Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation dur...Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation,thus,the problems associated with the safe operation of nuclear reactors have been put forward naturally.In this work,a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process inα-Fe.Specifically,the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe.The simulation results reveal that both electronic stopping(ES)and electron-phonon coupling(EPC)can contribute to the decrease of the number of defects in the thermal spike phase.The application of ES reduces the number of residual defects after the cascade evolution,whereas EPC has a reverse effect.The introduction of electronic effects promotes the formation of the dispersive subcascade:ES significantly changes the geometry of the damaged region in the thermal spike phase,whereas EPC mainly reduces the extent of the damaged region.Furthermore,the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials.展开更多
The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evo...The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects.The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V.The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects.Meanwhile,the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects.The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity.Furthermore,the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V.The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA,and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage.These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.展开更多
Due to its ubiquitous occurrence in igneous,metamorphic,and sedimentary rocks and its wide application in geochronology and geochemistry,zircon has become the most widely used accessory mineral in the geological commu...Due to its ubiquitous occurrence in igneous,metamorphic,and sedimentary rocks and its wide application in geochronology and geochemistry,zircon has become the most widely used accessory mineral in the geological community.Nevertheless,the decay of U and Th causes radiation damage to the zircon structure,resulting in various degrees of metamictization,which can affect the accuracy of U–Pb dates and Hf and O isotope results.If the degree of zircon radiation damage can be quantified,the influence on geochemical analyses can be evaluated,and the results can be corrected more precisely.In this paper,synthetic and natural zircon crystals with different crystallization ages were selected for Raman spectroscopy analysis,cathodoluminescence imaging,and determination of the U and Th concentrations.The results show that Raman FWHM(full width at half bandmaximum)and Raman shift correlate with alpha dose(Da)ofzirconsfollowingtheseequations,FWHM=44.36(±2.32)×[1-exp(-2.74×Da)]-+1.7(±0.19),Raman Shift=-6.53×Da+1007.69.Analysis of synthetic zircon crystals shows that doped REEs(rare earth elements and P)can also lead to an increase in the FWHM.However,this effect can be ignored for natural zircon samples with REE contents at a normal level of hundreds to a few thousand ppm.The FWHM and Raman shift can be used as proxies to measure the degree of zircon radiation damage.Using the updated equations to calculate the latest age when zircon began to accumulate radiation damage,a more accurate and more meaningful“radiation damage age”can be obtained.展开更多
The radiation damage of three individual subcells for GalnP/GaAs//Ge triple-junction solar cells irradiated with electrons and protons is investigated using photoluminescence (PL) measurements. The PL spectra of eac...The radiation damage of three individual subcells for GalnP/GaAs//Ge triple-junction solar cells irradiated with electrons and protons is investigated using photoluminescence (PL) measurements. The PL spectra of each subcell are obtained using different excitation lasers. The PL intensity has a fast degradation after irradiation, and decreases as the displacement damage dose increases. Furthermore, the normalized PL intensity varying with the displacement damage dose is analyzed in detail, and then the lifetime damage coefficients of the recombination centers for GaInP top-cell, GaAs mid-cell and Ge bottom-cell of the triple-junction solar cells are determined from the PL radiative efficiency.展开更多
