the weaning process have been well established,while the detailed underlying mechanism has not been fully elucidated.Previous research has primarily focused on the reparative effects of BAO on intestinal injury,while neglecting its potential in enhancing intestinal stress resistance.Methods In this study,we investigated the pre-protective effect of BAO against LPS-induced stress using a modified experimental procedure.Piglets were pre-supplemented with BAO for 14 d,followed by a challenge with LPS or saline to collect blood and intestinal samples.Results Our findings demonstrated that BAO supplementation led to significant improvements in piglets’final weight,average daily gain,and feed intake/body gain ratio.Additionally,BAO supplementation positively influenced the composition of intestinal microbiota,increasing beneficial Actinobacteriota and Alloprevotella while reducing harmful Desulfobacterota,Prevotella and Oscillospira.Furthermore,BAO supplementation effectively mitigated oxidative disturbances and inflammatory responses induced by acute LPS challenge.This was evidenced by elevated levels of T-AOC,SOD,and GSH,as well as decreased levels of MDA,TNF-α,and IL-6 in the plasma.Moreover,piglets subjected to LPS challenge and pre-supplemented with BAO exhibited significant improvements in intestinal morphological structure and enhanced integrity,as indicated by restored expression levels of Occludin and Claudin-1 compared to the non-supplemented counterparts.Further analysis revealed that BAO supplementation enhanced the jejunal antioxidative capacity by increasing GSH-Px levels and decreasing MDA levels under the LPS challenge and stimulated the activation of the Nrf2 signaling pathway.Additionally,the reduction of TLR4/NF-κB/MAPK signaling pathways activation and proinflammatory factor were also observed in the jejunal of those piglets fed with BAO.Conclusions In summary,our study demonstrates that pre-supplementation of BAO enhances the anti-stress capacity of weaned piglets by improving intestinal microbiota composition,reinforcing the intestinal barrier,and enhancing antioxidative and anti-inflammatory capabilities.These effects are closely associated with the activation of Nrf2 and TLR4/NF-κB/MAPK signaling pathways.展开更多
Background Maternal nutrition is essential in keeping a highly efficient production system in the pig industry.Laminarin has been shown to improve antioxidant capacity,reduce the inflammatory response,and favor the ho...Background Maternal nutrition is essential in keeping a highly efficient production system in the pig industry.Laminarin has been shown to improve antioxidant capacity,reduce the inflammatory response,and favor the homeostasis of intestinal microbiota.However,the effect of dietary supplementation of laminarin on the reproductive performance of sows and the growth of suckling offspring remains unknown.Methods A total of 40 Landrace×Yorkshire multiparous sows on d 85 of gestation,similar in age,body weight(BW),parity and reproductive performance,were randomly divided into four dietary treatments with 10 sows per treatment,receiving a control diet(basal pregnancy or lactating diets)and a basal diet supplemented with 0.025%,0.05%and 0.10%laminarin,respectively.The experiment lasted from d 85 of gestation to d 21 of lactation.Results Laminarin supplementation linearly increased number born alive per litter(P=0.03),average daily feed intake(ADFI,P<0.01),and total milk yield of sows during the lactation of 1–21 d(P=0.02).Furthermore,maternal laminarin supplementation increased the average daily gain(ADG)of piglets while tending to reduce the culling and death rate before weaning.In addition,alterations to the composition of colostrum and milk,as well as to serum inflammatory cytokines and immunoglobulins of sows were observed.The fecal microbiota profile of sows supported the improvement of reproductive performance in sows and the growth performance in suckling offspring.Conclusions Dietary supplementation of laminarin during late pregnancy and lactation could significantly improve reproductive performance of sows and growth performance of piglets.展开更多
Background Transmissible gastroenteritis virus(TGEV)is one of the main pathogens causing severe diarrhea of pig-lets.The pathogenesis of TGEV is closely related to intestinal inflammation.All-trans retinoic acid(ATRA)...Background Transmissible gastroenteritis virus(TGEV)is one of the main pathogens causing severe diarrhea of pig-lets.The pathogenesis of TGEV is closely related to intestinal inflammation.All-trans retinoic acid(ATRA)is the main active metabolite of vitamin A,which has immunomodulatory and anti-inflammatory properties.However,it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets.This study aimed to investigate the effects of ATRA on growth performance,diarrhea,intestinal inflammation and intesti-nal barrier integrity of TGEV-challenged piglets.Methods In a 19-d study,32 weaned piglets were randomly divided into 4 treatments:Control group(basal diet),TGEV group(basal diet+TGEV challenge),TGEV+ATRA5 group(basal diet+5 mg/d ATRA+TGEV challenge)and TGEV+ATRA15 group(basal diet+15 mg/d ATRA+TGEV challenge).On d 14,piglets were orally administered TGEV or the sterile medium.Results Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV(P<0.05).Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase(DAO)activ-ity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV,and maintained intestinal barrier integrity(P<0.05).Meanwhile,5 mg/d ATRA feeding increased the sucrase activity and the expres-sions of nutrient transporter related genes(GLUT2 and SLC7A1)in jejunal mucosa of TGEV-challenged piglets(P<0.05).Furthermore,5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibit-ing the release of interleukin(IL)-1β,IL-8 and tumor necrosis factor-α(TNF-α),and promoting the secretion of IL-10 and secretory immunoglobulin A(sIgA)(P<0.05).Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes(TLR3,TLR4,RIG-I,MyD88,TRIF and MAVS)and the phosphorylation level of nuclear factor-κB-p65(NF-κB p65),and up-regulated the inhibitor kappa B alpha(IκBα)protein level in jejunal mucosa of TGEV-challenged piglets(P<0.05).Conclusions ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response,thus improving the growth performance and inhibiting diarrhea of piglets.The mechanism was associated with the inhibi-tion of NF-κB signaling pathway mediated by TLR3,TLR4 and RIG-I.展开更多
Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome an...Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets.In study 1,piglets received either a high concentration of zinc(Zn)as zinc oxide(Zn O,Zn,2,690 mg/kg)or a low Zn concentration(100 mg/kg)in the diet during the post weaning period(d 14–23).The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated.In study 2,the impact of timing of the dietary zinc intervention was investigated,i.e.,between d 0–14 and/or d 14–23 post weaning,and the consecutive effects on the piglet's intestinal functionality,here referring to microbiota composition and diversity and gene expression profiles.Results Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration Zn O content.A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change,where mainly the commensals inter-changed.In the immediate post weaning period,i.e.,d 0–14,the highest number of differentially expressed genes(DEGs)in intestinal tissue were observed between animals receiving a diet with a low or high concentration Zn O content,i.e.,23 DEGs in jejunal tissue and 11 DEGs in ileal tissue.These genes are involved in biological processes related to immunity and inflammatory responses.For example,genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration Zn O content compared to low Zn O content in both jejunum and ileum tissue.In the second study,a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration Zn O content compared to low Zn O content.Conclusions Supplementing a diet with a pharmaceutical level of Zn as Zn O for clinically healthy post weaning piglets influences various aspects intestinal functionality,in particular in the first two weeks post-weaning.The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue.The effects do not seem related to a direct antimicrobial effect of Zn O.展开更多
