期刊文献+
共找到10,287篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical and theoretical study of load transfer behavior during cascading pillar failure
1
作者 Hangyu Dong Wancheng Zhu +2 位作者 Leilei Niu Chen Hou Xige Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3014-3033,共20页
To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according... To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according to the previous experimental study on treble-pillar specimens,e.g.successive failure mode(SFM),domino failure mode(DFM)and compound failure mode(CFM).Based on the finite element code rock failure process analysis(RFPA^(2D)),numerical models of treble-pillar specimen with different mechanical properties were established to reproduce and verify the experimental results of the three CPF modes.Numerical results show that the elastic rebound of roofefloor system induced by pillar instability causes dynamic disturbance to adjacent pillars,resulting in sudden load increases and sudden jump displacement of adjacent pillars.The phenomena of load transfer in the roofemulti-pillarefloor system,as well as the induced accelerated damage behavior in adjacent pillars,were discovered and studied.In addition,based on the catastrophe theory and the proposed mechanical model of treble-pillar specimen edisc spring group system,a potential function that characterizes the evolution characteristics of roof emulti-pillarefloor system was established.The analytical expressions of sudden jump and energy release of treble-pillar specimenedisc spring group system of the three CPF modes were derived according to the potential function.The numerical and theoretical results show good agreement with the experimental results.This study further reveals the physical essence of load transfer during CPF of roof emulti-pillarefloor system,which provides references for mine design,construction and disaster prevention. 展开更多
关键词 Cascading pillar failure(CPF) Load transfer Multi-pillar Numerical simulation
下载PDF
Estimating shear strength of high-level pillars supported with cemented backfilling using the HoekeBrown strength criterion 被引量:4
2
作者 Kaizong Xia Congxin Chen +3 位作者 Xiumin Liu Yue Wang Xuanting Liu Jiahao Yuan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期454-469,共16页
Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the s... Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational. 展开更多
关键词 Deep metal mines High-level pillars HoekeBrown strength criterion Cemented backfilling Confining pressure Shear strength
下载PDF
Investigation of stress-induced progressive failure of mine pillars using a Voronoi grain-based breakable block model
3
作者 Shili Qiu Shirui Zhang +3 位作者 Quan Jiang Shaojun Li Hao Zhang Qiankuan Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期713-729,共17页
The Voronoi grain-based breakable block model(VGBBM)based on the combined finite-discrete element method(FDEM)was proposed to explicitly characterize the failure mechanism and predict the deformation behavior of hard-... The Voronoi grain-based breakable block model(VGBBM)based on the combined finite-discrete element method(FDEM)was proposed to explicitly characterize the failure mechanism and predict the deformation behavior of hard-rock mine pillars.The influence of the microscopic parameters on the macroscopic mechanical behavior was investigated using laboratory-scale models.The field-scale pillar models(width-to-height,W/H=1,2 and 3)were calibrated based on the empirically predicted stress-strain curves of Creighton mine pillars.The results indicated that as the W/H ratios increased,the VGBBM effectively predicted the transition from strain-softening to pseudo-ductile behavior in pillars,and explicitly captured the separated rock slabs and the V-shaped damage zones on both sides of pillars and conjugate shear bands in core zones of pillars.The volumetric strain field revealed significant compressional deformation in core