Polyamines play important roles in plant tolerance to environmental stress. With the aim of investigating the possible involvement of putrescine (Put) in salt-tolerance mechanisms in vegetable soybean roots, exogeno...Polyamines play important roles in plant tolerance to environmental stress. With the aim of investigating the possible involvement of putrescine (Put) in salt-tolerance mechanisms in vegetable soybean roots, exogenous Put (10 mmol L") and its biosynthetic inhibitor D-arginine (D-Arg) (0.5 mmol L-1) were added to nutrient solution when vegetable soybean (Glycine max L. cv. Huning 95-1) seedlings were exposed to 100 mmol L^-11 sodium chloride (NaCl). The results showed that Put ameliorated but D-Arg aggravated the detrimental effects of NaCl on plant growth and biomass production. Under NaCl stress, levels of free, soluble conjugated and insoluble bound types of Put in roots of vegetable soybean were reduced, whereas those of free, soluble conjugated, and insoluble bound types of spermidine (Spd) and spermine (Spm) were increased. Exogenous Put eliminated the decrease in Put but promoted the increase of Spd and Spm. However, these changes could be reversed by D-Arg. Under NaCl stress, activities of arginine decarboxylase (ADC), S-adenosylmethionine decarboxylase (SAMDC), diamine oxidase (DAO), and polyamine oxidase (PAO) were induced, with exogenous Put promoting and D-Arg reversing these changes. Furthermore, NaCl stress decreased activities of antioxidant enzymes. Exogenous Put alleviated but D-Arg exaggerated these effects of NaCl stress, resulting in the same changes in membrane damage and reactive oxygen species (ROS) production. These results indicated that Put plays a positive role in vegetable soybean roots by activating antioxidant enzymes and thereby attenuating oxidative damage.展开更多
AIM: To study the transepithelial transport characteristics of the polyamine putrescine in human intestinal Caco-2 cell monolayers to elucidate the mechanisms of the putrescine intestinal absorption. METHODS: The tran...AIM: To study the transepithelial transport characteristics of the polyamine putrescine in human intestinal Caco-2 cell monolayers to elucidate the mechanisms of the putrescine intestinal absorption. METHODS: The transepithelial transport and the cellular accumulation of putrescine was measured using Caco-2 cell monolayers grown on permeable filters. RESULTS: Transepithelial transport of putrescine in physiological concentrations (】 0.5 mM) from the apical to basolateral side was linear. Intracellular accumulation of putrescine was higher in confluent than in fully differentiated Caco-2 cells, but still negligible (less than 0.5%) of the overall transport across the monolayers in apical to basolateral direction.EGF enhanced putrescine accumulation in Caco-2 cells by four fold, as well as putrescine conversion to spermidine and spermine by enhancing the activity of S adenosylmethionine decarboxylase. However, EGF did not have any significant influence on putrescine flux across the Caco-2 cell monolayers. Excretion of putrescine from Caco-2 cells into the basolateral medium did not exceed 50 picomoles, while putrescine passive flux from the apical to the basolateral chamber, contributed hundreds of micromoles polyamines to the basolateral chamber. CONCLUSION :Transepithelial transport of putrescine across Caco2 cell monolayers occurs in passive diffusion, and is not influenced when epithelial cells are stimulated to proliferate by a potent mitogen such as EGF.展开更多
Background: Polyamines are essential for cell growth and beneficial for intestinal maturation. To evaluate the effects of putrescine on alleviating intestinal atrophy and underlying molecular mechanisms, both in vivo ...Background: Polyamines are essential for cell growth and beneficial for intestinal maturation. To evaluate the effects of putrescine on alleviating intestinal atrophy and underlying molecular mechanisms, both in vivo feeding trial and in vitro cell culture were conducted. Weanling pigs were fed a diet supplemented with 0, 0.1%, 0.2% or0.3% putrescine dihydrochloride, whereas porcine intestinal epithelial cells(IPEC-J2) were challenged with lipopolysaccharide(LPS) in the presence of 200 μmol/L putrescine.Results: Dietary supplementation with 0.2% putrescine dihydrochloride decreased the incidence of diarrhea with an improvement in intestinal integrity. Inhibition of ornithine decarboxylase activity decreased the proliferation and migration of IPEC-J2 cells, and this effect was alleviated by the supplementation with putrescine. The phosphorylation of extracellular signal regulated kinase and focal adhesion kinase was enhanced by putrescine. LPS increased the expression of inflammatory cytokines [tumor necrosis factor α(TNF-α), interleukin 6(IL-6) and IL-8],and inhibited cell proliferation and migration in IPEC-J2 cells. Adding exogenous putrescine suppressed the expression of TNF-α, IL-6 and IL-8, and recovered cell migration and proliferation in LPS-treated IPEC-J2 cells. Dietary putrescine supplementation also reduced the m RNA levels of TNF-α, IL-6 and IL-8 and their upstream regulator nuclear receptor kappa B p65 subunit in the jejunal mucosa of piglets.Conclusions: Dietary supplementation with putrescine mitigated mucosal atrophy in weanling piglets through improving anti-inflammatory function and suppressing inflammatory response. Our results have important implications for nutritional management of intestinal integrity and health in weanling piglets and other neonates.展开更多