Rotavirus is one of the pathogenic causes that induce diarrhea in young animals, especially piglets, worldwide. However, nowadays, there is no specific drug available to treat the disease, and the related vaccines hav...Rotavirus is one of the pathogenic causes that induce diarrhea in young animals, especially piglets, worldwide. However, nowadays, there is no specific drug available to treat the disease, and the related vaccines have no obvious efficiency in some countries. Via analyzing the pathogenesis of rotavirus, it inducing diarrhea is mainly due to disturb enteric nervous system, destroy gut mucosal integrity, induce intracellular electrolyte imbalance, and impair gut microbiota and immunity. Many studies have already proved that prebiotics and probiotics can mitigate the damage and diarrhea induced by rotavirus infection in hosts. Based on these, the current review summarizes and discusses the effects and mechanisms of prebiotics and probiotics on rotavirus-induced diarrhea in piglets. This information will highlight the basis for the swine production utilization of prebiotics and probiotics in the prevention or treatment of rotavirus infection in the future.展开更多
Background The establishment of a robust gut microbiota in piglets during their early developmental stage holds the potential for long-term advantageous effects.However,the optimal timeframe for introducing probiotics...Background The establishment of a robust gut microbiota in piglets during their early developmental stage holds the potential for long-term advantageous effects.However,the optimal timeframe for introducing probiotics to achieve this outcome remains uncertain.Results In the context of this investigation,we conducted a longitudinal assessment of the fecal microbiota of 63 piglets at three distinct pre-weaning time points.Simultaneously,we gathered vaginal and fecal samples from 23 sows.Employing 16S rRNA gene and metagenomic sequencing methodologies,we conducted a comprehensive analysis of the fluctuation patterns in microbial composition,functional capacity,interaction networks,and colonization resistance within the gut microbiota of piglets.As the piglets progressed in age,discernible modifications in intestinal microbial diversity,composition,and function were observed.A source-tracking analysis unveiled the pivotal role of fecal and vaginal microbiota derived from sows in populating the gut microbiota of neonatal piglets.By D21,the microbial interaction network displayed a more concise and efficient configuration,accompanied by enhanced colonization resistance relative to the other two time points.Moreover,we identified three strains of Ruminococcus sp.at D10 as potential candidates for improving piglets’weight gain during the weaning phase.Conclusions The findings of this study propose that D10 represents the most opportune juncture for the introduction of external probiotic interventions during the early stages of piglet development.This investigation augments our comprehension of the microbiota dynamics in early-life of piglets and offers valuable insights for guiding forthcoming probiotic interventions.展开更多
Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and th...Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.展开更多
[Objective] The aim of this study was to investigate the effects of mycotoxin from moldy maize on immune response of piglets.[Method] ELISA method was used to determine the content of Aflatoxin B1 and ochratoxin A in ...[Objective] The aim of this study was to investigate the effects of mycotoxin from moldy maize on immune response of piglets.[Method] ELISA method was used to determine the content of Aflatoxin B1 and ochratoxin A in maize; after the piglets were fed with the moldy maize,the corresponding antibody titers in the serums of piglets were measured.[Result] Antibody levels of tested group were obvious lower than that of the control,while the histological section of immune organs also suggested that mycotoxin could significantly inhibit the immune response of piglets.[Conclusion] Mycotoxin in maize had important effects on the internal organs and immune response of piglets.展开更多
Escherichia coli expressing F4 fimbriae is the major pathogenic bacteria that causes diarrhea in piglets before weaning. The adhesion of E. coli to the brush borders of the epithelial cells of piglets is the precondit...Escherichia coli expressing F4 fimbriae is the major pathogenic bacteria that causes diarrhea in piglets before weaning. The adhesion of E. coli to the brush borders of the epithelial cells of piglets is the precondition leading to diarrhea, which in turn is due to the presence of the F4 receptors determined by an autosomal recessive gene on the brush borders of the epithelial cells. In order to clarify the genetic mechanism of the adhesion, an in vitro adhesion experiment was carded out for three variants of E. coli F4 (ab, ac, and ad) in 366 piglets of three pig breeds [Landrace (LR), Large White (LW), and Songliao Black (SB)]. The results showed that there existed significant differences (P〈0.001) in the adhesion percentage among the three breeds. Most SB piglets were nonadhesive for all the three variants, whereas most LR piglets were adhesive. Within each breed except for LR, the proportions of the three F4 variants adhering to the brush borders differed significantly. According to the patterns of the adhesion of the three F4 variants in the three breeds, it is very likely that the three F4 variants F4ab, F4ac, and F4ad have different receptors that are controlled by three different loci.展开更多
In this study, feed-grade proteinase was added into conventional diets of three-line crossbred (Duroc x Landrace x Large White) piglets, to investigate the effects of feed-grade proteinase on anti-diarrhea capacity,...In this study, feed-grade proteinase was added into conventional diets of three-line crossbred (Duroc x Landrace x Large White) piglets, to investigate the effects of feed-grade proteinase on anti-diarrhea capacity, daily weight gain, feed intake and feed conversion ratio of piglets. The results showed that adding feed-grade proteinase in diets enhanced anti-diarrhea capacity of piglets and improved signifi- cantly production performance and breeding efficiency of piglets. This study provided the reference for rational utilization of feed-grade proteinase in actual production.展开更多
Dietary arginine supplementation enhances the immune status and protein synthesis in early-weaned pigs. However, the underlying mechanisms remain largely unknown. To investigate how arginine affects the expression of ...Dietary arginine supplementation enhances the immune status and protein synthesis in early-weaned pigs. However, the underlying mechanisms remain largely unknown. To investigate how arginine affects the expression of key proteins that regulate growth and nutrient transport of jejunum, a total of 12 healthy piglets (21 day-old, similar body weight, Landrace x Yorkshire) delivered by four sows were randomly divided into two groups. Piglets in the test group were reared with feed supplemented L-arginine at a concentration of 6.0 g/kg, while piglets in the control group were fed with feed supplemented L-alanine at a concentration of 12.3 g/kg (isonitrogenous control). After 7 d, jejunum mucosae was collected and analyzed with the 2-D PAGE MS technology. Compared with the control pigs, arginine decreased the levels of proteins that regulate the protein syn- thesis, intermediary metabolism and tissue growth ( similar to anterior gradient 2 homolog, cyclophilin_ABHJike, hypothetical protein FLJ39502 and tetratrioopeptide repeat domain 16, similar to KIAA0156, mitechondrial ATP synthase, hydrion transporting F1 complex, beta subunit and alpha-tu- bulin ubiquitous isoform 19, prolyl 4-hydroxylase, beta subunit precursor). In addition, arginine increased the levels of proteins that are involved in proteolysis and immune response ( PGAM1, T cell receptor beta variable 20, membrane steroid binding protein, similar to myomesin-1, and chain A, structure of pig muscle Pgk complexed with MgATP). Therefore, arginine influences the immune response and protein synthesis mechanisms as well as improves eady weaned stress syndrome of piglets.展开更多
Weaning of piglets is generally considered as a stressor which changes intestinal ecosystem and leads to clinical implications. Microbiota inhabiting in small intestine (especially ileum) are assumed to promote heal...Weaning of piglets is generally considered as a stressor which changes intestinal ecosystem and leads to clinical implications. Microbiota inhabiting in small intestine (especially ileum) are assumed to promote health, but their functional properties are yet poody dascdbed. As indicated by the 16S rRNA gene sequences of ileal micrebiota in nursing piglets (at the age of 21 and 28 d) and 28-day-old weaned piglets (weaned at 21 d of age), the microbiota were mainly comprised of gram-positive bacteria. There were 40 operational taxonomic units (OTUs) (from 171 clones) in the ileum of nursing piglets aged 21 d, 61 OTUs (from 194 clones) in the ileum of nursing piglets aged 28 d, and 56 OTUs (from 171 clones) in the ileum of weaned piglets aged 28 d. The flea of nursing piglets aged 21 d were dominantly occupied by Lactobacilli (87.7%) as well as Streptococ cus ( 3.5 % ). Lactobacillus amy/ovorus (41.5 % ), Lactobaci/lus sp. ( 19.3 % ), Lactobaci/lus reuteri ( 12.3 % ), Lactobacillus salivarius ( 9.4 % ) and L. mucosae (4.7%) were the predominant species among Lactobacil/L Similar results were obtained in the nursing piglets at 28 d of age ex- cept that Lactobaci/li decreased to 71.1% and Streptococcus increased to 21.1% significantly. Lactobacillus (52.0%) and Streptococcus (26.3%) were the two major groups in the ileum of weaned piglets aged 28 d. Lactobacillus amylovorus (31.6%) and Lactobaci/lus reuteri ( 16.4% ) was the two most important species in Lactobacillus. Therefore, Lactobacilli were predominant in the ileum of nursing and weaned piglets, and they had the highest diversity, followed by Streptococcus. The diversity of ileal microbiota was not different remarkably between the nursing piglets and the weaned piglets, but the composition changed significantly. These findings are helpful to understand ileal bacterial ecophysiology and further develop nutritional regimes to prevent or counteract complications during the weaning transition.展开更多