zones of pillars.While the peak strains of W/H=1 and 2 pillars were relatively consistent,there were significant differences in the strain energy storage and release mechanism.W/H was the primary factor influencing the deformation and strain energy in the pillar core.The friction coefficient of the structural plane was also an important factor affecting the pillar strength and the weakest discontinuity angle.The fracture surface was controlled by the discontinuity angle and the friction coefficient.This study demonstrated the capability of the VGBBM in predicting the strengths and deformation behavior of hard-rock pillars in deep mine design. 展开更多
关键词 pillar strength FDEM Voronoi tessellation SPALLING BULKING
下载PDF
Pillar effect induced by ultrahigh phosphorous/nitrogen doping enables graphene/MXene film with excellent cycling stability for alkali metal ion storage
4
作者 Meng Qin Yiwei Yao +5 位作者 Junjie Mao Chi Chen Kai Zhu Guiling Wang Dianxue Cao Jun Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期146-156,I0004,共12页
Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and... Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and long ion transfer distance.Herein,this paper aims to address the issue by introducing MXene through a simple and scalable method for assembling graphene and realizing ultrahigh P doping content.The findings reveal that MXene and P-C bonds have a "pillar effect" on the structure of graphene,and the P-C bond plays a primary role.In addition,N/P co-doping introduces abundant defects,providing more active sites for K^(+) storage and facilitating K^(+) adsorption.As expected,the developed ultrahigh phosphorous/nitrogen co-doped flexible reduced graphene oxide/MXene(NPrGM) electrode exhibits remarkable reversible discharge capacity(554 mA hg^(-1) at 0.05 A g^(-1)),impressive rate capability(178 mA h g^(-1) at 2 A g^(-1)),and robust cyclic stability(0.0005% decay per cycle after 10,000 cycles at 2 A g^(-1)).Furthermore,the assembled activated carbon‖NPrGM potassium-ion hybrid capacitor(PIHC) can deliver an impressive energy density of 131 W h kg^(-1) and stable cycling performance with 98.1% capacitance retention after5000 cycles at 1 A g^(-1).Such a new strategy will effectively promote the practical application of graphene materials in PIBs/PIHCs and open new avenues for the scalable development of flexible films based on two-dimensional materials for potential applications in energy storage,thermal interface,and electromagnetic shielding. 展开更多
关键词 GRAPHENE MXene Phosphorous doping pillar effect Potassium-ion batteries
下载PDF
The current perspective of the PA 1957 gas well pillar study and its implications for longwall gas well pillars
5
作者 Peter Zhang Daniel Su Chris Mark 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第1期117-126,共10页
Many states rely upon the Pennsylvania 1957 Gas Well Pillar Study to evaluate the coal barrier surrounding gas wells.The study included 77 gas well failure cases that occurred in the Pittsburgh and Freeport coal seams... Many states rely upon the Pennsylvania 1957 Gas Well Pillar Study to evaluate the coal barrier surrounding gas wells.The study included 77 gas well failure cases that occurred in the Pittsburgh and Freeport coal seams over a 25-year span.At the time,coal was mined using the room-and-pillar mining method with full or partial pillar recovery,and square or rectangle pillars surrounding the gas wells were left to protect the wells.The study provided guidelines for pillar sizes under different overburden depths up to 213 m(700 ft).The 1957 study has also been used to determine gas well pillar sizes in longwall mines since longwall mining began in the 1970 s.The original study was developed for room-and-pillar mining and could be applied to gas wells in longwall chain pillars under shallow cover.However,under deep cover,severe deformations in gas wells have occurred in longwall chain pillars.Presently,with a better