Sugar metabolism plays an essential role in plant male reproduction. Defects in sugar metabolism during anther and pollen development often result in genic male sterility(GMS). In this review, we summarize the recent ...Sugar metabolism plays an essential role in plant male reproduction. Defects in sugar metabolism during anther and pollen development often result in genic male sterility(GMS). In this review, we summarize the recent progresses of the sugar metabolism-related GMS genes and their roles during plant anther and pollen development, including callose wall and primexine formation, intine development, pollen maturation and starch accumulation, anther dehiscence, and pollen germination and tube growth. We predict 112 putative sugar metabolic GMS genes in maize based on bioinformatics and RNA-seq analyses, and most of them have peak expression patterns during middle or late anther developmental stages.Finally, we outline the potential applications of sugar metabolic GMS genes in crop hybrid breeding and seed production. This review will deepen our understanding on sugar metabolic pathways in controlling pollen development and male fertility in plants.展开更多
In the paper, the full length cDNA of RsMF2 gene, homologous with the BcMF2 gene encoding pollen-specificpolygalacturonase of Chinese cabbage-pak-choi (Brassica campestris L. ssp. chinensis Makino) was cloned from Rap...In the paper, the full length cDNA of RsMF2 gene, homologous with the BcMF2 gene encoding pollen-specificpolygalacturonase of Chinese cabbage-pak-choi (Brassica campestris L. ssp. chinensis Makino) was cloned from Raphanussativus L. cv. Yuanbai by PCR, with a pair of primer designed according to the coding sequence of BcMF2. The largestopening reading frame of RsMF2 gene is 1 266 bp in length and encodes a protein of 421 amino acids with a predictedmolecular mass of 43.9 kDa. Sequence analysis revealed that it has three potential N-glycosylation sites and onepolygalacturonase active position (RVTCGPGHGLSVGS). And the first 32 amino acids of the predicted RsMF2 proteinform a N-terminal hydrophobic domain which displays the properties of a signal peptide. The predicted secondarystructure composition for the protein has 6.9% helix, 42.0% sheet and 51.1% loop. Four domains which are highly conservedin the whole plant and fungal PGs is present in RsMF2. Phylogenetic analysis showed that RsMF2 falls into the categoryof clade-C, which includes PGs related to pollen. These results indicate that RsMF2 may act as polygalacturonase relatedto pollen development.展开更多
Achieving seedlessness in citrus varieties is one of the important objectives of citrus breeding.Male sterility associated with abnormal pollen development is an important factor in seedlessness.However,our understand...Achieving seedlessness in citrus varieties is one of the important objectives of citrus breeding.Male sterility associated with abnormal pollen development is an important factor in seedlessness.However,our understanding of the regulatory mechanism underlying the seedlessness phenotype in citrus is still limited.Here,we determined that the miR159a-DUO1 module played an important role in regulating pollen development in citrus,which further indirectly modulated seed development and fruit size.Both the overexpression of csi-miR159a and the knocking out of DUO1 in Hong Kong kumquat(Fortunella hindsii)resulted in small and seedless fruit phenotypes.Moreover,pollen was severely aborted in both transgenic lines,with arrested pollen mitotic I and abnormal pollen starch metabolism.Through additional cross-pollination experiments,DUO1 was proven to be the key target gene for miR159a to regulate male sterility in citrus.Based on DNA affinity purification sequencing(DAP-seq),RNA-seq,and verified interaction assays,YUC2/YUC6,SS4 and STP8 were identified as downstream target genes of DUO1,those were all positively regulated by DUO1.In transgenic F.hindsii lines,the miR159a-DUO1 module down-regulated the expression of YUC2/YUC6,which decreased indoleacetic acid(IAA)levels and modulated auxin signaling to repress pollen mitotic I.The miR159a-DUO1 module reduced the expression of the starch synthesis gene SS4 and sugar transport gene STP8 to disrupt starch metabolism in pollen.Overall,this work reveals a new mechanism by which the miR159a-DUO1 module regulates pollen development and elucidates the molecular regulatory network underlying male sterility in citrus.展开更多