[ Objective] The research aimed to explore effects of an immunological stress on immune response in different breeds of piglets ( Lulai pig, Laiwu pig and Yorkshire pig). [Method] All the 12 weaning pigs (Lulai pig...[ Objective] The research aimed to explore effects of an immunological stress on immune response in different breeds of piglets ( Lulai pig, Laiwu pig and Yorkshire pig). [Method] All the 12 weaning pigs (Lulai pig, Laiwu pig and Yorkshire pig) weighing (12.6 ±0.5) kg were used in a 2 x3 factorial design. The main factors consisted of immunological challenge ( LPS or saline) and breeds ( Lulai pig, Laiwu pig and Yorkshire pig). On Day 1, six piglets of each breed were injected with LPS at the usage of 200 μg/kg BW or an equivalent amount of sterile saline, and in jected classical swine fever vaccine at the same time. Blood sample were collected on Day 2, 7 and 14 post injection to analyze the blood lympho cyte proliferation. The levels of antibodies against classical swine fever were tested on Day 1 prior to injection and on Day 7 and 14 post injection. [ Result] On Day 2 after injection, the lymphocyte transformation rate of piglets injected with LPS were significantly (P〈O. 01 ) increased compared with piglets injected with saline. The lymphocyte transformation rate of Laiwu piglets was significant higher than that of Yorkshire piglets ( P 〈 0.05). Effects of immunological stress on the level of antibodies against classical swine fever were not significantly different among different breeds of pig lets. [ Conclusion] LPS can effectively stimulate cellular immunity response in different breeds of piglets, and the immune response ability is different among various breeds of piglets.展开更多
[Objective] This study aimed to explore the histological effects of Guchangcuzhang powder on the parenchymatous organs in experiment piglets with spleen weakness. [Method] For the 12 healthy piglets, 0.5 ml of reserpi...[Objective] This study aimed to explore the histological effects of Guchangcuzhang powder on the parenchymatous organs in experiment piglets with spleen weakness. [Method] For the 12 healthy piglets, 0.5 ml of reserpine was injected at their jugular muscle once every day for 10 days. Afterwards, the 12 piglets with diarrhea were divided into two groups, namely the Guchangcuzhang powder group and the control group, six in each. In the former group, 6 g of Guchangcuzhang powder was brewed with 20 ml of boiling water and then the piglets were drenched with the medication solution for 7 d once every day; in the latter group, each piglet was drenched with 20 ml of normal saline once every day for 7 d. On two and eight days after the drug discontinuance respectively, three piglets were selected from each of the group and killed by bloodletting from the jugular vein. Afterwards, paraffin sections of heart, liver, lungs and kidney was made and then stained respectively, followed by observation of the histological changes.[Result] The histological structure of each parenchymatous organ in piglets drenched with Guchangcuzhang powder restored or approached to normal. [Conlusion]Guchangcuzhang powder has a good therapeutic against diarrhea in piglets.展开更多
[Objective] This study aimed to explore the histological effects of Guchangcuzhang powder on intestine and spleen in experiment piglets with spleen weakness.[Method] The 12 piglets with diarrhea were divided into two ...[Objective] This study aimed to explore the histological effects of Guchangcuzhang powder on intestine and spleen in experiment piglets with spleen weakness.[Method] The 12 piglets with diarrhea were divided into two groups,namely the Guchangcuzhang powder group and the control group,six in each.On two and eight days after the drug discontinuance respectively,three piglets were selected from each of the group and killed by bloodletting from the jugular vein.Afterwards,paraffin sections of intestine and spleen were made and stained by HE staining solution,followed by observation of the histological changes.[Result] The structures of intestine and spleen in piglets drenched with Guchangcuzhang powder restored or approachedto normal.[Conlusion] Guchangcuzhang powder has the function of healing piglet diarrhea.展开更多
[ Objective] To profile the differentially expressed genes in small intestine between piglets with intrauterine growth restriction (IUGR), describe the relationships between growth performance and gene expression in...[ Objective] To profile the differentially expressed genes in small intestine between piglets with intrauterine growth restriction (IUGR), describe the relationships between growth performance and gene expression in IUGR piglets, and thus provide a theoretical basis for further research. [Metbed] Eight suckling piglets at the age of 21 d Efour with normal body weight (NBW) of (1 503 ± 310) g and four with low BW of (806 ±35) g] were killed, and the intestinal samples were collected. Gene expression was detected by Affymetrix Porcine GeneChip and further confirmed by quantitative real-time PCR. [ ReseltJ Microarray analysis showed that there were 156 differentially expressed genes in the small intestine between the IUGR piglets and the age-matched NBW piglets, including 61 down-regulated genes and 95 up-regulated genes, The up-regulated genes included protein tyrosine phosphatase, myosin, troponin, heat shock protein, metallothionein, arginine vasopressin-induced 1, ribosomal protein L6, apoptosls antagonizing transcription factor, muscle creatine kinase, mannosidase, lysozyme, folliculin, urate transporterchannel protein, pyrroline-5-carboxylate reductese-like, and adenine phosphor-dbosyltransferase. The down-regulated genes included protein kinase, arachidohate 12-1ipoxygenase, transcription factor A, GTP-GDP dissociation stimulator 1, serine (or cysteine) proteinase inhibitor, fetuin, dolichol-phosphate-mannose synthase, apolipoprotein H, argininosuccinate synthetase 1, iron-regulated transporter, alpha-2-macroglobulin, immunoglobulin superfamily, thioltransferase, and guanylate binding protein 2. The gene expression profile changed in the small intestine of piglets with intrauterine growth restriction, providing a theoretical basis for eady intervention in growth restriction.展开更多
Background: Weanling pigs, with immature immune system and physiological function, usually experience postweaning diarrhea. This study determined the effects of dietary Clostridium butyricum supplementation on growth ...Background: Weanling pigs, with immature immune system and physiological function, usually experience postweaning diarrhea. This study determined the effects of dietary Clostridium butyricum supplementation on growth performance, diarrhea, and immunity of weaned pigs challenged with lipopolysaccharide(LPS).Methods: In Experiment(Exp.) 1,144 weaned piglets were weaned at 21 d and randomly assigned to six groups,with six replicates per group and four pigs per replicate, receiving a control diet(CON) or diet supplemented with antibiotics(AB) or C. butyricum(CB)(0.1%, 0.2%, 0.4%, or 0.8%), respectively. All diets in Exp. 1 were a highly digestible basal diet, with 3,000 mg/kg zinc oxide supplied in the first 2 wk only. In Exp. 2, 180 piglets were weaned at 21 d and randomly assigned to five groups, with six replicates per group and six pigs per replicate, receiving CON, AB, or CB(0.2%, 0.4%, or 0.6%) diets. The digestibility of diets was lower than those in Exp. 1, and did not include zinc oxide. At 36 d of Exp. 2, 12 piglets were selected from each of the CON and 0.4% CB groups, six piglets were intraperitoneally injected with LPS(50 μg/kg body weight) and the other six piglets with normal saline;animals were killed at 4 h after injection to collect blood, intestine, and digesta samples for biochemical analysis.Results: In Exp. 1, CB and AB diets had no effect on growth performance of piglets. In Exp. 2, 0.4% CB decreased feed-gain ratio(P < 0.1), diarrhea score(P < 0.05), and increased duodenal, jejunal, and ileal villus height and jejunal villus height/crypt depth(P < 0.05). The 0.4% CB decreased the plasma tumor necrosis factor(TNF) α(P < 0.05) but increased ileal mucosa IL-10 and TLR2 mRNA expression(P < 0.05). Furthermore, 0.4% CB altered the microbial profile, with Bacillus and Ruminococcaceae UGG-003 at genus level and Lactobacillus casei and Parasutterella secunda at species level were higher than CON in colonic content(P < 0.05).Conclusions: Dietary C. butyricum supplementation had positive effects on growth of weaned piglets with less digestible diets. There was a tendency to reduce the feed-gain ratio, which could reduce feed costs in pig production. Moreover, C. butyricum decreased post-weaning diarrhea by improving the intestinal morphology,intestinal microflora profile, and immune function.展开更多