understanding of coal pillar mechanics,new insight into subsidence movements induced by retreat mining,and advances in numerical modeling,it has become both critically important and feasible to evaluate the adequacy of the 1957 study for longwall gas well pillars.In this paper,the data from the 1957 study is analyzed from a new perspective by considering various factors,including overburden depth,failure location,failure time,pillar safety factor(SF),and floor pressure.The pillar SF and floor pressure are calculated by considering abutment pressure induced by full pillar recovery.A statistical analysis is performed to find correlations between various factors and helps identify the most significant factors for the stability of gas wells influenced by retreat mining.Through analyzing the data from the 1957 study,the guidelines for gas well pillars in the 1957 study are evaluated for their adequacy for roomand-pillar mining and their applicability to longwall mining.Numerical modeling is used to model the stability of gas wells by quantifying the mining-induced stresses in gas well casings.Results of this study indicate that the guidelines in the 1957 study may be appropriate for pillars protecting conventional gas wells in both room-and-pillar mining and longwall mining under overburden depths up to 213m(700 ft),but may not be sufficient for protective pillars under deep cover.The current evaluation of the 1957 study provides not only insights about potential gas well failures caused by retreat mining but also implications for what critical considerations should be taken into account to protect gas wells in longwall mining. 展开更多
关键词 Gas well pillar Pennsylvania 1957 gas well pillar study Room-and-pillar mining Longwall mining
下载PDF
Experimental studies on pillar failure characteristics based on acoustic emission location technique 被引量:11
6
作者 徐帅 刘建坡 +3 位作者 徐世达 魏炯 黄文柏 东龙宾 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2792-2798,共7页
Acoustic emission (AE) technique is a useful tool for investigating rock damage mechanism, and is used to study the temporal-spatial evolution process of microcracks during the similar pillar material experiment. A ... Acoustic emission (AE) technique is a useful tool for investigating rock damage mechanism, and is used to study the temporal-spatial evolution process of microcracks during the similar pillar material experiment. A combined AE location algorithm was developed based on the Least square algorithm and Geiger location algorithm. The pencil break test results show that the location precision can meet the demand of microcrack monitoring. The 3D location of AE events can directly reflect the process of initiation, propagation and evolutionary of microcracks. During the loading process, stress is much likely concentrated on the area between pillar and roof of the specimen, where belongs to danger zone of macroscopic failure. When rock reaches its plastic deformation stage, AE events begin to decrease, which indicates that AE quiet period can be seen as precursor characteristic of rock failure. 展开更多
关键词 rock damage mechanism pillar specimen failure characteristics temporal-spatial evolution microracks acousticemission location algorithm quiet period
下载PDF
Predicting pillar stability for underground mine using Fisher discriminant analysis and SVM methods 被引量:16
7
作者 周健 李夕兵 +2 位作者 史秀志 魏威 吴帮标 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2734-2743,共10页
The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability ... The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines. 展开更多
关键词 underground mine pillar stability Fisher discriminant analysis (FDA) support vector machines (SVMs) PREDICTION
下载PDF
Pillar植入系统联合鼻部手术治疗OSAHS 38例疗效分析 被引量:4
8
作者 邹帆 邝韶景 +1 位作者 高明华 李明红 《重庆医学》 CAS CSCD 北大核心 2010年第8期917-918,926,共3页