Ogura cytoplasmic male sterility(Ogura CMS)is extensively applied in hybrid seed production in cruciferous crops.However,the posttranscriptional molecular basis of Ogura CMS in cruciferous crops remains elusive.Here,a...Ogura cytoplasmic male sterility(Ogura CMS)is extensively applied in hybrid seed production in cruciferous crops.However,the posttranscriptional molecular basis of Ogura CMS in cruciferous crops remains elusive.Here,a data-independent acquisition-based proteomic approach coupled with a parallel reaction monitoring-based targeted proteomic assay was used to analyze the proteome dynamics of Ogura CMS cabbage line RM and its maintainer line RF during floral bud development to obtain insights into the mechanism underlying Ogura CMS in cruciferous crops.A total of 9162 proteins corresponding to 61464 peptides were identified in RM and RF floral buds.The proteomic fluctuation of RM was weaker than that of RF.Differences in protein expression between RM and RF gradually enlarged with floral bud development.Fifteen continually up-regulated and eight continually down-regulated proteins were found in RM relative to RF throughout floral bud development.Differentially expressed proteins between RM and RF during floral bud development were implicated in the endoplasmic reticulum(ER)-associated protein processing pathway,in which most of them exhibited down-regulated expression in RM.These data suggest that ER-associated protein processing may be involved in pollen abortion in Ogura CMS cabbage by inhibiting the expression of critical factors.Our findings not only deepen the understanding of the molecular mechanisms of Ogura CMS in cruciferous crops but also provide better guidance for applying Ogura CMS in the hybrid breeding of cruciferous crops.展开更多
Background Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing sterile germplasm resources.However,only a few cytoplasmic male sterility(CMS)lines of cotton have been pro...Background Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing sterile germplasm resources.However,only a few cytoplasmic male sterility(CMS)lines of cotton have been produced due to several challenges,like inadequate variation of agronomic traits,incomplete sterility,weak resilience of restorer lines,and difficulty in combining strong dominance.Therefore,the morphological and cytological identification of CMS in cotton will facilitate hybrid breeding.Results Two F_(2) segregating populations of cotton were constructed from cytoplasmic male sterile lines(HaA and 01A,maternal)and restorer lines(HaR and 26R,paternal).Genetic analysis of these populations revealed a segregation ratio of 3:1 for fertile to sterile plants.Phenotypic analysis indicated no significant differences in traits of flower bud development between sterile and fertile plants.However,sterile plants exhibited smaller floral organs,shortened filament lengths,and anther atrophy on the flowering day in comparison with the fertile plants.When performed scanning electron microscopy(SEM),the two F_(2) populations revealed morphological variations in the anther epidermis.Cellular analysis showed no significant differences in pollen development before pollen maturation.Interestingly,between the pollen maturation and flowering stages,the tapetum layer of sterile plants degenerated prematurely,resulting in abnormal pollen grains and gradual pollen degradation.Conclusion The results of this study suggest that fertility-restoring genes are controlled by a single dominant gene.Sterile plants exhibit distinctive floral morphology,which is characterized by stamen atrophy and abnormal anthers.Pollen abortion occurs between pollen maturity and flowering,indicating that premature tapetum degradation may be the primary cause of pollen abortion.Overall,our study provides a theoretical basis for utilizing CMS in hybrid breeding and in-depth investigation of the dominant configuration of cotton hybrid combinations,mechanisms of sterility,and the role of sterile and restorer genes.展开更多
Pollen development is a,pre-requisite for sexual reproduction of angiosperms, during which various cellular activities are involved. Pollen development accompanies dynamic remodeling of vacuoles through fission and fu...Pollen development is a,pre-requisite for sexual reproduction of angiosperms, during which various cellular activities are involved. Pollen development accompanies dynamic remodeling of vacuoles through fission and fusion, disruption of which often compromises pollen viability. We previously reported that the Y subunit of adaptor protein 1 (AP1G) mediates synergid degeneration during pollen tube reception. Here, we demonstrate that AP1G is essential for pollen development. AP1G loss-of-function resulted in male gametophytic lethality due to defective pollen development. By ultrastructural analysis and fluorescence labeling, we demonstrate that AP1G loss-of-function compromised dynamic vacuolar remodeling during pollen development and impaired vacuolar acidification of pollen. Results presented here support a key role of vacuoles in gametophytic pollen development.展开更多