The effects of putrescine on improving rice growth under aluminum(Al)toxicity conditions have been previously demonstrated,however,the underlying mechanism remains unclear.In this study,treatment with 50 pmol/L Al sig...The effects of putrescine on improving rice growth under aluminum(Al)toxicity conditions have been previously demonstrated,however,the underlying mechanism remains unclear.In this study,treatment with 50 pmol/L Al significantly decreased rice root growth and whole rice dry weight,inhibited Ca2+uptake,decreased ATP syn thesis,and in creased Al,H2O2 and malon dialdehyde(MDA)con tents,whereas the application of putrescine mitigated these negative effects.Putrescine increased root growth and total dry weight of rice,reduced total Al content,decreased H2O2 and MDA contents by increasing antioxidant enzyme(superoxide dismutase,peroxidase,catalase and glutathione S・transferase)activities,increased Ca2+uptake and energy product!oru Proteomic analyses using data-independent acquisition successfully identified 7934 proteins,and 59 representative proteins exhibiting fold-change values higher than 1.5 were randomly selected.From the results of the proteomic and biochemical analyses,we found that putrescine significantly inhibited ethylene biosynthesis and phosphorus uptake in rice roots,increased pectin methylation,decreased pectin content and apoplastic Al deposit!on in rice roots.Putrescine also alleviated Al toxicity by repairing damaged DNA and increasing the proteins involved in maintaining plasma membra ne integrity and normal cell proliferation.These fin dings improve our understanding of how putrescine affects the rice response to Al toxicity,which will facilitate further studies on environmental protection,crop safety,in novations in rice performance and real-world producti on.展开更多
Choline is a crucial factor in the regulation of sperm membrane structure and fluidity, and this nutrient plays an important role in the maturation and fertilizing capacity of spermatozoa. Transcripts of phosphatidyle...Choline is a crucial factor in the regulation of sperm membrane structure and fluidity, and this nutrient plays an important role in the maturation and fertilizing capacity of spermatozoa. Transcripts of phosphatidylethanolamine N-methyltransferase (PEMT) and choline dehydrogenase (CHDH), two basic enzymes of choline metabolism, have been observed in the human testis, demonstrating their gene expression in this tissue. In the present study, we explored the contribution of the PEMTand CHDHgene variants to sperm parameters. Two hundred oligospermic and 250 normozoospermic men were recruited. DNA was extracted from the spermatozoa, and the PEMT -774G〉C and CHDH +432G〉T polymorphisms were genotyped. The genotype distribution of the PEMT-774G〉C polymorphism did not differ between oligospermic and normozoospermic men. In contrast, in the case of the CHDH +432G〉T polymorphism, oligospermic men presented the CHDH432GIG genotype more frequently than normozoospermic men (62% vs. 42%, P〈0.001). The PEMT774GIG genotype was associated with a higher sperm concentration compared to the PEMT774GIC and 774C/C genotypes in oligospermic men (12.5±5.6× 10^6 spermatozoa m1-1 vs. 8.3±5.2×10^6 spermatozoa m1-1, P〈0.002) and normozoospermic men (81.5±55.6×10^6 vs. 68.1±44.5×10^6 spermatozoa m1-1, P〈0.006). In addition, the CHDH432G/G genotype was associated with higher sperm concentration compared to CHDH432G.T and 432T/T genotypes in oligospermic (11.8±5.1×10^6 vs. 7.8±5.3×10^6 spermatozoa m1-1, P〈0.003) and normozoospermic men (98.6±62.2×10^6 vs. 58.8±+33.6×10^6 spermatozoa m1-1, P〉0.001). In our series, the PEMT-774G〈C and CHDH +432G〈T polymorphisms were associated with sperm concentration. This finding suggests a possible influence of these genes on sperm quality.展开更多
AIM: To analyse the role of two common polymorphisms in genes coding for histamine metabolising enzymes as it relates to the risk to develop ulcerative colitis (UC) and the clinical course of these patients. METHOD...AIM: To analyse the role of two common polymorphisms in genes coding for histamine metabolising enzymes as it relates to the risk to develop ulcerative colitis (UC) and the clinical course of these patients. METHODS: A cohort of 229 unrelated patients with UC recruited from a single centre and 261 healthy volunteers were analysed for the presence of Thr105Ile and His645Asp amino acid substitutions at histamine N-methyltransferase (HNMT) and diamine oxidase (ABP1) enzymes, respectively, by amplification-restriction procedures. All patients were phenotyped and followed up for at least 2 years (mean time 11 years). RESULTS: There were no significant differences in the distribution of ABP1 alleles between ulcerative colitis patients and healthy individuals [OR (95% CI) for variant alleles = 1.22 (0.91-1.61)]. However, mutated ABP1 alleles were present with higher frequency among the 58 patients that required immunosuppresive drugs [OR (95 % CI) for carriers of mutated alleles 2.41 (1.21-4.83; P=0.006)], with a significant gene-dose effect (P= 0.0038). In agreement with the predominant role of ABP1 versus HNMT on local histamine metabolism in human bowel, the frequencies for carriers of HNMT genotypes or mutated alleles were similar among patients,regardless clinical evolution, and control individuals. CONCLUSION: The His645Asp polymorphism of the histamine metabolising enzyme ABP1 is related to severity of ulcerative colitis.展开更多