Background:Deoxynivalenol(DON)is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals.Resveratrol(RES)effectively exerts anti-inflammatory and antioxidant effects.Howe...Background:Deoxynivalenol(DON)is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals.Resveratrol(RES)effectively exerts anti-inflammatory and antioxidant effects.However,the protective effects of RES on alleviating DON toxicity in piglets and the underlying mechanism remain unclear.Therefore,this study aimed to investigate the effect of RES on growth performance,gut health and the gut microbiota in DON-challenged piglets.A total of 64 weaned piglets[Duroc×(Landrace×Yorkshire),21-d-old,6.97±0.10 kg body weight(BW)]were randomly allocated to 4 treatment groups(8 replicate pens per treatment,each pen containing 2 males;n=16 per treatment)for 28 d.The piglets were fed a control diet(CON)or the CON diet supplemented with 300 mg RES/kg diet(RES group),3.8 mg DON/kg diet(DON)or both(DON+RES)in a 2×2 factorial design.Results:DON-challenged piglets fed the RES-supplemented diet had significantly decreased D-lactate concentrations and tumor necrosis factor alpha(TNF-α)and interleukin 1 beta(IL-1β)mRNA and protein expression,and increased zonula occludens-1(ZO-1)mRNA and protein expression compared with those of DON-challenged piglets fed the unsupplemented diet(P<0.05).Compared with unsupplemented DON-challenged piglets,infected piglets fed a diet with RES showed significantly decreased malondialdehyde(MDA)levelsand increased mRNA expression of antioxidant enzymes and antioxidant genes(i.e.,GCLC,GCLM,HO-1,SOD1 and NQO-1)and glutamatecysteine-ligase modulatory subunit(GCLM)protein expression(P<0.05).Moreover,RES supplementation significantly abrogated the increase in the proportion of TUNEL-positive cells and the protein expression of caspase3 in DON-challenged piglets(P<0.05).Finally,RES supplementation significantly increased the abundance of Roseburia and butyrate concentrations,while decreasing the abundances of Bacteroides and unidentified-Enterobacteriaceae in DON-challenged piglets compared with DON-challenged piglets alone(P<0.05).Conclusions:RES supplementation improved gut health in DON-challenged piglets by strengthening intestinal barrier function,alleviating intestinal inflammation and oxidative damage,and positively modulating the gut microbiota.The protective effects of RES on gut health may be linked to increased Roseburia and butyrate concentrations,and decreased levels of Bacteroides and unidentified-Enterobacteriaceae.展开更多
The present study was conducted to determine effects of different forms of yeast (Saccharomyces cerevisiae, strain Y200007) on the growth performance, intestinal development, and systemic immunity in early-weaned pi...The present study was conducted to determine effects of different forms of yeast (Saccharomyces cerevisiae, strain Y200007) on the growth performance, intestinal development, and systemic immunity in early-weaned piglets. A total of 96 piglets (14-d old, initial average body weight of 4.5 kg) were assigned to 4 dietary treatments: (1) basa diet without yeast (Control); (2) basal diet supplemented with 3.00 g/kg live yeast (LY); (3) basal diet supplemented with 2.66 g/kg heat-killed whole yeast (HKY); and (4) basal diet supplemented with 3.00 g/kg superfine yeast powders (SFY). Diets and water were provided ad libitum to the piglets during 3-week experiment. Growth performance of piglets was measured weekly. Samples of blood and small intestine were collected at days 7 and 21 of experiment. Dietary supplementation with LY and SFY improved G:F of piglets at days ]-21 of the experiment (P 〈 0.05) compared to Control group. Serum concentrations of growth hormone (GH), triiodothyronine (T3), tetraiodothyronine (T4), and insulin growth factor 1 (iGF-1) in piglets at day 21 of the experiment were higher when fed diets supplemented with LY and SFY than those in Control group (P 〈 0.05). Compared to Control group, contents of serum urea nitrogen of piglets were reduced by the 3 yeast-supplemented diets (P 〈 0.05). Diets supplemented with LY increased villus height and villus-to-crypt ratio in duodenum and jejunum of piglets (P 〈 0.05) compared to other two groups at day 7 of the experiment. Feeding diets supplemented with LY and SFY increased (P 〈 0.05) serum concentrations of IgA, IL-2, and IL-6 levels in piglets compared to Control. The CD4+/CD8+ ratio and proliferation of T-lymphocytes in piglets fed diets supplemented with LY were increased compared to that of Control group at day 7 of the experiment (P 〈 0.05). In conclusion, dietary supplementation with both LY and SFY enhanced feed conversion, small intestinal development, and systemic immunity in early-weaned piglets, with better improvement in feed conversion by dietary supplementation with LY, while dietary supplementation with SFY was more effective in increasing systemic immune functions in early-weaned piglets.展开更多
Background: Weaning is one of the major factors that cause stress and intestinal disease in piglets. Protocatechuic acid(PCA) is an active plant phenolic acid which exists in Chinese herb, Duzhong(Eucommia ulmoides Ol...Background: Weaning is one of the major factors that cause stress and intestinal disease in piglets. Protocatechuic acid(PCA) is an active plant phenolic acid which exists in Chinese herb, Duzhong(Eucommia ulmoides Oliver), and is also considered as the main bioactive metabolite of polyphenol against oxidative stress and inflammation. This study aimed to investigate the effect of PCA on growth performance, intestinal barrier function, and gut microbiota in a weaned piglet model challenged with lipopolysaccharide(LPS).Methods: Thirty-six piglets(Pig Improvement Company line 337 × C48, 28 d of age, 8.87 kg ± 0.11 kg BW) were randomly allocated into 3 treatments and fed with a basal diet(CTL), a diet added 50 mg/kg of aureomycin(AUR), or a diet supplemented with 4000 mg/kg of PCA, respectively. The piglets were challenged with LPS(10 μg/kg BW) on d 14 and d 21 by intraperitoneal injection during the 21-d experiment. Animals(n = 6 from each group) were sacrificed after being anesthetized by sodium pentobarbital at 2 h after the last injection of LPS. The serum was collected for antioxidant indices and inflammatory cytokines analysis, the ileum was harvested for detecting mRNA and protein levels of tight junction proteins by PCR and immunohistochemical staining, and the cecum chyme was collected for intestinal flora analysis using 16 S rRNA gene sequencing.Results: Dietary supplementation of PCA or AUR significantly increased the expression of tight junction proteins including ZO-1 and claudin-1 in intestinal mucosa, and decreased the serum levels of thiobarbituric acid reactive substances(TBARS) and IL-6, as compared with CTL group. In addition, PCA also decreased the serum levels of IL-2 and TNF-α(P < 0.05). Analysis of gut microbiota indicated that PCA increased the Firmicutes/Bacteroidetes ratio(P < 0.05). Spearman's correlation analysis at the genus level revealed that PCA reduced the relative abundance of Prevotella 9, Prevotella 2, Holdemanella, and Ruminococcus torques group(P < 0.05), and increased the relative abundance of Roseburia and Desulfovibrio(P < 0.05), whereas AUR had no significant effect on these bacteria.Conclusions: These results demonstrated that both PCA and AUR had protective effect on oxidative stress, inflammation and intestinal barrier function in piglets challenged with LPS, and PCA potentially exerted the protective function by modulating intestinal flora in a way different from AUR.展开更多
基金supported by the National Key Research and Development Program(2021YFD1300400)Natural Science Foundation of Guangdong Province(2021A1515010944)Science and Technology Projects in Guangzhou(202201011730).