Mangrove degradation must reduce carbon sequestration in recent years, thereby aggravating global warming.Thus, short-term impacts of human activity on mangrove ecosystems are cause for concern from local governments ...Mangrove degradation must reduce carbon sequestration in recent years, thereby aggravating global warming.Thus, short-term impacts of human activity on mangrove ecosystems are cause for concern from local governments and scientists. Mangroves sediments can provide detailed records of mangrove species variation in the last one hundred years, based on detailed 210 Pb data. The study traced the history of mangrove development and its response to environmental change over the last 140 years in two mangrove swamps of Guangxi, Southwest China. Average sedimentation rates were calculated to be 0.48 cm/a and 0.56 cm/a in the Yingluo Bay and the Maowei Sea, respectively. Chemical indicators(δ13Corg and C:N) were utilized to trace the contribution of mangrove-derived organic matter(MOM) using a ternary mixing model. Simultaneous use of mangrove pollen can help to supplement some of these limitations in diagenetic/overlap of isotopic signatures. We found that vertical distribution of MOM was consistent with mangrove pollen, which could provide similar information for tracing mangrove ecosystems. Therefore, mangrove development was reconstructed and divided into three stages: flourishing, degradation and re-flourishing/re-degradation period. The significant degradation, found in the period of 1968–1998 and 1907–2007 in the Yingluo Bay and the Maowei Sea, respectively, corresponding to a rapid increase of reclamation area and seawall length, rather than climate change as recorded in the region.展开更多
Callose contributes to many biological processes of higher plants including pollen development,cell plate and vascular tissue formation,as well as regulating the transport function of plasmodesmata.The functions of ca...Callose contributes to many biological processes of higher plants including pollen development,cell plate and vascular tissue formation,as well as regulating the transport function of plasmodesmata.The functions of callose synthase genes in maize have been little studied.We describe a maize male-sterile mutant 39(ms39)characterized by reduced plant height.In this study,we confirmed using CRISPR/Cas9 technology that a mutation in Zm00001d043909(ZmCals12),encoding a callose synthase,is responsible for the male sterility of the ms39 mutant.Compared with male-fertile plants,callose deposition around the dyads and tetrads in ms39 anthers was significantly reduced.Increased cell autophagy observed in ms39 anthers may have been due to the premature programmed cell death of tapetal cells,leading to collapse of the anther wall structure.Disordered glucose metabolism in ms39 may have intensified autophagy in anthers.Evaluation of the ms39 gene on maize heterosis by paired-crossed experiment with 11 maize inbred lines indicated that ms39 can be used for maize hybrid seed production.展开更多
用19种植物花粉对间泽钝绥螨Amblyseius aizawai Ehara et Bhandliu-falck进行了食性试验,结果表明均能取食,并能使雌螨产卵。以其中9种花粉作发育历期观察,一个生活周期4.25~8.55天。饲育存活率较高的花粉有丝瓜、棕榈、石榴和桦木,...用19种植物花粉对间泽钝绥螨Amblyseius aizawai Ehara et Bhandliu-falck进行了食性试验,结果表明均能取食,并能使雌螨产卵。以其中9种花粉作发育历期观察,一个生活周期4.25~8.55天。饲育存活率较高的花粉有丝瓜、棕榈、石榴和桦木,存活率达70.00~82.00%;产卵期10.00~40.80天,平均产卵期最长的有玉米、混合花粉和马桑花粉;产卵量10.00~74.00粒,平均产卵量最高的有丝瓜、混合花粉和石榴的花粉;饲育其雌性比最高的是丝瓜花粉;以8种花粉饲养成螨,寿命最长的是马桑、玉米、混合花粉和石榴花粉。展开更多
TaMs1 encodes a non-specific lipid transfer protein(nsLTP) and is required for pollen development in wheat. Although MS1 is a Poaceae-specific gene, the roles of MS1 genes in other Poaceae plants are unknown, especial...TaMs1 encodes a non-specific lipid transfer protein(nsLTP) and is required for pollen development in wheat. Although MS1 is a Poaceae-specific gene, the roles of MS1 genes in other Poaceae plants are unknown, especially in rice and maize. Here, we identified one ortholog in rice(OsLTPg29) and two orthologs in maize(ZmLTPg11 and ZmLTPx2). Similar to TaMs1, both OsLTPg29 and ZmLTPg11 genes are specifically expressed in the microsporocytes, and both OsLTPg29 and ZmLTPg11 proteins showed lipid-binding ability to phosphatidic acid and several phosphoinositides. To determine their roles in pollen development, we created osltpg29 mutants and zmltpg11 zmltpx2 double mutants by CRISPR/Cas9.osltpg29, not zmltpg11 zmltpx2, is defective in pollen development, and only OsLTPg29, not ZmLTPg11,can rescue the male sterility of tams1 mutant. Our results demonstrate that the biological function of MS1 in pollen development differs in the evolution of Poaceae plants.展开更多