Putrescine(Put)as the compound of plant polyamines is catalyzed by arginine decarboxylase(ADC),which is encoded by two members,ADC1 and ADC2 in Arabidopsis,and ADC2 is mainly responsible for Put biosynthesis.Accumulat...Putrescine(Put)as the compound of plant polyamines is catalyzed by arginine decarboxylase(ADC),which is encoded by two members,ADC1 and ADC2 in Arabidopsis,and ADC2 is mainly responsible for Put biosynthesis.Accumulated evidence demonstrates the important function of Put in plant growth and development,but its role in regulating seed germination under high temperature(HT)has not been reported yet.SOMNUS(SOM)is the negative regulator for seed germination thermoinhibition by altering downstream gibberellin(GA)and abscisic acid(ABA)metabolism.In this study,we found exogenous application of Put obviously alleviated the inhibition effect of HT on seed germination.Whereas pharmacological inhibition of endogenous Put level reduced seed germination under HT.Consistently,HT induced the rapid accumulation of Put level,and the adc2 mutant defi-ciency in Put biosynthesis also showed more sensitivity to HT stress.Furthermore,we found that the Put signal suppressed the expression of SOM and changed the transcriptional patterns of genes associated with GA/ABA metabolism.Genetic analysis also revealed SOM was epistatic to ADC2 to alter GA/ABA metabolism.Collectively,our finding reveals the novel function of Put in controlling seed germination under HT through SOM,and provides the possibility to develop Put as the innovational regulator for uniform seed germination under HT stress.展开更多
The effect of different concentrations of putrescine on biochemical changes in root and shoot of six days old maize seedlings in terms of enzymes of ammonium assimilation were examined. The results revealed that gluta...The effect of different concentrations of putrescine on biochemical changes in root and shoot of six days old maize seedlings in terms of enzymes of ammonium assimilation were examined. The results revealed that glutamate dehydrogenase (GDH) activity was enhanced at lower concentration of putrescine but at higher concentration, the activity of this enzyme was declined. Glutamine synthetase (GS) activity decreased with increase in concentration of putrescine and it was highest at 1000 μm concentration. Howe ver, glutamate synthase (GOGAT) activity increased with increase in concentration of putrescine upto 100 μm in root and upto 50 μm in shoot and further increase in concentration resulted in decline of enzymatic activity. Protein and total nitrogen content increased upto 10 μm concentration of putrescine and it decreased further with increase in concentration both in root and shoot of maize seedling.展开更多
Putrescine is reported to be necessary for cold acclimation under low-temperature stress.In this study,the effect of low-temperature on some physiological and biochemical parameters has been investigated using the gre...Putrescine is reported to be necessary for cold acclimation under low-temperature stress.In this study,the effect of low-temperature on some physiological and biochemical parameters has been investigated using the green algae Chlamydomonas reinhardtii.The lipid peroxidation rate,amount of Rubisco protein,activities of antioxidant enzymes and gene expression of polyamine biosynthesis(odc2,and spd1),heat shock proteins(hsp70c,hsp90a,and hsp90c),and PSII repair mechanisms(psba,rep27,and tba1)were determined to understand the low-temperature response.Exogenous putrescine application significantly increased Rubisco protein concentration and catalase enzyme activities under low-temperature stress.Moreover,real-time RT-PCR results and gene expression analysis showed that polyamine metabolism induced gene expression at low-temperatures in the first 24 h.In the same way,the gene expression of heat shock proteins(hsp70c,hsp90a,and hsp90c)decreased under low-temperature treatment for 72 h;however,application of putrescine enhanced the gene expression in the first 24 h.The results obtained indicated that molecular response in the first 24 h could be important for cold acclimation.The psba and tba1 expressions were reduced under low-temperatures depending on the exposure time.In contrast,the exogenous putrescine enhanced the expression level of the psba response to low-temperature at 24 and 72 h.The results obtained in this study indicate that putrescine could play a role in the PS II repair mechanisms under low-temperature stress.展开更多