文摘Background The benefits of combining benzoic acid and essential oils(BAO)to mitigate intestinal impairment during the weaning process have been well established,while the detailed underlying mechanism has not been fully elucidated.Previous research has primarily focused on the reparative effects of BAO on intestinal injury,while neglecting its potential in enhancing intestinal stress resistance.Methods In this study,we investigated the pre-protective effect of BAO against LPS-induced stress using a modified experimental procedure.Piglets were pre-supplemented with BAO for 14 d,followed by a challenge with LPS or saline to collect blood and intestinal samples.Results Our findings demonstrated that BAO supplementation led to significant improvements in piglets’final weight,average daily gain,and feed intake/body gain ratio.Additionally,BAO supplementation positively influenced the composition of intestinal microbiota,increasing beneficial Actinobacteriota and Alloprevotella while reducing harmful Desulfobacterota,Prevotella and Oscillospira.Furthermore,BAO supplementation effectively mitigated oxidative disturbances and inflammatory responses induced by acute LPS challenge.This was evidenced by elevated levels of T-AOC,SOD,and GSH,as well as decreased levels of MDA,TNF-α,and IL-6 in the plasma.Moreover,piglets subjected to LPS challenge and pre-supplemented with BAO exhibited significant improvements in intestinal morphological structure and enhanced integrity,as indicated by restored expression levels of Occludin and Claudin-1 compared to the non-supplemented counterparts.Further analysis revealed that BAO supplementation enhanced the jejunal antioxidative capacity by increasing GSH-Px levels and decreasing MDA levels under the LPS challenge and stimulated the activation of the Nrf2 signaling pathway.Additionally,the reduction of TLR4/NF-κB/MAPK signaling pathways activation and proinflammatory factor were also observed in the jejunal of those piglets fed with BAO.Conclusions In summary,our study demonstrates that pre-supplementation of BAO enhances the anti-stress capacity of weaned piglets by improving intestinal microbiota composition,reinforcing the intestinal barrier,and enhancing antioxidative and anti-inflammatory capabilities.These effects are closely associated with the activation of Nrf2 and TLR4/NF-κB/MAPK signaling pathways.
基金supported by the National Key Research and Development Program of China,2018YFD0500400。
文摘Background Maternal nutrition is essential in keeping a highly efficient production system in the pig industry.Laminarin has been shown to improve antioxidant capacity,reduce the inflammatory response,and favor the homeostasis of intestinal microbiota.However,the effect of dietary supplementation of laminarin on the reproductive performance of sows and the growth of suckling offspring remains unknown.Methods A total of 40 Landrace×Yorkshire multiparous sows on d 85 of gestation,similar in age,body weight(BW),parity and reproductive performance,were randomly divided into four dietary treatments with 10 sows per treatment,receiving a control diet(basal pregnancy or lactating diets)and a basal diet supplemented with 0.025%,0.05%and 0.10%laminarin,respectively.The experiment lasted from d 85 of gestation to d 21 of lactation.Results Laminarin supplementation linearly increased number born alive per litter(P=0.03),average daily feed intake(ADFI,P<0.01),and total milk yield of sows during the lactation of 1–21 d(P=0.02).Furthermore,maternal laminarin supplementation increased the average daily gain(ADG)of piglets while tending to reduce the culling and death rate before weaning.In addition,alterations to the composition of colostrum and milk,as well as to serum inflammatory cytokines and immunoglobulins of sows were observed.The fecal microbiota profile of sows supported the improvement of reproductive performance in sows and the growth performance in suckling offspring.Conclusions Dietary supplementation of laminarin during late pregnancy and lactation could significantly improve reproductive performance of sows and growth performance of piglets.
基金The present study was supported by Sichuan Science and Technology Program(2021ZDZX0009)the Sichuan Pig Innovation Team of National Modern Agricultural Industry Technology System of China(scsztd-2021-08-11)the Sichuan Natural Science Foundation of China(2023NSFSC1141).
文摘Background Transmissible gastroenteritis virus(TGEV)is one of the main pathogens causing severe diarrhea of pig-lets.The pathogenesis of TGEV is closely related to intestinal inflammation.All-trans retinoic acid(ATRA)is the main active metabolite of vitamin A,which has immunomodulatory and anti-inflammatory properties.However,it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets.This study aimed to investigate the effects of ATRA on growth performance,diarrhea,intestinal inflammation and intesti-nal barrier integrity of TGEV-challenged piglets.Methods In a 19-d study,32 weaned piglets were randomly divided into 4 treatments:Control group(basal diet),TGEV group(basal diet+TGEV challenge),TGEV+ATRA5 group(basal diet+5 mg/d ATRA+TGEV challenge)and TGEV+ATRA15 group(basal diet+15 mg/d ATRA+TGEV challenge).On d 14,piglets were orally administered TGEV or the sterile medium.Results Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV(P<0.05).Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase(DAO)activ-ity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV,and maintained intestinal barrier integrity(P<0.05).Meanwhile,5 mg/d ATRA feeding increased the sucrase activity and the expres-sions of nutrient transporter related genes(GLUT2 and SLC7A1)in jejunal mucosa of TGEV-challenged piglets(P<0.05).Furthermore,5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibit-ing the release of interleukin(IL)-1β,IL-8 and tumor necrosis factor-α(TNF-α),and promoting the secretion of IL-10 and secretory immunoglobulin A(sIgA)(P<0.05).Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes(TLR3,TLR4,RIG-I,MyD88,TRIF and MAVS)and the phosphorylation level of nuclear factor-κB-p65(NF-κB p65),and up-regulated the inhibitor kappa B alpha(IκBα)protein level in jejunal mucosa of TGEV-challenged piglets(P<0.05).Conclusions ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response,thus improving the growth performance and inhibiting diarrhea of piglets.The mechanism was associated with the inhibi-tion of NF-κB signaling pathway mediated by TLR3,TLR4 and RIG-I.
基金partially funded by the Ministry of AgricultureNature and Food Quality(project number BO-55-001-015)partly by“Vereniging Diervoederonderzoek Nederland”。
文摘Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets.In study 1,piglets received either a high concentration of zinc(Zn)as zinc oxide(Zn O,Zn,2,690 mg/kg)or a low Zn concentration(100 mg/kg)in the diet during the post weaning period(d 14–23).The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated.In study 2,the impact of timing of the dietary zinc intervention was investigated,i.e.,between d 0–14 and/or d 14–23 post weaning,and the consecutive effects on the piglet's intestinal functionality,here referring to microbiota composition and diversity and gene expression profiles.Results Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration Zn O content.A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change,where mainly the commensals inter-changed.In the immediate post weaning period,i.e.,d 0–14,the highest number of differentially expressed genes(DEGs)in intestinal tissue were observed between animals receiving a diet with a low or high concentration Zn O content,i.e.,23 DEGs in jejunal tissue and 11 DEGs in ileal tissue.These genes are involved in biological processes related to immunity and inflammatory responses.For example,genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration Zn O content compared to low Zn O content in both jejunum and ileum tissue.In the second study,a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration Zn O content compared to low Zn O content.Conclusions Supplementing a diet with a pharmaceutical level of Zn as Zn O for clinically healthy post weaning piglets influences various aspects intestinal functionality,in particular in the first two weeks post-weaning.The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue.The effects do not seem related to a direct antimicrobial effect of Zn O.
基金financially supported by 14^(th) Five-Year for Breeding Research Project of Sichuan Provincial Department of Science and Technology (2021YFYZ0008)。
文摘Rotavirus is one of the pathogenic causes that induce diarrhea in young animals, especially piglets, worldwide. However, nowadays, there is no specific drug available to treat the disease, and the related vaccines have no obvious efficiency in some countries. Via analyzing the pathogenesis of rotavirus, it inducing diarrhea is mainly due to disturb enteric nervous system, destroy gut mucosal integrity, induce intracellular electrolyte imbalance, and impair gut microbiota and immunity. Many studies have already proved that prebiotics and probiotics can mitigate the damage and diarrhea induced by rotavirus infection in hosts. Based on these, the current review summarizes and discusses the effects and mechanisms of prebiotics and probiotics on rotavirus-induced diarrhea in piglets. This information will highlight the basis for the swine production utilization of prebiotics and probiotics in the prevention or treatment of rotavirus infection in the future.