In anther development, tapetal cells take part in complex processes, including endomitosis and apoptosis (programmed cell death). The tapetum provides many of the proteins, lipids, polysaccharides and other molecule...In anther development, tapetal cells take part in complex processes, including endomitosis and apoptosis (programmed cell death). The tapetum provides many of the proteins, lipids, polysaccharides and other molecules necessary for pollen development. Several transcription factors, including DYT1, TDF1, AMS, MS188 and MS1, have been reported to be essential for tapetum development and function in Arabidopsis thaliana. Here, we present a detailed cytological analysis of knockout mutants for these genes, along with an in situ RNA hybridization experiment and double mutant analysis showing that these transcription factors form a genetic pathway in tapetum development. DYT1, TDF1 and AMS function in early tapetum development, while MS188 and MS1 are important for late tapetum development. The genetic pathway revealed in this work facilitates further investigation of the function and molecular mechanisms of tapetum development in Arabidopsis.展开更多
Pollen tubes elongate rapidly at their tips through highly polarized cell growth known as tip growth. Tip growth requires intensive exocytosis at the tip, which is supported by a dynamic cytoskeleton and vesicle traff...Pollen tubes elongate rapidly at their tips through highly polarized cell growth known as tip growth. Tip growth requires intensive exocytosis at the tip, which is supported by a dynamic cytoskeleton and vesicle trafficking. Several signaling pathways have been demonstrated to coordinate pollen tube growth by regulating cellular activities such as actin dynamics, exocytosis, and endocytosis. These signaling pathways crosstalk to form a signaling network that coordinates the cellular processes required for tip growth. The homeostasis of key signaling molecules is critical for the proper elongation of the pollen tube tip, and is commonly fine-tuned by positive and negative regulations. In addition to the major signaling pathways, emerging evidence implies the roles of other signals in the regulation of pollen tube growth. Here we review and discuss how these signaling networks modulate the rapid growth of pollen tubes.展开更多
基金supported by the National Key Research and Development Program of China(2018YFD0100806,2017YFD0101201 and 2017YFD0102001)the National Natural Science Foundation of China(31871702,31971958 and 31771875)+2 种基金the Fundamental Research Funds for the Central Universities of China(06500136)the Beijing Science&Technology Plan Program(Z191100004019005)。
文摘Sugar metabolism plays an essential role in plant male reproduction. Defects in sugar metabolism during anther and pollen development often result in genic male sterility(GMS). In this review, we summarize the recent progresses of the sugar metabolism-related GMS genes and their roles during plant anther and pollen development, including callose wall and primexine formation, intine development, pollen maturation and starch accumulation, anther dehiscence, and pollen germination and tube growth. We predict 112 putative sugar metabolic GMS genes in maize based on bioinformatics and RNA-seq analyses, and most of them have peak expression patterns during middle or late anther developmental stages.Finally, we outline the potential applications of sugar metabolic GMS genes in crop hybrid breeding and seed production. This review will deepen our understanding on sugar metabolic pathways in controlling pollen development and male fertility in plants.
基金This work was supported by the National Natural Science Foundation of China(30370975)the Chinese National Project of Research and Development for High Technology(2003AA207120),P.R.China.
文摘In the paper, the full length cDNA of RsMF2 gene, homologous with the BcMF2 gene encoding pollen-specificpolygalacturonase of Chinese cabbage-pak-choi (Brassica campestris L. ssp. chinensis Makino) was cloned from Raphanussativus L. cv. Yuanbai by PCR, with a pair of primer designed according to the coding sequence of BcMF2. The largestopening reading frame of RsMF2 gene is 1 266 bp in length and encodes a protein of 421 amino acids with a predictedmolecular mass of 43.9 kDa. Sequence analysis revealed that it has three potential N-glycosylation sites and onepolygalacturonase active position (RVTCGPGHGLSVGS). And the first 32 amino acids of the predicted RsMF2 proteinform a N-terminal hydrophobic domain which displays the properties of a signal peptide. The predicted secondarystructure composition for the protein has 6.9% helix, 42.0% sheet and 51.1% loop. Four domains which are highly conservedin the whole plant and fungal PGs is present in RsMF2. Phylogenetic analysis showed that RsMF2 falls into the categoryof clade-C, which includes PGs related to pollen. These results indicate that RsMF2 may act as polygalacturonase relatedto pollen development.