A pot experiment was conducted in lath house to study the response of six month-old seedlings of sour orange (Citrus aurantium L.) irrigated with salinity water (1, 2 or 4 ds/m) for four month. The seedling was sp...A pot experiment was conducted in lath house to study the response of six month-old seedlings of sour orange (Citrus aurantium L.) irrigated with salinity water (1, 2 or 4 ds/m) for four month. The seedling was sprayed with putrescine at 0, 150 or 300 mg/L concentrations for three times with month interval, for investigation the effects of putrrescine spraying on hormonal changes in sour orange seedlings under salt stress. One month after the last putrescine application, the leaves of the vegetative shoots were picked for endogenous plant hormone determination. The results indicate that increasing level of irrigation water salinity to 4 ds/m significantly increased ABA, Put and SA; whereas, decreasing IAA and GA in leave. Spraying vegetative canopy with putreseine at 300 mg/L increased 1AA, SA, ABA and Put, while decreased GA. It can be concluded that the adverse effects of high salinity irrigated water on endogenous plant hormone can be ameliorated, to some extent, by exogenous application of Put at 150 mg/L or 300 mg/L concentration.展开更多
The response patterns of microbial functional genes involved in biogeochemical cycles to cadaver decay is a central topic of recent environmental sciences.However,the response mechanisms and pathways of the functional...The response patterns of microbial functional genes involved in biogeochemical cycles to cadaver decay is a central topic of recent environmental sciences.However,the response mechanisms and pathways of the functional genes associated with the carbon(C)and nitrogen(N)cycling to cadaveric substances such as cadaverine and putrescine remain unclear.This study explored the variation of functional genes associated with C fixation,C degradation and N cycling and their influencing factors under cadaverine,putrescine and mixed treatments.Our results showed only putrescine significantly increased the alpha diversity of C fixation genes,while reducing the alpha diversity of N cycling genes in sediment.For the C cycling,the mixed treatment significantly decreased the total abundance of reductive acetyl-CoA pathway genes(i.e.,acsB and acsE)and lig gene linked to lignin degradation in water,while only significantly increasing the hydroxypropionate-hydroxybutylate cycle(i.e.,accA)gene abundance in sediment.For the N cycling,mixed treatment significantly decreased the abundance of the nitrification(i.e.,amoB),denitrification(i.e.,nirS3)genes in water and the assimilation pathway gene(i.e.,gdhA)in sediment.Environmental factors(i.e.,total carbon and total nitrogen)were all negatively associated with the genes of C and N cycling.Therefore,cadaverine and putrescine exposure may inhibit the pathway in C fixation and N cycling,while promoting C degradation.These findings can offer some new insight for the management of amine pollution caused by animal cadavers.展开更多
Cell wall is the first physical barrier to aluminum(Al)toxicity.Modification of cell wall properties to change its binding capacity to Al is one of the major strategies for plant Al resistance;nevertheless,how it is r...Cell wall is the first physical barrier to aluminum(Al)toxicity.Modification of cell wall properties to change its binding capacity to Al is one of the major strategies for plant Al resistance;nevertheless,how it is regulated in rice remains largely unknown.In this study,we show that exogenous application of putrescines(Put)could significantly restore the Al resistance of art1,a rice mutant lacking the central regulator Al RESISTANCE TRANSCRIPTION FACTOR 1(ART1),and reduce its Al accumulation particularly in the cell wall of root tips.Based on RNA-sequencing,yeast-onehybrid and electrophoresis mobility shift assays,we identified an R2R3 MYB transcription factor OsMYB30 as the novel target in both ART1-dependent and Put-promoted Al resistance.Furthermore,transient dual-luciferase assay showed that ART1 directly inhibited the expression of OsMYB30,and in turn repressed Os4CL5-dependent 4-coumaric acid accumulation,hence reducing the Al-binding capacity of cell wall and enhancing Al resistance.Additionally,Put repressed OsMYB30 expression by eliminating Alinduced H2O2accumulation,while exogenous H2O2promoted OsMYB30 expression.We concluded that ART1 confers Put-promoted Al resistance via repression of OsMYB30-regulated modification of cell wall properties in rice.展开更多
基金supported by the National Natural Science Foundation of China(31101538,31000942 and 31000676)the Grand Science and Technology Special Project of Zhejiang Province,China(2010C02006)the Public Welfare Project of Zhejiang Province,China(2011R23A52D04)