目的探讨Pillar植入系统联合鼻部手术治疗阻塞性睡眠呼吸暂停低通气综合征(OSAHS)的效果。方法选取2006年7至2008年11月本科OSAHS患者38例,38例均同期行Pillar植入系统治疗和鼻部手术,术前及术后6个月均行多导睡眠呼吸监测(polysomnogra... 目的探讨Pillar植入系统联合鼻部手术治疗阻塞性睡眠呼吸暂停低通气综合征(OSAHS)的效果。方法选取2006年7至2008年11月本科OSAHS患者38例,38例均同期行Pillar植入系统治疗和鼻部手术,术前及术后6个月均行多导睡眠呼吸监测(polysomnography,PSG),对术前及术后的PSG结果(包括AHI、LSaO2)进行统计学分析。结果术后6个月进行PSG监测,治愈10例,好转17例,减轻7例,无效4例,总有效率达89.5%;所有患者无手术并发症发生。结论Pillar植入系统联合鼻部手术治疗单纯型鼾症(primary snoring,PS)及轻-中度OSAHS可取得良好效果。 展开更多
关键词 睡眠呼吸暂停低通气综合征 阻塞性 鼻疾病 pillar植入系统 鼻部手术
下载PDF
微创经椎弓根Pillar植入治疗胸腰椎压缩性骨折疗效及相关并发症分析 被引量:3
9
作者 张爱梁 何双华 +7 位作者 丁亮华 包欣南 胡新宇 王能 凌为其 张乃东 黄智慧 王轩 《南京医科大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第11期1568-1570,共3页
目的 :探讨经椎弓根pillar植入治疗胸腰椎压缩性骨折的临床效果及相关并发症。方法 :回顾分析2010年1月~2013年4月采用微创经椎弓根pillar置入治疗胸腰椎压缩性骨折患者27例的临床疗效。手术前后进行疼痛强度视觉模拟评分(visual an... 目的 :探讨经椎弓根pillar植入治疗胸腰椎压缩性骨折的临床效果及相关并发症。方法 :回顾分析2010年1月~2013年4月采用微创经椎弓根pillar置入治疗胸腰椎压缩性骨折患者27例的临床疗效。手术前后进行疼痛强度视觉模拟评分(visual analogue scale,VAS)、Oswestry功能障碍指数(Oswestry disability index,ODI)、伤椎前缘高度比值、矢状面指数(伤椎前缘高度/伤椎后缘高度×100%)、伤椎Cobb′s角。结果:27例患者共植入54枚椎体支柱块,均获得6~26个月的随访,平均手术时间为(47.6±8.5)min,平均术中失血量(28.4±12.3)ml。术后CT证实17例患者椎弓根皮质有破裂,其中外侧皮质破裂15例,内侧皮质破裂2例,其中1例患者因内侧壁破裂引起下肢神经症状,经治疗后缓解。术后1周及末次随访时VAS评分、ODI值、椎体前缘高度比值、矢状面指数值及伤椎Cobb′s角与术前比较差异均具有统计学意义(P〈0.05),而术后1周与末次随访时比较差异无统计学意义(P〉0.05),椎体支柱块未发生移位或塌陷。结论:微创经椎弓根pillar置入是治疗胸腰椎压缩骨折一种安全、有效、可行的方法,严格掌握手术适应证、术中规范操作可降低并发症的发生。 展开更多
关键词 胸腰椎骨折 pillar 疗效 并发症
下载PDF
Pillar植入术治疗阻塞性睡眠呼吸暂停综合征病人的观察和护理 被引量:1
10
作者 龚穗清 陈秋芳 +4 位作者 陈玉微 吴小琴 毛晓萍 陈少华 张思毅 《护理研究(下旬版)》 2008年第7期1931-1932,共2页
[目的]探讨Pillar植入术治疗阻塞性睡眠呼吸暂停综合征(OSAS)的护理及术后随访。[方法]46例鼾症病人经我导睡眠仪(PSG)监测分为轻至中度OSAS(28例)、重度OSAS(6例)和单纯鼾症(12例)3组,行Pillar植入术,并给予全面的身心护理和健康教育,... [目的]探讨Pillar植入术治疗阻塞性睡眠呼吸暂停综合征(OSAS)的护理及术后随访。[方法]46例鼾症病人经我导睡眠仪(PSG)监测分为轻至中度OSAS(28例)、重度OSAS(6例)和单纯鼾症(12例)3组,行Pillar植入术,并给予全面的身心护理和健康教育,术前及术后1个月和6个月均进行鼾声视觉类比量表(VAS)评分和PSG监测。[结果]术后随访6个月,Pillar植入系统对于轻至中度OSAS病人和单纯鼾症病人打鼾的改善显著,而对于重度OSAS病人疗效较差。28例轻至中度OSAS病人治愈4例,显效10例,有效5例,无效9例,总有效率达67.9%,呼吸紊乱指数(AHI)由术前的每小时17.03次±10.63次到术后6个月降至每小时11.17次±9.52次;6例重度OSAS病人有效1例(1/6),AHI由术前每小时62.93次±9.21次降至每小时55.42次±13.77次,46例病人术后无并发症。[结论]Pillar植入系统对于治疗鼾症可以有效地改善打鼾,对于睡眠呼吸暂停的改善轻至中度OSAS病人的疗效较好,而重度OSAS病人的疗效较差。而做好Pillar手术的护理,可帮助病人顺利完成手术治疗,减轻他们术前的忧虑和术后的痛苦,获得满意效果,提高生活质量。 展开更多
关键词 pillar植入术 阻塞性睡眠呼吸暂停综合征 观察 护理
下载PDF
Construction of TiO_(2)-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation 被引量:8
11
作者 Xiong-feng Zeng Jian-sheng Wang +2 位作者 Ying-na Zhao Wen-li Zhang Meng-huan Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第3期503-510,共8页
We successfully constructed TiO_(2)-pillared multilayer graphene nanocomposites(T-MLGs)via a facile method as follows:dodecanediamine pre-pillaring,ion exchange(Ti4+pillaring),and interlayer in-situ formation of TiO_(... We successfully constructed TiO_(2)-pillared multilayer graphene nanocomposites(T-MLGs)via a facile method as follows:dodecanediamine pre-pillaring,ion exchange(Ti4+pillaring),and interlayer in-situ formation of TiO_(2) by hydrothermal method.TiO_(2) nanoparticles were distributed uniformly on the graphene interlayer.The special structure combined the advantages of graphene and TiO_(2) nanoparticles.As a result,T-MLGs with 64.3wt%TiO_(2) showed the optimum photodegradation rate and adsorption capabilities toward ciprofloxacin.The photodegradation rate of T-MLGs with 64.3wt%TiO_(2) was 78%under light-emitting diode light irradiation for 150 min.Meanwhile,the pseudofirst-order rate constant of T-MLGs with 64.3wt%TiO_(2) was 3.89 times than that of pristine TiO_(2).The composites also exhibited high stability and reusability after five consecutive photocatalytic tests.This work provides a facile method to synthesize semiconductor-pillared graphene nanocomposites by replacing TiO_(2) nanoparticles with other nanoparticles and a feasible means for sustainable utilization of photocatalysts in wastewater control. 展开更多
关键词 pillared structure titanium dioxide-pillared multilayer graphene nanocomposites photocatalysis CIPROFLOXACIN
下载PDF
Geotechnical considerations for concurrent pillar recovery in close-distance multiple seams 被引量:2
12