基金supported by the National Natural Science Foundation of China(NSFC)(32072541 and 31601729)the National Modern Citrus Industry System(CARS-26)+1 种基金the Hubei Province Science and Technology Plan Project(2023BEB025)Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees(Institute of Fruit and Tea,Hubei Academy of Agricultural Sciences)(GSSZ202302).
文摘Achieving seedlessness in citrus varieties is one of the important objectives of citrus breeding.Male sterility associated with abnormal pollen development is an important factor in seedlessness.However,our understanding of the regulatory mechanism underlying the seedlessness phenotype in citrus is still limited.Here,we determined that the miR159a-DUO1 module played an important role in regulating pollen development in citrus,which further indirectly modulated seed development and fruit size.Both the overexpression of csi-miR159a and the knocking out of DUO1 in Hong Kong kumquat(Fortunella hindsii)resulted in small and seedless fruit phenotypes.Moreover,pollen was severely aborted in both transgenic lines,with arrested pollen mitotic I and abnormal pollen starch metabolism.Through additional cross-pollination experiments,DUO1 was proven to be the key target gene for miR159a to regulate male sterility in citrus.Based on DNA affinity purification sequencing(DAP-seq),RNA-seq,and verified interaction assays,YUC2/YUC6,SS4 and STP8 were identified as downstream target genes of DUO1,those were all positively regulated by DUO1.In transgenic F.hindsii lines,the miR159a-DUO1 module down-regulated the expression of YUC2/YUC6,which decreased indoleacetic acid(IAA)levels and modulated auxin signaling to repress pollen mitotic I.The miR159a-DUO1 module reduced the expression of the starch synthesis gene SS4 and sugar transport gene STP8 to disrupt starch metabolism in pollen.Overall,this work reveals a new mechanism by which the miR159a-DUO1 module regulates pollen development and elucidates the molecular regulatory network underlying male sterility in citrus.
基金supported by Heilongjiang Provincial Natural Science Foundation of China(Grant No.YQ2022C012)China Postdoctoral Science Foundation(Grant No.2022MD713728)+1 种基金Heilongjiang Provincial Postdoctoral Fund(Grant No.LBHZ21046)the Open Project of Key Laboratory of Biology and Genetic Improvement of Horticultural Crops(Northeast Region),Ministry of Agriculture and Rural Affairs,and National Key Research and Development Program of China(Grant No.2023YFD1201501).
文摘Ogura cytoplasmic male sterility(Ogura CMS)is extensively applied in hybrid seed production in cruciferous crops.However,the posttranscriptional molecular basis of Ogura CMS in cruciferous crops remains elusive.Here,a data-independent acquisition-based proteomic approach coupled with a parallel reaction monitoring-based targeted proteomic assay was used to analyze the proteome dynamics of Ogura CMS cabbage line RM and its maintainer line RF during floral bud development to obtain insights into the mechanism underlying Ogura CMS in cruciferous crops.A total of 9162 proteins corresponding to 61464 peptides were identified in RM and RF floral buds.The proteomic fluctuation of RM was weaker than that of RF.Differences in protein expression between RM and RF gradually enlarged with floral bud development.Fifteen continually up-regulated and eight continually down-regulated proteins were found in RM relative to RF throughout floral bud development.Differentially expressed proteins between RM and RF during floral bud development were implicated in the endoplasmic reticulum(ER)-associated protein processing pathway,in which most of them exhibited down-regulated expression in RM.These data suggest that ER-associated protein processing may be involved in pollen abortion in Ogura CMS cabbage by inhibiting the expression of critical factors.Our findings not only deepen the understanding of the molecular mechanisms of Ogura CMS in cruciferous crops but also provide better guidance for applying Ogura CMS in the hybrid breeding of cruciferous crops.