文摘Polyamines play important roles in plant tolerance to environmental stress. With the aim of investigating the possible involvement of putrescine (Put) in salt-tolerance mechanisms in vegetable soybean roots, exogenous Put (10 mmol L") and its biosynthetic inhibitor D-arginine (D-Arg) (0.5 mmol L-1) were added to nutrient solution when vegetable soybean (Glycine max L. cv. Huning 95-1) seedlings were exposed to 100 mmol L^-11 sodium chloride (NaCl). The results showed that Put ameliorated but D-Arg aggravated the detrimental effects of NaCl on plant growth and biomass production. Under NaCl stress, levels of free, soluble conjugated and insoluble bound types of Put in roots of vegetable soybean were reduced, whereas those of free, soluble conjugated, and insoluble bound types of spermidine (Spd) and spermine (Spm) were increased. Exogenous Put eliminated the decrease in Put but promoted the increase of Spd and Spm. However, these changes could be reversed by D-Arg. Under NaCl stress, activities of arginine decarboxylase (ADC), S-adenosylmethionine decarboxylase (SAMDC), diamine oxidase (DAO), and polyamine oxidase (PAO) were induced, with exogenous Put promoting and D-Arg reversing these changes. Furthermore, NaCl stress decreased activities of antioxidant enzymes. Exogenous Put alleviated but D-Arg exaggerated these effects of NaCl stress, resulting in the same changes in membrane damage and reactive oxygen species (ROS) production. These results indicated that Put plays a positive role in vegetable soybean roots by activating antioxidant enzymes and thereby attenuating oxidative damage.
文摘AIM: To study the transepithelial transport characteristics of the polyamine putrescine in human intestinal Caco-2 cell monolayers to elucidate the mechanisms of the putrescine intestinal absorption. METHODS: The transepithelial transport and the cellular accumulation of putrescine was measured using Caco-2 cell monolayers grown on permeable filters. RESULTS: Transepithelial transport of putrescine in physiological concentrations (】 0.5 mM) from the apical to basolateral side was linear. Intracellular accumulation of putrescine was higher in confluent than in fully differentiated Caco-2 cells, but still negligible (less than 0.5%) of the overall transport across the monolayers in apical to basolateral direction.EGF enhanced putrescine accumulation in Caco-2 cells by four fold, as well as putrescine conversion to spermidine and spermine by enhancing the activity of S adenosylmethionine decarboxylase. However, EGF did not have any significant influence on putrescine flux across the Caco-2 cell monolayers. Excretion of putrescine from Caco-2 cells into the basolateral medium did not exceed 50 picomoles, while putrescine passive flux from the apical to the basolateral chamber, contributed hundreds of micromoles polyamines to the basolateral chamber. CONCLUSION :Transepithelial transport of putrescine across Caco2 cell monolayers occurs in passive diffusion, and is not influenced when epithelial cells are stimulated to proliferate by a potent mitogen such as EGF.
基金supported by the National Natural Science Foundation of China(31672438)the Elite Youth Program of Chinese Academy of Agricultural Sciences(to XL)Texas A&M Agri Life Research H-8200(to GW)
文摘Background: Polyamines are essential for cell growth and beneficial for intestinal maturation. To evaluate the effects of putrescine on alleviating intestinal atrophy and underlying molecular mechanisms, both in vivo feeding trial and in vitro cell culture were conducted. Weanling pigs were fed a diet supplemented with 0, 0.1%, 0.2% or0.3% putrescine dihydrochloride, whereas porcine intestinal epithelial cells(IPEC-J2) were challenged with lipopolysaccharide(LPS) in the presence of 200 μmol/L putrescine.Results: Dietary supplementation with 0.2% putrescine dihydrochloride decreased the incidence of diarrhea with an improvement in intestinal integrity. Inhibition of ornithine decarboxylase activity decreased the proliferation and migration of IPEC-J2 cells, and this effect was alleviated by the supplementation with putrescine. The phosphorylation of extracellular signal regulated kinase and focal adhesion kinase was enhanced by putrescine. LPS increased the expression of inflammatory cytokines [tumor necrosis factor α(TNF-α), interleukin 6(IL-6) and IL-8],and inhibited cell proliferation and migration in IPEC-J2 cells. Adding exogenous putrescine suppressed the expression of TNF-α, IL-6 and IL-8, and recovered cell migration and proliferation in LPS-treated IPEC-J2 cells. Dietary putrescine supplementation also reduced the m RNA levels of TNF-α, IL-6 and IL-8 and their upstream regulator nuclear receptor kappa B p65 subunit in the jejunal mucosa of piglets.Conclusions: Dietary supplementation with putrescine mitigated mucosal atrophy in weanling piglets through improving anti-inflammatory function and suppressing inflammatory response. Our results have important implications for nutritional management of intestinal integrity and health in weanling piglets and other neonates.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ19C020007)the National Natural Science Foundation of China(Grant Nos.31901452,31771733,32001104 and 31872857)+2 种基金the Key Research and Development Program of Zhejiang Province,China(Grant No.2021C02002)the Open Project of State Key Laboratory of Rice Biology of China(Grant No.20190402)the Basic Research Foundation of National Commonweal Research Institute of China(Grant No.2017RG004-2).