作者 Peter Zhang Berk Tulu +1 位作者 Morgan Sears Jack Trackemas 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第1期21-27,共7页
Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recov... Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recovery increases in multiple-seam mining conditions.The hazards associated with pillar recovery in multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave.When pillar recovery is planned in multiple seams, it is critical to properly design the mining sequence and panel layout to minimize potential seam interaction.This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 21 m of interburden under about 305 m of depth of cover.The study finds that, for interburden thickness of 21 m, the multiple-seam mining influence zone in the lower seam is directly under the barrier pillar within about 30 m from the gob edge of the upper seam.The peak stress in the interburden transfers down at an angle of approximately 20°away from the gob, and the entries and crosscuts in the influence zone are subjected to elevated stress during development and retreat.The study also suggests that, for full pillar recovery in close-distance multiple-seam scenarios,it is optimal to superimpose the gobs in both seams, but it is not necessary to superimpose the pillars.If the entries and/or crosscuts in the lower seam are developed outside the gob line of the upper seam,additional roof and rib support needs to be considered to account for the elevated stress in the multiple-seam influence zone. 展开更多
关键词 pillar recovery Room-and-pillar RETREAT MINING MULTIPLE SEAM MINING sequence pillar design
下载PDF
Preparation and Microstructure of Al-pillared Interlayered Montmorillonite 被引量:2
13
作者 曹明礼 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第4期13-16,共4页
Al-pillared interlayered montmorillonite (Al-PILM) was prepared using the artificial Na-montmorillonite from the Qingfengshan bentonite mine as a starting material mixed with Al-pillaring solutions.The microstructure ... Al-pillared interlayered montmorillonite (Al-PILM) was prepared using the artificial Na-montmorillonite from the Qingfengshan bentonite mine as a starting material mixed with Al-pillaring solutions.The microstructure of the materials was studied by an X-ray powder diffractometer and a Fourier transform infrared (FTIR) spectrometer.The results indicated that the basal spacing [d(001) value] of the materials was increased significantly to 1.9194 nm relative to Na-montmorillonite (1.2182 nm).After calcined for 2 h at 300℃,the basal spacing was stabilized at 1.8394 nm and the layered structure of the materials was not destroyed.Thermal analysis was conducted by a thermal gravimetry and differential thermal analysis (TG-DTA) instrument,it showed that Al-PILM lost physically adsorbed water below 230.6℃ and water formed by dehydroxylation of the pillars at around 497.1℃, with a peak of the phase transformation at 903.0℃. 展开更多
关键词 Al-pillared interlayered montmorillonite pillaring solution PREPARATION MICROSTRUCTURE
下载PDF
Elimination of boundary effect for laminated overburden model in pillar stability analysis 被引量:2
14
作者 张鹏 K. A. Heasley 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第6期1468-1473,共6页
The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considere... The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considered before creating the model.To eliminate the boundary effect in a La Model pillar stability analysis,a suitable boundary buffer zone is needed around the model edge.The radius of influence(R)and the abutment load extent(D)are two major factors that affect the stresses and displacements calculated in LaM odel.To determine the optimum buffer zone extent,a database of case histories was analyzed using the La Model program.Values for R and D were varied until a buffer zone having negligible influence on the pillar stability factor(SF)of the active mining zone(AMZ)was determined. 展开更多
关键词 pillar stability boundary effect LaModel numerical simulation room-and-pillar