基金supported by the Fund for the Biological Breeding-Major Projects in National Science and Technology(2023ZD04038)the Key Project for Agricultural Breakthrough in Core Technology of Xinjiang Production and Construction Crops(NYHXGG,2023AA102)the Key Project for Science and Technology Development of Shihezi city,Xinjiang Production and Construction Crops(2022NY01)。
文摘Background Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing sterile germplasm resources.However,only a few cytoplasmic male sterility(CMS)lines of cotton have been produced due to several challenges,like inadequate variation of agronomic traits,incomplete sterility,weak resilience of restorer lines,and difficulty in combining strong dominance.Therefore,the morphological and cytological identification of CMS in cotton will facilitate hybrid breeding.Results Two F_(2) segregating populations of cotton were constructed from cytoplasmic male sterile lines(HaA and 01A,maternal)and restorer lines(HaR and 26R,paternal).Genetic analysis of these populations revealed a segregation ratio of 3:1 for fertile to sterile plants.Phenotypic analysis indicated no significant differences in traits of flower bud development between sterile and fertile plants.However,sterile plants exhibited smaller floral organs,shortened filament lengths,and anther atrophy on the flowering day in comparison with the fertile plants.When performed scanning electron microscopy(SEM),the two F_(2) populations revealed morphological variations in the anther epidermis.Cellular analysis showed no significant differences in pollen development before pollen maturation.Interestingly,between the pollen maturation and flowering stages,the tapetum layer of sterile plants degenerated prematurely,resulting in abnormal pollen grains and gradual pollen degradation.Conclusion The results of this study suggest that fertility-restoring genes are controlled by a single dominant gene.Sterile plants exhibit distinctive floral morphology,which is characterized by stamen atrophy and abnormal anthers.Pollen abortion occurs between pollen maturity and flowering,indicating that premature tapetum degradation may be the primary cause of pollen abortion.Overall,our study provides a theoretical basis for utilizing CMS in hybrid breeding and in-depth investigation of the dominant configuration of cotton hybrid combinations,mechanisms of sterility,and the role of sterile and restorer genes.
基金supported by Major Research Plan(2013CB945102)from the Ministry of Science,Technology of ChinaNational Natural Science Foundation of China(31625003 and 31471304 to Y.Z.)partially supported by Tai-Shan Scholar Program by Shandong Provincial Government
文摘Pollen development is a,pre-requisite for sexual reproduction of angiosperms, during which various cellular activities are involved. Pollen development accompanies dynamic remodeling of vacuoles through fission and fusion, disruption of which often compromises pollen viability. We previously reported that the Y subunit of adaptor protein 1 (AP1G) mediates synergid degeneration during pollen tube reception. Here, we demonstrate that AP1G is essential for pollen development. AP1G loss-of-function resulted in male gametophytic lethality due to defective pollen development. By ultrastructural analysis and fluorescence labeling, we demonstrate that AP1G loss-of-function compromised dynamic vacuolar remodeling during pollen development and impaired vacuolar acidification of pollen. Results presented here support a key role of vacuoles in gametophytic pollen development.
基金The National Basic Research Program(973 Program)of China under contract No.2010CB951203the National Natural Science Foundation of China under contract Nos 41206057,41576067,41376075 and 41576061
文摘Mangrove degradation must reduce carbon sequestration in recent years, thereby aggravating global warming.Thus, short-term impacts of human activity on mangrove ecosystems are cause for concern from local governments and scientists. Mangroves sediments can provide detailed records of mangrove species variation in the last one hundred years, based on detailed 210 Pb data. The study traced the history of mangrove development and its response to environmental change over the last 140 years in two mangrove swamps of Guangxi, Southwest China. Average sedimentation rates were calculated to be 0.48 cm/a and 0.56 cm/a in the Yingluo Bay and the Maowei Sea, respectively. Chemical indicators(δ13Corg and C:N) were utilized to trace the contribution of mangrove-derived organic matter(MOM) using a ternary mixing model. Simultaneous use of mangrove pollen can help to supplement some of these limitations in diagenetic/overlap of isotopic signatures. We found that vertical distribution of MOM was consistent with mangrove pollen, which could provide similar information for tracing mangrove ecosystems. Therefore, mangrove development was reconstructed and divided into three stages: flourishing, degradation and re-flourishing/re-degradation period. The significant degradation, found in the period of 1968–1998 and 1907–2007 in the Yingluo Bay and the Maowei Sea, respectively, corresponding to a rapid increase of reclamation area and seawall length, rather than climate change as recorded in the region.
基金supported by the National Natural Science Foundation of China(31771876)the Sichuan Province Science and Technology Program(2021YFYZ0011,2021YFYZ0017).