文摘The effects of putrescine on improving rice growth under aluminum(Al)toxicity conditions have been previously demonstrated,however,the underlying mechanism remains unclear.In this study,treatment with 50 pmol/L Al significantly decreased rice root growth and whole rice dry weight,inhibited Ca2+uptake,decreased ATP syn thesis,and in creased Al,H2O2 and malon dialdehyde(MDA)con tents,whereas the application of putrescine mitigated these negative effects.Putrescine increased root growth and total dry weight of rice,reduced total Al content,decreased H2O2 and MDA contents by increasing antioxidant enzyme(superoxide dismutase,peroxidase,catalase and glutathione S・transferase)activities,increased Ca2+uptake and energy product!oru Proteomic analyses using data-independent acquisition successfully identified 7934 proteins,and 59 representative proteins exhibiting fold-change values higher than 1.5 were randomly selected.From the results of the proteomic and biochemical analyses,we found that putrescine significantly inhibited ethylene biosynthesis and phosphorus uptake in rice roots,increased pectin methylation,decreased pectin content and apoplastic Al deposit!on in rice roots.Putrescine also alleviated Al toxicity by repairing damaged DNA and increasing the proteins involved in maintaining plasma membra ne integrity and normal cell proliferation.These fin dings improve our understanding of how putrescine affects the rice response to Al toxicity,which will facilitate further studies on environmental protection,crop safety,in novations in rice performance and real-world producti on.
文摘Choline is a crucial factor in the regulation of sperm membrane structure and fluidity, and this nutrient plays an important role in the maturation and fertilizing capacity of spermatozoa. Transcripts of phosphatidylethanolamine N-methyltransferase (PEMT) and choline dehydrogenase (CHDH), two basic enzymes of choline metabolism, have been observed in the human testis, demonstrating their gene expression in this tissue. In the present study, we explored the contribution of the PEMTand CHDHgene variants to sperm parameters. Two hundred oligospermic and 250 normozoospermic men were recruited. DNA was extracted from the spermatozoa, and the PEMT -774G〉C and CHDH +432G〉T polymorphisms were genotyped. The genotype distribution of the PEMT-774G〉C polymorphism did not differ between oligospermic and normozoospermic men. In contrast, in the case of the CHDH +432G〉T polymorphism, oligospermic men presented the CHDH432GIG genotype more frequently than normozoospermic men (62% vs. 42%, P〈0.001). The PEMT774GIG genotype was associated with a higher sperm concentration compared to the PEMT774GIC and 774C/C genotypes in oligospermic men (12.5±5.6× 10^6 spermatozoa m1-1 vs. 8.3±5.2×10^6 spermatozoa m1-1, P〈0.002) and normozoospermic men (81.5±55.6×10^6 vs. 68.1±44.5×10^6 spermatozoa m1-1, P〈0.006). In addition, the CHDH432G/G genotype was associated with higher sperm concentration compared to CHDH432G.T and 432T/T genotypes in oligospermic (11.8±5.1×10^6 vs. 7.8±5.3×10^6 spermatozoa m1-1, P〈0.003) and normozoospermic men (98.6±62.2×10^6 vs. 58.8±+33.6×10^6 spermatozoa m1-1, P〉0.001). In our series, the PEMT-774G〈C and CHDH +432G〈T polymorphisms were associated with sperm concentration. This finding suggests a possible influence of these genes on sperm quality.