下载PDF
Roadway layout for recycling residual coal pillar in room-and-pillar mining of thick coal seam 被引量:2
15
作者 Jin Gan Wang Lianguo +2 位作者 Zhang Jihua Hu Minjun Duan Ning 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期729-734,共6页
In the context of a room-and-pillar mining gob in Shanxi province in China,this paper numerically investigates the stress distribution and deformation rules of roadway surrounding rocks at various locations of residua... In the context of a room-and-pillar mining gob in Shanxi province in China,this paper numerically investigates the stress distribution and deformation rules of roadway surrounding rocks at various locations of residual coal pillars in room-and-pillar mining gobs using software FLAC3 D.It is found that the concentrated stress beneath coal pillars distributes in a shape of ellipse.A reasonable roadway layout is then proposed.In this design,it is indicated that roadways should be designed to avoid the supporting zones of pillars with increasing compression and take into account the roof falling and crushing in the upper gob.According to the surrounding rock deformation characteristics and mining roadway locations as well as the supporting principles of timely support,rock reinforcing,piecewise management and suiting local conditions,a new asymmetric shield supporting plan is proposed.The field surveying results show that this supporting plan can effectively control the roadway rock deformation,thus guarantee the safe and smooth construction of roadways. 展开更多
关键词 Room-and-pillar mine Residual coal pillar Repeated mining Roadway layout Asymmetric support
下载PDF
Synthesis and Characterization of Al-Cr-Pillared Montmorillonite with High Thermal Stability and Adsorption Capacity* 被引量:1
16
作者 曹明礼 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第1期51-53,共3页
Al-Cr-pillared montmorillonite was synthesized by using bentonite and Al-Cr pillaring solutions as starting materials.The basal spacing and specific surface areas of the materials were significantly increased relative... Al-Cr-pillared montmorillonite was synthesized by using bentonite and Al-Cr pillaring solutions as starting materials.The basal spacing and specific surface areas of the materials were significantly increased relative to those of untreated clays.When the Al/Cr molar ratio(R) was 0.10,the d(001) value and specific surface area of pillared montmorillonite were 1.9194 nm and 165.7 m2 g -1,respectively.Thermal stability of the materials was determined using calcined tests and X-ray diffraction (XRD) analysis.The materials formed at different R(0.05;0.10;0.15;0.25) exhibit a high thermal stability at 300℃,especially at initial R=0.10,the basal interlayer spacing of materials is stabilized at 1.7313 nm after calcined at 500℃ for 2 h.Adsorption behavior of the materials was studied by adsorption experiments.The results show that the Al-Cr-pillared montmorillonites exhibit much stronger adsorption capacity on Cr 6+ in aqueous solution than untreated clays do. 展开更多
关键词 Al-Cr-pillared montmorillonite pillaring solution SYNTHESIS CHARACTERIZATION ADSORPTION
下载PDF
Pillar design and coal burst experience in Utah Book Cliffs longwall operations 被引量:1
17
作者 Christopher Mark Michael Gauna 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第1期33-41,共9页
Longwall mining has existed in Utah for more than half a century.Much of this mining occurred at depths of cover that significantly exceed those encountered by most other US longwall operations.Deep cover causes high ... Longwall mining has existed in Utah for more than half a century.Much of this mining occurred at depths of cover that significantly exceed those encountered by most other US longwall operations.Deep cover causes high ground stress,which can combine with geology to create a coal burst hazard.Nearly every longwall mine operating within the Utah’s Book Cliffs coalfield has been affected by coal