基金supported by a Key Technologies R&D Program of Guangdong Province project(2022B0202090002)a China Postdoctoral Science Foundation(Grant No.2021M701263)+1 种基金a Local Innovative and Research Teams Project of Guangdong Province(2019BT02N630)a Project of Swine Innovation Team in the Guangdong Modern Agricultural Research System(2023KJ126).
文摘Background The establishment of a robust gut microbiota in piglets during their early developmental stage holds the potential for long-term advantageous effects.However,the optimal timeframe for introducing probiotics to achieve this outcome remains uncertain.Results In the context of this investigation,we conducted a longitudinal assessment of the fecal microbiota of 63 piglets at three distinct pre-weaning time points.Simultaneously,we gathered vaginal and fecal samples from 23 sows.Employing 16S rRNA gene and metagenomic sequencing methodologies,we conducted a comprehensive analysis of the fluctuation patterns in microbial composition,functional capacity,interaction networks,and colonization resistance within the gut microbiota of piglets.As the piglets progressed in age,discernible modifications in intestinal microbial diversity,composition,and function were observed.A source-tracking analysis unveiled the pivotal role of fecal and vaginal microbiota derived from sows in populating the gut microbiota of neonatal piglets.By D21,the microbial interaction network displayed a more concise and efficient configuration,accompanied by enhanced colonization resistance relative to the other two time points.Moreover,we identified three strains of Ruminococcus sp.at D10 as potential candidates for improving piglets’weight gain during the weaning phase.Conclusions The findings of this study propose that D10 represents the most opportune juncture for the introduction of external probiotic interventions during the early stages of piglet development.This investigation augments our comprehension of the microbiota dynamics in early-life of piglets and offers valuable insights for guiding forthcoming probiotic interventions.
基金partially supported by the National Key Research and Development Program of China(2021YFD1300201)Jilin Province Key Research and Development Program of China(20220202044NC)。
文摘Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.
文摘[Objective] The aim of this study was to investigate the effects of mycotoxin from moldy maize on immune response of piglets.[Method] ELISA method was used to determine the content of Aflatoxin B1 and ochratoxin A in maize; after the piglets were fed with the moldy maize,the corresponding antibody titers in the serums of piglets were measured.[Result] Antibody levels of tested group were obvious lower than that of the control,while the histological section of immune organs also suggested that mycotoxin could significantly inhibit the immune response of piglets.[Conclusion] Mycotoxin in maize had important effects on the internal organs and immune response of piglets.
基金National Basic Research Program of China (No. 2006CB102104)National Natural Sci-ences Foundation of China (No. 30430500).
文摘Escherichia coli expressing F4 fimbriae is the major pathogenic bacteria that causes diarrhea in piglets before weaning. The adhesion of E. coli to the brush borders of the epithelial cells of piglets is the precondition leading to diarrhea, which in turn is due to the presence of the F4 receptors determined by an autosomal recessive gene on the brush borders of the epithelial cells. In order to clarify the genetic mechanism of the adhesion, an in vitro adhesion experiment was carded out for three variants of E. coli F4 (ab, ac, and ad) in 366 piglets of three pig breeds [Landrace (LR), Large White (LW), and Songliao Black (SB)]. The results showed that there existed significant differences (P〈0.001) in the adhesion percentage among the three breeds. Most SB piglets were nonadhesive for all the three variants, whereas most LR piglets were adhesive. Within each breed except for LR, the proportions of the three F4 variants adhering to the brush borders differed significantly. According to the patterns of the adhesion of the three F4 variants in the three breeds, it is very likely that the three F4 variants F4ab, F4ac, and F4ad have different receptors that are controlled by three different loci.
文摘In this study, feed-grade proteinase was added into conventional diets of three-line crossbred (Duroc x Landrace x Large White) piglets, to investigate the effects of feed-grade proteinase on anti-diarrhea capacity, daily weight gain, feed intake and feed conversion ratio of piglets. The results showed that adding feed-grade proteinase in diets enhanced anti-diarrhea capacity of piglets and improved signifi- cantly production performance and breeding efficiency of piglets. This study provided the reference for rational utilization of feed-grade proteinase in actual production.
基金Supported by grants from the Knowledge Innovation Project of Chinese Academy of Sciences ( KSCX2-YW-N-051 and SW-323)NSFC(30901040, 30901041, 30928018, 30828025, 30700581, and 30771558 )+2 种基金National Basic Research Program of China(2009CB118800)National 863 Project ( 2008AA10Z316)National Scientific and Technological Supporting Project(2007BAQ01047 and 2006BAD12B07)~~
文摘Dietary arginine supplementation enhances the immune status and protein synthesis in early-weaned pigs. However, the underlying mechanisms remain largely unknown. To investigate how arginine affects the expression of key proteins that regulate growth and nutrient transport of jejunum, a total of 12 healthy piglets (21 day-old, similar body weight, Landrace x Yorkshire) delivered by four sows were randomly divided into two groups. Piglets in the test group were reared with feed supplemented L-arginine at a concentration of 6.0 g/kg, while piglets in the control group were fed with feed supplemented L-alanine at a concentration of 12.3 g/kg (isonitrogenous control). After 7 d, jejunum mucosae was collected and analyzed with the 2-D PAGE MS technology. Compared with the control pigs, arginine decreased the levels of proteins that regulate the protein syn- thesis, intermediary metabolism and tissue growth ( similar to anterior gradient 2 homolog, cyclophilin_ABHJike, hypothetical protein FLJ39502 and tetratrioopeptide repeat domain 16, similar to KIAA0156, mitechondrial ATP synthase, hydrion transporting F1 complex, beta subunit and alpha-tu- bulin ubiquitous isoform 19, prolyl 4-hydroxylase, beta subunit precursor). In addition, arginine increased the levels of proteins that are involved in proteolysis and immune response ( PGAM1, T cell receptor beta variable 20, membrane steroid binding protein, similar to myomesin-1, and chain A, structure of pig muscle Pgk complexed with MgATP). Therefore, arginine influences the immune response and protein synthesis mechanisms as well as improves eady weaned stress syndrome of piglets.
基金Supported by grants from Knowledge Innovation Project of Chinese Academy of Sciences (KSCX2-YW-N-051 and SW-323)NSFC(30901040, 30901041, 30928018, 30828025, 30700581, and 30771558)+2 种基金National Basic Research Program of China(2009CB118800)National 863 project (2008AA10Z316)National Scientific and Technological Supporting Project(2007BAQ01047 and 2006BAD12B07)~~
文摘Weaning of piglets is generally considered as a stressor which changes intestinal ecosystem and leads to clinical implications. Microbiota inhabiting in small intestine (especially ileum) are assumed to promote health, but their functional properties are yet poody dascdbed. As indicated by the 16S rRNA gene sequences of ileal micrebiota in nursing piglets (at the age of 21 and 28 d) and 28-day-old weaned piglets (weaned at 21 d of age), the microbiota were mainly comprised of gram-positive bacteria. There were 40 operational taxonomic units (OTUs) (from 171 clones) in the ileum of nursing piglets aged 21 d, 61 OTUs (from 194 clones) in the ileum of nursing piglets aged 28 d, and 56 OTUs (from 171 clones) in the ileum of weaned piglets aged 28 d. The flea of nursing piglets aged 21 d were dominantly occupied by Lactobacilli (87.7%) as well as Streptococ cus ( 3.5 % ). Lactobacillus amy/ovorus (41.5 % ), Lactobaci/lus sp. ( 19.3 % ), Lactobaci/lus reuteri ( 12.3 % ), Lactobacillus salivarius ( 9.4 % ) and L. mucosae (4.7%) were the predominant species among Lactobacil/L Similar results were obtained in the nursing piglets at 28 d of age ex- cept that Lactobaci/li decreased to 71.1% and Streptococcus increased to 21.1% significantly. Lactobacillus (52.0%) and Streptococcus (26.3%) were the two major groups in the ileum of weaned piglets aged 28 d. Lactobacillus amylovorus (31.6%) and Lactobaci/lus reuteri ( 16.4% ) was the two most important species in Lactobacillus. Therefore, Lactobacilli were predominant in the ileum of nursing and weaned piglets, and they had the highest diversity, followed by Streptococcus. The diversity of ileal microbiota was not different remarkably between the nursing piglets and the weaned piglets, but the composition changed significantly. These findings are helpful to understand ileal bacterial ecophysiology and further develop nutritional regimes to prevent or counteract complications during the weaning transition.