基金Supported by Grants SAF 2003-00967 from Ministerio de Ciencia y Tecnología and FIS 02/0255 from Fondo de Investigación Sanitaria,Instituto de Salud Carlos Ⅲ,Madrid,Spain
文摘AIM: To analyse the role of two common polymorphisms in genes coding for histamine metabolising enzymes as it relates to the risk to develop ulcerative colitis (UC) and the clinical course of these patients. METHODS: A cohort of 229 unrelated patients with UC recruited from a single centre and 261 healthy volunteers were analysed for the presence of Thr105Ile and His645Asp amino acid substitutions at histamine N-methyltransferase (HNMT) and diamine oxidase (ABP1) enzymes, respectively, by amplification-restriction procedures. All patients were phenotyped and followed up for at least 2 years (mean time 11 years). RESULTS: There were no significant differences in the distribution of ABP1 alleles between ulcerative colitis patients and healthy individuals [OR (95% CI) for variant alleles = 1.22 (0.91-1.61)]. However, mutated ABP1 alleles were present with higher frequency among the 58 patients that required immunosuppresive drugs [OR (95 % CI) for carriers of mutated alleles 2.41 (1.21-4.83; P=0.006)], with a significant gene-dose effect (P= 0.0038). In agreement with the predominant role of ABP1 versus HNMT on local histamine metabolism in human bowel, the frequencies for carriers of HNMT genotypes or mutated alleles were similar among patients,regardless clinical evolution, and control individuals. CONCLUSION: The His645Asp polymorphism of the histamine metabolising enzyme ABP1 is related to severity of ulcerative colitis.
基金the National Natural Science Foundation of China(Grant No.32170562).
文摘Putrescine(Put)as the compound of plant polyamines is catalyzed by arginine decarboxylase(ADC),which is encoded by two members,ADC1 and ADC2 in Arabidopsis,and ADC2 is mainly responsible for Put biosynthesis.Accumulated evidence demonstrates the important function of Put in plant growth and development,but its role in regulating seed germination under high temperature(HT)has not been reported yet.SOMNUS(SOM)is the negative regulator for seed germination thermoinhibition by altering downstream gibberellin(GA)and abscisic acid(ABA)metabolism.In this study,we found exogenous application of Put obviously alleviated the inhibition effect of HT on seed germination.Whereas pharmacological inhibition of endogenous Put level reduced seed germination under HT.Consistently,HT induced the rapid accumulation of Put level,and the adc2 mutant defi-ciency in Put biosynthesis also showed more sensitivity to HT stress.Furthermore,we found that the Put signal suppressed the expression of SOM and changed the transcriptional patterns of genes associated with GA/ABA metabolism.Genetic analysis also revealed SOM was epistatic to ADC2 to alter GA/ABA metabolism.Collectively,our finding reveals the novel function of Put in controlling seed germination under HT through SOM,and provides the possibility to develop Put as the innovational regulator for uniform seed germination under HT stress.
文摘The effect of different concentrations of putrescine on biochemical changes in root and shoot of six days old maize seedlings in terms of enzymes of ammonium assimilation were examined. The results revealed that glutamate dehydrogenase (GDH) activity was enhanced at lower concentration of putrescine but at higher concentration, the activity of this enzyme was declined. Glutamine synthetase (GS) activity decreased with increase in concentration of putrescine and it was highest at 1000 μm concentration. Howe ver, glutamate synthase (GOGAT) activity increased with increase in concentration of putrescine upto 100 μm in root and upto 50 μm in shoot and further increase in concentration resulted in decline of enzymatic activity. Protein and total nitrogen content increased upto 10 μm concentration of putrescine and it decreased further with increase in concentration both in root and shoot of maize seedling.
基金This study was partially supported by the Bilecik Seyh Edebali University Research Foundation(2014-02-BIL-04-03).
文摘Putrescine is reported to be necessary for cold acclimation under low-temperature stress.In this study,the effect of low-temperature on some physiological and biochemical parameters has been investigated using the green algae Chlamydomonas reinhardtii.The lipid peroxidation rate,amount of Rubisco protein,activities of antioxidant enzymes and gene expression of polyamine biosynthesis(odc2,and spd1),heat shock proteins(hsp70c,hsp90a,and hsp90c),and PSII repair mechanisms(psba,rep27,and tba1)were determined to understand the low-temperature response.Exogenous putrescine application significantly increased Rubisco protein concentration and catalase enzyme activities under low-temperature stress.Moreover,real-time RT-PCR results and gene expression analysis showed that polyamine metabolism induced gene expression at low-temperatures in the first 24 h.In the same way,the gene expression of heat shock proteins(hsp70c,hsp90a,and hsp90c)decreased under low-temperature treatment for 72 h;however,application of putrescine enhanced the gene expression in the first 24 h.The results obtained indicated that molecular response in the first 24 h could be important for cold acclimation.The psba and tba1 expressions were reduced under low-temperatures depending on the exposure time.In contrast,the exogenous putrescine enhanced the expression level of the psba response to low-temperature at 24 and 72 h.The results obtained in this study indicate that putrescine could play a role in the PS II repair mechanisms under low-temperature stress.