bursts.Pillar design has been a key component in the burst control strategies employed by mines in the Book Cliffs.Historically,most longwall mines employed double-use two-entry yield pillar gates.Double-use signifies that the gate system serves first as the headgate,and then later serves as the tailgate for the adjacent panel.After the 1996 burst fatality at the Aberdeen Mine,the inter-panel barrier design was introduced.In this layout,a wide barrier pillar protects each longwall panel from the previously mined panel,and each gate system is used just once.This paper documents the deep cover longwall mining conducted with each type of pillar design,together with the associated coal burst experience.Each of the six longwall mining complexes in the Book Cliffs having a coal burst history is described on a panel-by-panel basis.The analysis shows that where the mining depth exceeded 450 m,each design has been employed for about 38000 total m of longwall panel extraction.The double-use yield pillar design has been used primarily at depths less than 600 m,however,while the inter-panel barrier design has been used mainly at depths exceeding 600 m.Despite its greater depth of use,the inter-panel barrier gate design has been associated with about one-third as much face region burst activity as the double-use yield pillar design. 展开更多
关键词 LONGWALL Ground control Coal burst pillar design Yield pillar
下载PDF
Lateral abutment pressure distribution and evolution in wide pillars under the first mining effect 被引量:1
18
作者 Zhen Zhang Zhen Li +4 位作者 Gang Xu Xiaojin Gao Qianjin Liu Zhengjie Li Jiachen Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期309-322,共14页
The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect o... The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect of the first mining on the lateral abutment pressure distribution and evolution in wide pillars,an in-situ experiment,theoretical analysis and numerical simulation were performed.First,the field monitoring of lateral abutment pressure was conducted from the perspective of time and space in the Chahasu Coal Mine,Huangling No.2 Coal Mine and Lingdong Coal Mine during the first mining.Based on the field monitoring stress,a theoretical model was proposed to reveal the lateral abutment pressure distribution.The methodology was demonstrated through a case study.Aiming at the distribution mechanism,a numerical experiment was conducted through the finite-discrete element method(FDEM).Last,field observations of borehole fractures were performed to further study the damage distribution.In addition,two types of lateral abutment pressure evolution with mining advance were discussed.Suggestions on the stress monitoring layout were proposed as well.The results could provide foundations for strata control and disaster prevention in wide pillars in underground coal mines. 展开更多
关键词 Wide pillar Lateral abutment pressure pillar stress First mining effect Field monitoring
下载PDF
Mechanical behaviors of deep pillar sandwiched between strong and weak layers 被引量:1
19
作者 Sahendra Ram Petr Waclawik +4 位作者 Jan Nemcik Radovan Kukutsch Ashok Kumar Arun Kumar Singh Libin Gong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1111-1126,共16页
A variety of coal room and pillar mining methods have been efficiently practiced at depths of up to 500 m with least strata mechanics issues.However,for the first time,this method was trialled at depths of 850 e900 m ... A variety of coal room and pillar mining methods have been efficiently practiced at depths of up to 500 m with least strata mechanics issues.However,for the first time,this method was trialled at depths of 850 e900 m in CSM mine of Czech Republic.The rhomboid-shaped coal pillars with acute corners of 70,surrounded with 5.2 m wide and 3.5e4.5 m high mine roadways,were used.Pillars were developed in a staggered manner with their size variation in the Panel II from 83 m×25 m to 24 m×20 m(corner to corner)and