A free-standing paper-like three-dimensional graphene framework(3DGF) with orientated laminar structure and interconnected macropores, was obtained by the hard template-directed ordered assembly. As the sacrificial ...A free-standing paper-like three-dimensional graphene framework(3DGF) with orientated laminar structure and interconnected macropores, was obtained by the hard template-directed ordered assembly. As the sacrificial templates, polystyrene(PS) latex spheres were assembled with graphene oxide(GO) to build up a sandwich type composite film, followed by heat removal of which with a simultaneous reduction of GO. The 3DGF exhibited high specific surface area of 402.5 m2/g, controllable pores and mechanical flexibility, which was employed as the binder-free supercapacitor electrode and shows high specific gravimetric capacitance of 95 F/g at 0.5 A/g, with enhanced rate capability in 3 electrode KOH system.展开更多
Fabrication of superior catalytic performance palladium-based catalysts with affordable cost is the key to develop direct ethanol fuel cell.Herein,Pd-decorated three-dimensional(3D)porous constructed from graphene oxi...Fabrication of superior catalytic performance palladium-based catalysts with affordable cost is the key to develop direct ethanol fuel cell.Herein,Pd-decorated three-dimensional(3D)porous constructed from graphene oxide(GO)and MXene combining with polystyrene(PS)particles as sacrificial templates(Pd/GO-MXene-PS)to elevate the catalytic performance for ethanol oxidation was proposed.The 3D porous interconnected structure of Pd/GO-MXene-PS was characterized by scanning electron microscope(SEM),transmission electron microscope(TEM)and Brunner−Emmet−Teller(BET).By optimizing the doping ratio of MXene to GO,the mass activity of Pd/GO_(5)-MXene_(5)-PS(2944.0 mA·mg^(−1))was 3.0 times higher than that of commercial Pd/C(950.4 mA·mg^(−1))toward ethanol oxidation in base solution.Meanwhile,the rotating disk electrode(RDE)results demonstrated that Pd/GO5-MXene5-PS had a faster kinetics of ethanol oxidation.The enhanced ethanol oxidation over Pd/GO5-MXene5-PS could attribute to the excellent 3D interconnected porous structure,large surface area,good conductivity and homogeneous Pd distribution.This work provided a new idea for creating 3D porous MXene composite materials in electrocatalysis.展开更多
A layer of zinc oxide(ZnO)micro-grid was deposited on the surface of ZnO film using the DC reactive magnetron sputtering method and the micro-sphere lithography technique on glass substrates.Samples of this layer were...A layer of zinc oxide(ZnO)micro-grid was deposited on the surface of ZnO film using the DC reactive magnetron sputtering method and the micro-sphere lithography technique on glass substrates.Samples of this layer were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),atomic force microscopy(AFM),and ultraviolet-visible light spectroscopy.X-ray diffraction showed the high crystallinity of ZnO film and the regular arrangement of the micro-grid.The microgrid ZnO has a lower specular reflection and a higher diffuse reflection,allowing incident light to reflect two or three times to enhance the usage of light.Photocatalytic degradation experiments on methylene blue using both ZnO micro-grid and ordinary film showed that the ZnO micro-grid has better photocatalytic properties than ordinary film.The ZnO micro-grid enhanced the photocatalytic efficiency of ZnO film by 28%with a degradation time of 300 min.展开更多
基金financial support from the Natural Science Foundation of China(51302281 and 51402324)Natural Science Foundation of Shanxi Province(2013011012–7)
文摘A free-standing paper-like three-dimensional graphene framework(3DGF) with orientated laminar structure and interconnected macropores, was obtained by the hard template-directed ordered assembly. As the sacrificial templates, polystyrene(PS) latex spheres were assembled with graphene oxide(GO) to build up a sandwich type composite film, followed by heat removal of which with a simultaneous reduction of GO. The 3DGF exhibited high specific surface area of 402.5 m2/g, controllable pores and mechanical flexibility, which was employed as the binder-free supercapacitor electrode and shows high specific gravimetric capacitance of 95 F/g at 0.5 A/g, with enhanced rate capability in 3 electrode KOH system.
基金financially supported by the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(No.A30B191410)the Sailing Project from Science and Technology Commission of Shanghai Municipality(No.17YF1406600)+6 种基金Chenguang Project Supported by Shanghai Municipal Education Commission(No.18CG68)Gaoyuan Discipline of Shanghai-Materials Science and Engineering(No.A30NH221903)the Open Project of Jiangsu Key Laboratory for Carbon-Based Functional Materials&Devices(Soochow University)(No.KS2022)Collaborative Innovation Center of Suzhou Nano Science&Technologythe 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devicesthe Project of Guangdong Provincial Education(No.2020KTSCX131)。
文摘Fabrication of superior catalytic performance palladium-based catalysts with affordable cost is the key to develop direct ethanol fuel cell.Herein,Pd-decorated three-dimensional(3D)porous constructed from graphene oxide(GO)and MXene combining with polystyrene(PS)particles as sacrificial templates(Pd/GO-MXene-PS)to elevate the catalytic performance for ethanol oxidation was proposed.The 3D porous interconnected structure of Pd/GO-MXene-PS was characterized by scanning electron microscope(SEM),transmission electron microscope(TEM)and Brunner−Emmet−Teller(BET).By optimizing the doping ratio of MXene to GO,the mass activity of Pd/GO_(5)-MXene_(5)-PS(2944.0 mA·mg^(−1))was 3.0 times higher than that of commercial Pd/C(950.4 mA·mg^(−1))toward ethanol oxidation in base solution.Meanwhile,the rotating disk electrode(RDE)results demonstrated that Pd/GO5-MXene5-PS had a faster kinetics of ethanol oxidation.The enhanced ethanol oxidation over Pd/GO5-MXene5-PS could attribute to the excellent 3D interconnected porous structure,large surface area,good conductivity and homogeneous Pd distribution.This work provided a new idea for creating 3D porous MXene composite materials in electrocatalysis.
基金the National Natural Science Foundation of China(Grant Nos.50672003 and 50872005)the National Basic Research Program of China(Grant No.2007CB613302)the Fok Ying-Tong Education Foundation(No.111050).
文摘A layer of zinc oxide(ZnO)micro-grid was deposited on the surface of ZnO film using the DC reactive magnetron sputtering method and the micro-sphere lithography technique on glass substrates.Samples of this layer were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),atomic force microscopy(AFM),and ultraviolet-visible light spectroscopy.X-ray diffraction showed the high crystallinity of ZnO film and the regular arrangement of the micro-grid.The microgrid ZnO has a lower specular reflection and a higher diffuse reflection,allowing incident light to reflect two or three times to enhance the usage of light.Photocatalytic degradation experiments on methylene blue using both ZnO micro-grid and ordinary film showed that the ZnO micro-grid has better photocatalytic properties than ordinary film.The ZnO micro-grid enhanced the photocatalytic efficiency of ZnO film by 28%with a degradation time of 300 min.