Radiation damage to structural material of fusion facilities is of high concern for safety. The superconducting tokamak EAST will conduct D-D plasma experiments with the neutron production of 10^15 neutrons per second...Radiation damage to structural material of fusion facilities is of high concern for safety. The superconducting tokamak EAST will conduct D-D plasma experiments with the neutron production of 10^15 neutrons per second. To evaluate the material radiation damage a programme system has been devised with the Monte Carlo transport code MCNP-4C, the inventory code FISPACT99, a specific interface, and the fusion evaluated nuclear data library FENDL-2. The key nuclear responses, i.e. fast neutron flux, displacement per atom, and the helium and hydrogen production, are calculated for the structural material SS-316L of the first wall, and the vacuum vessel, using this programme. The results demonstrate that the radiation damage to the structural material is so little that it will not lead to any significant change of material properties according to the reference design. This indicates that there is a large potential space for EAST to test advanced operation regime from the viewpoint of structural material safety.展开更多
Different SiGe processes and device designs are the critical influences of ionizing radiation damage. Based on the different ionizing radiation damage in SiGe HBTs fabricated by Huajie and an IBM SiGe process, quantit...Different SiGe processes and device designs are the critical influences of ionizing radiation damage. Based on the different ionizing radiation damage in SiGe HBTs fabricated by Huajie and an IBM SiGe process, quantitatively numerical simulation of ionizing radiation damage was carried out to explicate the distribution of radiation-induced charges buildup in KT9041 and IBM SiGe HBTs. The sensitive areas of the EB-spacer and isolation oxide of KT9041 are much larger than those of the IBM SiGe HBT, and the distribution of charge buildup in KT9041 is several orders of magnitude greater than that of the IBM SiGe HBT. The result suggests that the simulations are consistent with the experiment, and indicates that the geometry of the EB-spacer, the area of the Si/SiO2 interface and the isolation structure could be contributing to the different ionizing radiation damage.展开更多
The dependences of radiation induced defects on irradiation temperature up to 700℃ at 15 dpa and on irradiation dose up to 85 dpa at room temperature have been investigated by the heavy ion irradiation and the positr...The dependences of radiation induced defects on irradiation temperature up to 700℃ at 15 dpa and on irradiation dose up to 85 dpa at room temperature have been investigated by the heavy ion irradiation and the positron annihilation lifetime spectroscopy for the CLAM. A void size peak is observed at -500℃ where the vacancy cluster contains 9 vacancies and has an average diameter of 0.59 nm. The size of the vacancy clusters increases with the increase of irradiation dose at room temperature, and the vacancy cluster at 85 dpa consists of 9 vacancies and reaches a size of 0.60 nm in diameter. The absolute values of the void size at the peak and the increase of void size with dose in the CLAM steel are negligible compared to those of the normal stainless steels, indicating that the CLAM steel has good radiation resistant property.展开更多
High energy radiation exists in the space natural radiation environment may cause the degradation of the performance of charge coupled devices used in space. The Solar A satellite was launched in 1991. Since then, rad...High energy radiation exists in the space natural radiation environment may cause the degradation of the performance of charge coupled devices used in space. The Solar A satellite was launched in 1991. Since then, radiation damage effected phenomena have been reported. The flatband voltage shift resulted from the trapped holes within the insulator layer between the CCD gates and bulk silicon may throw light on the interpretation of some of the radiation damage phenomena.展开更多
A research was carried out to determine the period of time during which it is possible to reduce the radiation damage in mice by means of laser radiation (650 nm) after gamma irradiation. First, the mice were expose...A research was carried out to determine the period of time during which it is possible to reduce the radiation damage in mice by means of laser radiation (650 nm) after gamma irradiation. First, the mice were exposed to γ- radiation (whole body irradiation), then after 2 h or 24 h they were irradiated with laser radiation. The results of these studies have shown that the use of laser irradiation to reduce radiation damage in mice is effective 24 h after the exposure to 5 Gy ionizing radiation which leads to the bone-marrow clinical form of the ARS (Acute radiation sickness). In case of the lethal dose of ionizing radiation 7 Gy (the transitional clinical form of the ARS), the increase in life expectancy of mice is observed using laser radiation both 2 and 24 h after the exposure to γ- radiation, but the effectiveness of the laser used 2 h after the ionizing radiation is significantly more efficient.展开更多
