Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and undergrou...Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and underground parking, the accuracy of GPS and even AGPS will be greatly reduced. Since Indoor localization requests higher accuracy, using GPS or AGPS for indoor localization is not feasible in the current view. RSSI-based trilateral localization algorithm, due to its low cost, no additional hardware support, and easy-understanding, it becomes the mainstream localization algorithm in wireless sensor networks. With the development of wireless sensor networks and smart devices, the number of WIFI access point in these buildings is increasing, as long as a mobile smart device can detect three or three more known WIFI hotspots’ positions, it would be relatively easy to realize self-localization (Usually WIFI access points locations are fixed). The key problem is that the RSSI value is relatively vulnerable to the influence of the physical environment, causing large calculation error in RSSI-based localization algorithm. The paper proposes an improved RSSI-based algorithm, the experimental results show that compared with original RSSI-based localization algorithms the algorithm improves the localization accuracy and reduces the deviation.展开更多
目前对于时间差定位差(Time Difference of Arrival,TDOA)的算法中,存在着定位偏差大、时间接收存在偏差等问题,直接导致定位精度受到很大影响。在各项定位算法中,基于接收信号强度定位算法(Received Signal Strength Indication,RSSI)...目前对于时间差定位差(Time Difference of Arrival,TDOA)的算法中,存在着定位偏差大、时间接收存在偏差等问题,直接导致定位精度受到很大影响。在各项定位算法中,基于接收信号强度定位算法(Received Signal Strength Indication,RSSI),具有覆盖面积广、精度高的特点,因此提出采用RSSI算法筛选修正过后进行TDOA算法的分层融合算法,使得整体的定位精度得到进一步提升。此分层融合算法可以提高定位精度,尽可能地减小因外部环境变化导致的定位误差。通过仿真可以看出,和现有的融合算法比较,该分层融合算法的可行性和稳定性有一定提升。展开更多
随着无线传感器网络的发展,日益需要更加精确的位置信息来支撑其相关的应用。通过分析待定位节点定位过程中产生的误差,对二阶段定位算法、接收信号强度指示(received signal strength indicator,RSSI)定位技术和质心算法进行深入的研究...随着无线传感器网络的发展,日益需要更加精确的位置信息来支撑其相关的应用。通过分析待定位节点定位过程中产生的误差,对二阶段定位算法、接收信号强度指示(received signal strength indicator,RSSI)定位技术和质心算法进行深入的研究,提出了极大似然与加权质心混合定位算法:首先通过极大似然估计法对待定位节点进行粗略估计,然后利用加权质心算法对待定位节点坐标估计求精,进一步提高定位精度。仿真实验结果表明,该算法能够在定位精度方面有较大的提高。展开更多
文摘Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and underground parking, the accuracy of GPS and even AGPS will be greatly reduced. Since Indoor localization requests higher accuracy, using GPS or AGPS for indoor localization is not feasible in the current view. RSSI-based trilateral localization algorithm, due to its low cost, no additional hardware support, and easy-understanding, it becomes the mainstream localization algorithm in wireless sensor networks. With the development of wireless sensor networks and smart devices, the number of WIFI access point in these buildings is increasing, as long as a mobile smart device can detect three or three more known WIFI hotspots’ positions, it would be relatively easy to realize self-localization (Usually WIFI access points locations are fixed). The key problem is that the RSSI value is relatively vulnerable to the influence of the physical environment, causing large calculation error in RSSI-based localization algorithm. The paper proposes an improved RSSI-based algorithm, the experimental results show that compared with original RSSI-based localization algorithms the algorithm improves the localization accuracy and reduces the deviation.
文摘目前对于时间差定位差(Time Difference of Arrival,TDOA)的算法中,存在着定位偏差大、时间接收存在偏差等问题,直接导致定位精度受到很大影响。在各项定位算法中,基于接收信号强度定位算法(Received Signal Strength Indication,RSSI),具有覆盖面积广、精度高的特点,因此提出采用RSSI算法筛选修正过后进行TDOA算法的分层融合算法,使得整体的定位精度得到进一步提升。此分层融合算法可以提高定位精度,尽可能地减小因外部环境变化导致的定位误差。通过仿真可以看出,和现有的融合算法比较,该分层融合算法的可行性和稳定性有一定提升。
文摘随着无线传感器网络的发展,日益需要更加精确的位置信息来支撑其相关的应用。通过分析待定位节点定位过程中产生的误差,对二阶段定位算法、接收信号强度指示(received signal strength indicator,RSSI)定位技术和质心算法进行深入的研究,提出了极大似然与加权质心混合定位算法:首先通过极大似然估计法对待定位节点进行粗略估计,然后利用加权质心算法对待定位节点坐标估计求精,进一步提高定位精度。仿真实验结果表明,该算法能够在定位精度方面有较大的提高。