文摘Callose contributes to many biological processes of higher plants including pollen development,cell plate and vascular tissue formation,as well as regulating the transport function of plasmodesmata.The functions of callose synthase genes in maize have been little studied.We describe a maize male-sterile mutant 39(ms39)characterized by reduced plant height.In this study,we confirmed using CRISPR/Cas9 technology that a mutation in Zm00001d043909(ZmCals12),encoding a callose synthase,is responsible for the male sterility of the ms39 mutant.Compared with male-fertile plants,callose deposition around the dyads and tetrads in ms39 anthers was significantly reduced.Increased cell autophagy observed in ms39 anthers may have been due to the premature programmed cell death of tapetal cells,leading to collapse of the anther wall structure.Disordered glucose metabolism in ms39 may have intensified autophagy in anthers.Evaluation of the ms39 gene on maize heterosis by paired-crossed experiment with 11 maize inbred lines indicated that ms39 can be used for maize hybrid seed production.
文摘用19种植物花粉对间泽钝绥螨Amblyseius aizawai Ehara et Bhandliu-falck进行了食性试验,结果表明均能取食,并能使雌螨产卵。以其中9种花粉作发育历期观察,一个生活周期4.25~8.55天。饲育存活率较高的花粉有丝瓜、棕榈、石榴和桦木,存活率达70.00~82.00%;产卵期10.00~40.80天,平均产卵期最长的有玉米、混合花粉和马桑花粉;产卵量10.00~74.00粒,平均产卵量最高的有丝瓜、混合花粉和石榴的花粉;饲育其雌性比最高的是丝瓜花粉;以8种花粉饲养成螨,寿命最长的是马桑、玉米、混合花粉和石榴花粉。
基金supported by Peking University Institute of Advanced Agricultural Sciences, and Beijing Municipal Government Science Foundation (IDHT20170513)。
文摘TaMs1 encodes a non-specific lipid transfer protein(nsLTP) and is required for pollen development in wheat. Although MS1 is a Poaceae-specific gene, the roles of MS1 genes in other Poaceae plants are unknown, especially in rice and maize. Here, we identified one ortholog in rice(OsLTPg29) and two orthologs in maize(ZmLTPg11 and ZmLTPx2). Similar to TaMs1, both OsLTPg29 and ZmLTPg11 genes are specifically expressed in the microsporocytes, and both OsLTPg29 and ZmLTPg11 proteins showed lipid-binding ability to phosphatidic acid and several phosphoinositides. To determine their roles in pollen development, we created osltpg29 mutants and zmltpg11 zmltpx2 double mutants by CRISPR/Cas9.osltpg29, not zmltpg11 zmltpx2, is defective in pollen development, and only OsLTPg29, not ZmLTPg11,can rescue the male sterility of tams1 mutant. Our results demonstrate that the biological function of MS1 in pollen development differs in the evolution of Poaceae plants.
基金supported by grants from the National Natural Science Foundation of China (30925007)Shanghai(11ZR1425800)the State Key Basic Research and Development Program of China (2007CB947600)
文摘In anther development, tapetal cells take part in complex processes, including endomitosis and apoptosis (programmed cell death). The tapetum provides many of the proteins, lipids, polysaccharides and other molecules necessary for pollen development. Several transcription factors, including DYT1, TDF1, AMS, MS188 and MS1, have been reported to be essential for tapetum development and function in Arabidopsis thaliana. Here, we present a detailed cytological analysis of knockout mutants for these genes, along with an in situ RNA hybridization experiment and double mutant analysis showing that these transcription factors form a genetic pathway in tapetum development. DYT1, TDF1 and AMS function in early tapetum development, while MS188 and MS1 are important for late tapetum development. The genetic pathway revealed in this work facilitates further investigation of the function and molecular mechanisms of tapetum development in Arabidopsis.
文摘Pollen tubes elongate rapidly at their tips through highly polarized cell growth known as tip growth. Tip growth requires intensive exocytosis at the tip, which is supported by a dynamic cytoskeleton and vesicle trafficking. Several signaling pathways have been demonstrated to coordinate pollen tube growth by regulating cellular activities such as actin dynamics, exocytosis, and endocytosis. These signaling pathways crosstalk to form a signaling network that coordinates the cellular processes required for tip growth. The homeostasis of key signaling molecules is critical for the proper elongation of the pollen tube tip, and is commonly fine-tuned by positive and negative regulations. In addition to the major signaling pathways, emerging evidence implies the roles of other signals in the regulation of pollen tube growth. Here we review and discuss how these signaling networks modulate the rapid growth of pollen tubes.