So far, it has been a challenge for existing interatomic potentials to accurately describe a wide range of physical properties and maintain reasonable efficiency. In this work, we develop an interatomic potential for ...So far, it has been a challenge for existing interatomic potentials to accurately describe a wide range of physical properties and maintain reasonable efficiency. In this work, we develop an interatomic potential for simulating radiation damage in body-centered cubic tungsten by employing deep potential, a neural network-based deep learning model for representing the potential energy surface. The resulting potential predicts a variety of physical properties consistent with first-principles calculations, including phonon spectrum, thermal expansion, generalized stacking fault energies, energetics of free surfaces, point defects, vacancy clusters, and prismatic dislocation loops. Specifically, we investigated the elasticity-related properties of prismatic dislocation loops, i.e., their dipole tensors, relaxation volumes, and elastic interaction energies. This potential is found to predict the maximal elastic interaction energy between two 1/2 <1 1 1> loops better than previous potentials, with a relative error of only 7.6%. The predicted threshold displacement energies are in reasonable agreement with experimental results, with an average of 128 eV. The efficiency of the present potential is also comparable to the tabulated gaussian approximation potentials and modified embedded atom method potentials, meanwhile, can be further accelerated by graphical processing units. Extensive benchmark tests indicate that this potential has a relatively good balance between accuracy, transferability, and efficiency.展开更多
Multi-principal element alloys(MPEAs)have attracted much attention as future nuclear materials due to their extraordinary radiation resistances.In this work,we have elucidated the development of local chemical orderin...Multi-principal element alloys(MPEAs)have attracted much attention as future nuclear materials due to their extraordinary radiation resistances.In this work,we have elucidated the development of local chemical orderings(LCOs)and their influences on radiation damage behavior in the typical CrFeNi MPEA by hybrid-molecular dynamics and Monte Carlo simulations.It was found that considerable LCOs consist-ing of the Cr-Cr and Ni-Fe short-range orders existed in the ordered configuration with optimized system energy.Through modeling the accumulation cascades up to 1000 recoils,we revealed that the size of de-fect clusters and dislocation loops is smaller in the ordered configuration than those in the random one,although the former formed more Frenkel pairs(i.e.,self-interstitials and vacancies).In addition,the dis-tribution of dislocation loops is relatively more dispersed in the ordered configuration,and the stair-rod dislocations related to irradiation swelling are also smaller,implying that the existence of LCOs is con-ducive to enhancing radiation damage tolerance.To understand the underlying mechanism,the effects of LCOs on the formation and evolution of defects and radiation resistance were discussed from the aspects of atomic bonding,migration path,and energy of defect diffusion,which provides theoretical guidance for the design of MPEAs with enhanced radiation resistance.展开更多
Zircon radiation damage dating is a low-temperature thermochronological method that can reveal the cooling histories of magmatic intrusions and discriminate sedimentary provenance in combination with other dating meth...Zircon radiation damage dating is a low-temperature thermochronological method that can reveal the cooling histories of magmatic intrusions and discriminate sedimentary provenance in combination with other dating methods.This method has broad application prospects because of its advantages of nondestructive,high efficiency,and capable of double(or multiple)dating,involving only multiple measurements by Raman spectrometer and laser ablation-inductively coupled plasma-mass spectrometry.However,several factors,such as zircon chemical composition and the non-uniformity of radiation damage annealing kinetics,can cause poor precision when using this method and thus restricts its wide application.This study examined the effect of chemical composition(P,Ti,Dy,Th,U,and Hf)on Raman spectra using synthetic zircon crystals grown in a lithium-molybdate flux.The results show that the full width at half-maximum(FWHM)of the v_(3)(SiO_(4))band has positive linear correlations with the concentrations of P,Ti,Dy,Th,and U in decreasing order of influence,while the FWHM is unaffected by Hf at concentrations<1 wt.