文摘[ Objective] The research aimed to explore effects of an immunological stress on immune response in different breeds of piglets ( Lulai pig, Laiwu pig and Yorkshire pig). [Method] All the 12 weaning pigs (Lulai pig, Laiwu pig and Yorkshire pig) weighing (12.6 ±0.5) kg were used in a 2 x3 factorial design. The main factors consisted of immunological challenge ( LPS or saline) and breeds ( Lulai pig, Laiwu pig and Yorkshire pig). On Day 1, six piglets of each breed were injected with LPS at the usage of 200 μg/kg BW or an equivalent amount of sterile saline, and in jected classical swine fever vaccine at the same time. Blood sample were collected on Day 2, 7 and 14 post injection to analyze the blood lympho cyte proliferation. The levels of antibodies against classical swine fever were tested on Day 1 prior to injection and on Day 7 and 14 post injection. [ Result] On Day 2 after injection, the lymphocyte transformation rate of piglets injected with LPS were significantly (P〈O. 01 ) increased compared with piglets injected with saline. The lymphocyte transformation rate of Laiwu piglets was significant higher than that of Yorkshire piglets ( P 〈 0.05). Effects of immunological stress on the level of antibodies against classical swine fever were not significantly different among different breeds of pig lets. [ Conclusion] LPS can effectively stimulate cellular immunity response in different breeds of piglets, and the immune response ability is different among various breeds of piglets.
基金Supported by the Agricultural Achievement Transformation Program of Ministry of Science and Technology(2012GB2A200044)Science and Technology Development Plan of Shijiazhuang Municipal Science and Technology Bureau(08150132A-3)Qinhuangdao Municipal Science and Technology Development Plan(NO.201101A183)~~
文摘[Objective] This study aimed to explore the histological effects of Guchangcuzhang powder on the parenchymatous organs in experiment piglets with spleen weakness. [Method] For the 12 healthy piglets, 0.5 ml of reserpine was injected at their jugular muscle once every day for 10 days. Afterwards, the 12 piglets with diarrhea were divided into two groups, namely the Guchangcuzhang powder group and the control group, six in each. In the former group, 6 g of Guchangcuzhang powder was brewed with 20 ml of boiling water and then the piglets were drenched with the medication solution for 7 d once every day; in the latter group, each piglet was drenched with 20 ml of normal saline once every day for 7 d. On two and eight days after the drug discontinuance respectively, three piglets were selected from each of the group and killed by bloodletting from the jugular vein. Afterwards, paraffin sections of heart, liver, lungs and kidney was made and then stained respectively, followed by observation of the histological changes.[Result] The histological structure of each parenchymatous organ in piglets drenched with Guchangcuzhang powder restored or approached to normal. [Conlusion]Guchangcuzhang powder has a good therapeutic against diarrhea in piglets.
文摘[Objective] This study aimed to explore the histological effects of Guchangcuzhang powder on intestine and spleen in experiment piglets with spleen weakness.[Method] The 12 piglets with diarrhea were divided into two groups,namely the Guchangcuzhang powder group and the control group,six in each.On two and eight days after the drug discontinuance respectively,three piglets were selected from each of the group and killed by bloodletting from the jugular vein.Afterwards,paraffin sections of intestine and spleen were made and stained by HE staining solution,followed by observation of the histological changes.[Result] The structures of intestine and spleen in piglets drenched with Guchangcuzhang powder restored or approachedto normal.[Conlusion] Guchangcuzhang powder has the function of healing piglet diarrhea.
基金Supported by grants from Knowledge Innovation Project of Chinese Academy of Sciences ( KSCX2-YW-N-051 and SW-323)NSFC ( 30901040,30901041,30928018,30828025,30700581,and 30771558)+2 种基金National Basic Research Program of China ( 2009CB118800)National 863 project(2008AA10Z316)National Scientific and Technological Supporting Project ( 2007BAQ01047,and 2006BAD12B07)~~
文摘[ Objective] To profile the differentially expressed genes in small intestine between piglets with intrauterine growth restriction (IUGR), describe the relationships between growth performance and gene expression in IUGR piglets, and thus provide a theoretical basis for further research. [Metbed] Eight suckling piglets at the age of 21 d Efour with normal body weight (NBW) of (1 503 ± 310) g and four with low BW of (806 ±35) g] were killed, and the intestinal samples were collected. Gene expression was detected by Affymetrix Porcine GeneChip and further confirmed by quantitative real-time PCR. [ ReseltJ Microarray analysis showed that there were 156 differentially expressed genes in the small intestine between the IUGR piglets and the age-matched NBW piglets, including 61 down-regulated genes and 95 up-regulated genes, The up-regulated genes included protein tyrosine phosphatase, myosin, troponin, heat shock protein, metallothionein, arginine vasopressin-induced 1, ribosomal protein L6, apoptosls antagonizing transcription factor, muscle creatine kinase, mannosidase, lysozyme, folliculin, urate transporterchannel protein, pyrroline-5-carboxylate reductese-like, and adenine phosphor-dbosyltransferase. The down-regulated genes included protein kinase, arachidohate 12-1ipoxygenase, transcription factor A, GTP-GDP dissociation stimulator 1, serine (or cysteine) proteinase inhibitor, fetuin, dolichol-phosphate-mannose synthase, apolipoprotein H, argininosuccinate synthetase 1, iron-regulated transporter, alpha-2-macroglobulin, immunoglobulin superfamily, thioltransferase, and guanylate binding protein 2. The gene expression profile changed in the small intestine of piglets with intrauterine growth restriction, providing a theoretical basis for eady intervention in growth restriction.
基金supported by the Program for Changjiang Scholars,Sichuan Province "135" Breeding Tackle Project(Project No.2016NYZ0052)
文摘Background: Weanling pigs, with immature immune system and physiological function, usually experience postweaning diarrhea. This study determined the effects of dietary Clostridium butyricum supplementation on growth performance, diarrhea, and immunity of weaned pigs challenged with lipopolysaccharide(LPS).Methods: In Experiment(Exp.) 1,144 weaned piglets were weaned at 21 d and randomly assigned to six groups,with six replicates per group and four pigs per replicate, receiving a control diet(CON) or diet supplemented with antibiotics(AB) or C. butyricum(CB)(0.1%, 0.2%, 0.4%, or 0.8%), respectively. All diets in Exp. 1 were a highly digestible basal diet, with 3,000 mg/kg zinc oxide supplied in the first 2 wk only. In Exp. 2, 180 piglets were weaned at 21 d and randomly assigned to five groups, with six replicates per group and six pigs per replicate, receiving CON, AB, or CB(0.2%, 0.4%, or 0.6%) diets. The digestibility of diets was lower than those in Exp. 1, and did not include zinc oxide. At 36 d of Exp. 2, 12 piglets were selected from each of the CON and 0.4% CB groups, six piglets were intraperitoneally injected with LPS(50 μg/kg body weight) and the other six piglets with normal saline;animals were killed at 4 h after injection to collect blood, intestine, and digesta samples for biochemical analysis.Results: In Exp. 1, CB and AB diets had no effect on growth performance of piglets. In Exp. 2, 0.4% CB decreased feed-gain ratio(P < 0.1), diarrhea score(P < 0.05), and increased duodenal, jejunal, and ileal villus height and jejunal villus height/crypt depth(P < 0.05). The 0.4% CB decreased the plasma tumor necrosis factor(TNF) α(P < 0.05) but increased ileal mucosa IL-10 and TLR2 mRNA expression(P < 0.05). Furthermore, 0.4% CB altered the microbial profile, with Bacillus and Ruminococcaceae UGG-003 at genus level and Lactobacillus casei and Parasutterella secunda at species level were higher than CON in colonic content(P < 0.05).Conclusions: Dietary C. butyricum supplementation had positive effects on growth of weaned piglets with less digestible diets. There was a tendency to reduce the feed-gain ratio, which could reduce feed costs in pig production. Moreover, C. butyricum decreased post-weaning diarrhea by improving the intestinal morphology,intestinal microflora profile, and immune function.