文摘A pot experiment was conducted in lath house to study the response of six month-old seedlings of sour orange (Citrus aurantium L.) irrigated with salinity water (1, 2 or 4 ds/m) for four month. The seedling was sprayed with putrescine at 0, 150 or 300 mg/L concentrations for three times with month interval, for investigation the effects of putrrescine spraying on hormonal changes in sour orange seedlings under salt stress. One month after the last putrescine application, the leaves of the vegetative shoots were picked for endogenous plant hormone determination. The results indicate that increasing level of irrigation water salinity to 4 ds/m significantly increased ABA, Put and SA; whereas, decreasing IAA and GA in leave. Spraying vegetative canopy with putreseine at 300 mg/L increased 1AA, SA, ABA and Put, while decreased GA. It can be concluded that the adverse effects of high salinity irrigated water on endogenous plant hormone can be ameliorated, to some extent, by exogenous application of Put at 150 mg/L or 300 mg/L concentration.
基金supported by the National Natural Science Foundation of China(No.42007026)the Medical Innovation and Development Project of Lanzhou University(No.lzuyxcx-2022-172)。
文摘The response patterns of microbial functional genes involved in biogeochemical cycles to cadaver decay is a central topic of recent environmental sciences.However,the response mechanisms and pathways of the functional genes associated with the carbon(C)and nitrogen(N)cycling to cadaveric substances such as cadaverine and putrescine remain unclear.This study explored the variation of functional genes associated with C fixation,C degradation and N cycling and their influencing factors under cadaverine,putrescine and mixed treatments.Our results showed only putrescine significantly increased the alpha diversity of C fixation genes,while reducing the alpha diversity of N cycling genes in sediment.For the C cycling,the mixed treatment significantly decreased the total abundance of reductive acetyl-CoA pathway genes(i.e.,acsB and acsE)and lig gene linked to lignin degradation in water,while only significantly increasing the hydroxypropionate-hydroxybutylate cycle(i.e.,accA)gene abundance in sediment.For the N cycling,mixed treatment significantly decreased the abundance of the nitrification(i.e.,amoB),denitrification(i.e.,nirS3)genes in water and the assimilation pathway gene(i.e.,gdhA)in sediment.Environmental factors(i.e.,total carbon and total nitrogen)were all negatively associated with the genes of C and N cycling.Therefore,cadaverine and putrescine exposure may inhibit the pathway in C fixation and N cycling,while promoting C degradation.These findings can offer some new insight for the management of amine pollution caused by animal cadavers.
基金supported by the National Natural Science Foundation of China(Grant No.31210103907)Guangdong Laboratory for Lingnan Modern Agriculture(Grant No.NT2021010)+1 种基金Research Program for Ecological Civilization and Innovation of Environmental Science and Technology in Zhejiang University,111 Project(Grant No.B14027)Grantin-Aid for Specially Promoted Research(JSPS KAKENHI Grant No.21H05034 to J.F.M.)。
文摘Cell wall is the first physical barrier to aluminum(Al)toxicity.Modification of cell wall properties to change its binding capacity to Al is one of the major strategies for plant Al resistance;nevertheless,how it is regulated in rice remains largely unknown.In this study,we show that exogenous application of putrescines(Put)could significantly restore the Al resistance of art1,a rice mutant lacking the central regulator Al RESISTANCE TRANSCRIPTION FACTOR 1(ART1),and reduce its Al accumulation particularly in the cell wall of root tips.Based on RNA-sequencing,yeast-onehybrid and electrophoresis mobility shift assays,we identified an R2R3 MYB transcription factor OsMYB30 as the novel target in both ART1-dependent and Put-promoted Al resistance.Furthermore,transient dual-luciferase assay showed that ART1 directly inhibited the expression of OsMYB30,and in turn repressed Os4CL5-dependent 4-coumaric acid accumulation,hence reducing the Al-binding capacity of cell wall and enhancing Al resistance.Additionally,Put repressed OsMYB30 expression by eliminating Alinduced H2O2accumulation,while exogenous H2O2promoted OsMYB30 expression.We concluded that ART1 confers Put-promoted Al resistance via repression of OsMYB30-regulated modification of cell wall properties in rice.