Panel V from 35 m×30 m to 26 m×16 m.Coal seam inclined at 12was affected by the unusual slippery slickenside roof bands and sometimes in the floor levels with high vertical stress below strong and massive sandstone roof.In order to ensure safety,pillars in both the panels were continuously monitored using various geotechnical instruments measuring the induced stresses,side spalling and roof sagging.Both panels suffered high amounts of mining induced stress and pillar failure with side-spalling up to 5 m from all sides.Heavy fracturing of coal pillar sides was controlled by fully encapsulated steel bolts.Mining induced stress kept increasing with the progress of development of pillars and galleries.Instruments installed in the pillar failed to monitor actual induced stress due to fracturing of coal mass around it which created an apprehension of pillar failure up to its core due to high vertical mining induced stress.This risk was reduced by carrying out scientific studies including the three-dimensional numerical models calibrated with data from the instrumented pillar.An attempt has been made to study the behavior of coal pillars and their yielding characteristics at deeper cover based on field and simulation results. 展开更多
关键词 pillar yielding mechanisms Great depth Numerical modeling Induced stress pillar dilation Slippery slickenside layer
下载PDF
Countermeasure Method for Stope Instability in Crown Pillar Area of Cut and Fill Underground Mine 被引量:1
20
作者 Tri Karian Hideki Shimada +3 位作者 Takashi Sasaoka Sugeng Wahyudi Deyu Qian Budi Sulistianto 《International Journal of Geosciences》 2016年第3期280-300,共21页
Maintaining stability as well as optimizing recovery of crown pillar, a pillar separating surface area with the uppermost stope in overhand cut and fill underground mining method, is important. Failures in stope may l... Maintaining stability as well as optimizing recovery of crown pillar, a pillar separating surface area with the uppermost stope in overhand cut and fill underground mining method, is important. Failures in stope may lead to crown pillar failures and cause surface subsidence. Increasing crown pillar thickness will increase crown pillar stability yet reduce mining recovery because part of crown pillar is formed by ore body. Preventing stope failure is the key to maintain stability and optimize recovery of crown pillar. Therefore, it is important to study countermeasure method for stope failure especially in crown pillar area. An attempt has been made to investigate the effectiveness of various countermeasures for stope failure in crown pillar area by means of parametric study. The result shows active type support system is effective for supporting stope in high vertical stress condition while the passive one needs to be installed if the stope is opened in high horizontal stress condition. In general, more supporting capacity from both type support systems is needed if the stope is opened in more severe geological condition. Another countermeasures, sill pillar and surface pile, are introduced for stope instability in crown pillar and non-crown pillar area. Sill pillar is an abandoned slice of unstable stope based on stability analysis. Sill pillar is very effective to stabilize stope both in crown pillar and non-crown pillar area, especially for stope in high horizontal stress condition. Sill pillar application in model with stress ratio 2 can optimize 20 meter thickness of crown pillar into 5 meter. Another proposed countermeasure is surface pile. Surface pile can be installed from the surface to improve stability of crown pillar and stope. The most effective use of surface pile is found in simulation of model with stress ratio 0.75 where surface pile can optimize 15 meter thickness of crown pillar into 5 meter. 展开更多
关键词 Crown pillar Stope Stability Active and Passive Type Support System Sill pillar Surface Pile
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部