基金study was provided by the National Key Research and Development Program of China(2016YFD0500501)The Project of Swine Innovation Team in Guangdong Modern Agricultural Research System(2020KJ126)+4 种基金Guangzhou Science and Technology Project(201906010021)Guangdong Provincial Department of Education(2018KTSCX244)China Agriculture Research System(CARS-35)Special Fund for Scientific Innovation Strategy-construction of High Level Academy of Agriculture Science(R2016PY-QF007)Discipline team building projects of Guangdong Academy of Agricultural Science in the 14th Five-Year Period(202106TD).
文摘Background:Deoxynivalenol(DON)is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals.Resveratrol(RES)effectively exerts anti-inflammatory and antioxidant effects.However,the protective effects of RES on alleviating DON toxicity in piglets and the underlying mechanism remain unclear.Therefore,this study aimed to investigate the effect of RES on growth performance,gut health and the gut microbiota in DON-challenged piglets.A total of 64 weaned piglets[Duroc×(Landrace×Yorkshire),21-d-old,6.97±0.10 kg body weight(BW)]were randomly allocated to 4 treatment groups(8 replicate pens per treatment,each pen containing 2 males;n=16 per treatment)for 28 d.The piglets were fed a control diet(CON)or the CON diet supplemented with 300 mg RES/kg diet(RES group),3.8 mg DON/kg diet(DON)or both(DON+RES)in a 2×2 factorial design.Results:DON-challenged piglets fed the RES-supplemented diet had significantly decreased D-lactate concentrations and tumor necrosis factor alpha(TNF-α)and interleukin 1 beta(IL-1β)mRNA and protein expression,and increased zonula occludens-1(ZO-1)mRNA and protein expression compared with those of DON-challenged piglets fed the unsupplemented diet(P<0.05).Compared with unsupplemented DON-challenged piglets,infected piglets fed a diet with RES showed significantly decreased malondialdehyde(MDA)levelsand increased mRNA expression of antioxidant enzymes and antioxidant genes(i.e.,GCLC,GCLM,HO-1,SOD1 and NQO-1)and glutamatecysteine-ligase modulatory subunit(GCLM)protein expression(P<0.05).Moreover,RES supplementation significantly abrogated the increase in the proportion of TUNEL-positive cells and the protein expression of caspase3 in DON-challenged piglets(P<0.05).Finally,RES supplementation significantly increased the abundance of Roseburia and butyrate concentrations,while decreasing the abundances of Bacteroides and unidentified-Enterobacteriaceae in DON-challenged piglets compared with DON-challenged piglets alone(P<0.05).Conclusions:RES supplementation improved gut health in DON-challenged piglets by strengthening intestinal barrier function,alleviating intestinal inflammation and oxidative damage,and positively modulating the gut microbiota.The protective effects of RES on gut health may be linked to increased Roseburia and butyrate concentrations,and decreased levels of Bacteroides and unidentified-Enterobacteriaceae.
基金financially supported by grants from China Agriculture Research System(CARS-36)the Special Fund for Agro-scientific Research in the Public Interest(No.201403047)+1 种基金National Basic Research Program of China(2013CB127301 and 2013CB127304)Presidential Foundation of Guangdong Academy of Agricultural Sciences(201312)
文摘The present study was conducted to determine effects of different forms of yeast (Saccharomyces cerevisiae, strain Y200007) on the growth performance, intestinal development, and systemic immunity in early-weaned piglets. A total of 96 piglets (14-d old, initial average body weight of 4.5 kg) were assigned to 4 dietary treatments: (1) basa diet without yeast (Control); (2) basal diet supplemented with 3.00 g/kg live yeast (LY); (3) basal diet supplemented with 2.66 g/kg heat-killed whole yeast (HKY); and (4) basal diet supplemented with 3.00 g/kg superfine yeast powders (SFY). Diets and water were provided ad libitum to the piglets during 3-week experiment. Growth performance of piglets was measured weekly. Samples of blood and small intestine were collected at days 7 and 21 of experiment. Dietary supplementation with LY and SFY improved G:F of piglets at days ]-21 of the experiment (P 〈 0.05) compared to Control group. Serum concentrations of growth hormone (GH), triiodothyronine (T3), tetraiodothyronine (T4), and insulin growth factor 1 (iGF-1) in piglets at day 21 of the experiment were higher when fed diets supplemented with LY and SFY than those in Control group (P 〈 0.05). Compared to Control group, contents of serum urea nitrogen of piglets were reduced by the 3 yeast-supplemented diets (P 〈 0.05). Diets supplemented with LY increased villus height and villus-to-crypt ratio in duodenum and jejunum of piglets (P 〈 0.05) compared to other two groups at day 7 of the experiment. Feeding diets supplemented with LY and SFY increased (P 〈 0.05) serum concentrations of IgA, IL-2, and IL-6 levels in piglets compared to Control. The CD4+/CD8+ ratio and proliferation of T-lymphocytes in piglets fed diets supplemented with LY were increased compared to that of Control group at day 7 of the experiment (P 〈 0.05). In conclusion, dietary supplementation with both LY and SFY enhanced feed conversion, small intestinal development, and systemic immunity in early-weaned piglets, with better improvement in feed conversion by dietary supplementation with LY, while dietary supplementation with SFY was more effective in increasing systemic immune functions in early-weaned piglets.
基金partially supported by the funds from the National Natural Science Foundation of China (31772819, 31741115)Hunan Provincial Natural Science Foundation for Distinguished Young Scholars (2019JJ30012)Double-First-Class Construction Project of Hunan Province (kxk201801004)。
文摘Background: Weaning is one of the major factors that cause stress and intestinal disease in piglets. Protocatechuic acid(PCA) is an active plant phenolic acid which exists in Chinese herb, Duzhong(Eucommia ulmoides Oliver), and is also considered as the main bioactive metabolite of polyphenol against oxidative stress and inflammation. This study aimed to investigate the effect of PCA on growth performance, intestinal barrier function, and gut microbiota in a weaned piglet model challenged with lipopolysaccharide(LPS).Methods: Thirty-six piglets(Pig Improvement Company line 337 × C48, 28 d of age, 8.87 kg ± 0.11 kg BW) were randomly allocated into 3 treatments and fed with a basal diet(CTL), a diet added 50 mg/kg of aureomycin(AUR), or a diet supplemented with 4000 mg/kg of PCA, respectively. The piglets were challenged with LPS(10 μg/kg BW) on d 14 and d 21 by intraperitoneal injection during the 21-d experiment. Animals(n = 6 from each group) were sacrificed after being anesthetized by sodium pentobarbital at 2 h after the last injection of LPS. The serum was collected for antioxidant indices and inflammatory cytokines analysis, the ileum was harvested for detecting mRNA and protein levels of tight junction proteins by PCR and immunohistochemical staining, and the cecum chyme was collected for intestinal flora analysis using 16 S rRNA gene sequencing.Results: Dietary supplementation of PCA or AUR significantly increased the expression of tight junction proteins including ZO-1 and claudin-1 in intestinal mucosa, and decreased the serum levels of thiobarbituric acid reactive substances(TBARS) and IL-6, as compared with CTL group. In addition, PCA also decreased the serum levels of IL-2 and TNF-α(P < 0.05). Analysis of gut microbiota indicated that PCA increased the Firmicutes/Bacteroidetes ratio(P < 0.05). Spearman's correlation analysis at the genus level revealed that PCA reduced the relative abundance of Prevotella 9, Prevotella 2, Holdemanella, and Ruminococcus torques group(P < 0.05), and increased the relative abundance of Roseburia and Desulfovibrio(P < 0.05), whereas AUR had no significant effect on these bacteria.Conclusions: These results demonstrated that both PCA and AUR had protective effect on oxidative stress, inflammation and intestinal barrier function in piglets challenged with LPS, and PCA potentially exerted the protective function by modulating intestinal flora in a way different from AUR.