%but increases at concentrations>10 wt.%.Furthermore,the Raman shift is negatively correlated with Th,U,and Dy concentrations,positively correlated with Hf,and shows no obvious correlation with Ti and P.Thus,our study shows that chemical composition is a non-ignorable factor for calculating zircon radiation damage age using Raman spectroscopy,especially for zircon with relatively high concentrations of P,rare earth elements(REEs),Th,U,and Hf.The obtained multiple linear regression equation provides a potential means for estimating the FWHM at zero dose and implication for improving the dating precision of this method.In addition,the observed effects of REEs,Th,U,and Hf on the Raman shift of the v_(3)(SiO_(4))band indicate that chemical composition in zircon might affect the estimation of the P-T conditions of geological processes when using entrapped zircon inclusions in host minerals or the field of zircon as an in situ pressure sensor in hydrothermal experiments.Our study suggests that zircon radiation damage dating,excluding geochemical effects,will be more accurate for addressing lower-temperature geological processes.展开更多
During radiotherapy to kill femoral hydatid tapeworms, the sciatic nerve surrounding the focus can be easily damaged by the treatment. Thus, it is very important to evaluate the effects of ra- diotherapy on the surrou...During radiotherapy to kill femoral hydatid tapeworms, the sciatic nerve surrounding the focus can be easily damaged by the treatment. Thus, it is very important to evaluate the effects of ra- diotherapy on the surrounding nervous tissue. In the present study, we used three-dimensional, conformal, intensity-modulated radiation therapy to treat bilateral femoral hydatid disease in Meriones meridiani. The focus of the hydatid disease on the left femur was subiected to radio- therapy (40 Gy) for 14 days, and the right femur received sham irradiation. Hematoxylin-eosin staining, electron microscopy, and terminal deoxynucleotidyl transferase-dUTP nick end labeling assays on the left femurs showed that the left sciatic nerve cell structure was normal, with no ob- vious apoptosis after radiation. Trypan blue staining demonstrated that the overall protoscolex structure in bone parasitized with Echinococcus granulosus disappeared in the left femur of the animals after treatment. The mortality of the protoscolex was higher in the left side than in the right side. The succinate dehydrogenase activity in the protoscolex in bone parasitized with Echi- nococcus granulosus was lower in the left femur than in the right femur. These results suggest that three-dimensional conformal intensity-modulated radiation therapy achieves good therapeutic effects on the secondary bone in hydatid disease in Meriones meridiani without damaging the morphology or function of the sciatic nerve.展开更多
Radiation effects of silicon carbide metal–oxide–semiconductor field-effect transistors(SiC MOSFETs)induced by 20 MeV proton under drain bias(V_(D)=800 V,V_(G)=0 V),gate bias(V_(D)=0 V,V_(G)=10 V),turn-on bias(V_(D)...Radiation effects of silicon carbide metal–oxide–semiconductor field-effect transistors(SiC MOSFETs)induced by 20 MeV proton under drain bias(V_(D)=800 V,V_(G)=0 V),gate bias(V_(D)=0 V,V_(G)=10 V),turn-on bias(V_(D)=0.5 V,V_(G)=4 V)and static bias(V_(D)=0 V,V_(G)=0 V)are investigated.The drain current of SiC MOSFET under turn-on bias increases linearly with the increase of proton fluence during the proton irradiation.When the cumulative proton fluence reaches 2×10^(11)p·cm^(-2),the threshold voltage of SiC MOSFETs with four bias conditions shifts to the left,and the degradation of electrical characteristics of SiC MOSFETs with gate bias is the most serious.In the deep level transient spectrum test,it is found that the defect energy level of SiC MOSFET is mainly the ON2(E_(c)-1.1 eV)defect center,and the defect concentration and defect capture cross section of SiC MOSFET with proton radiation under gate bias increase most.By comparing the degradation of SiC MOSFET under proton cumulative irradiation,equivalent 1 MeV neutron irradiation and gamma irradiation,and combining with the defect change of SiC MOSFET under gamma irradiation and the non-ionizing energy loss induced by equivalent 1 MeV neutron in SiC MOSFET,the degradation of SiC MOSFET induced by proton is mainly caused by ionizing radiation damage.The results of TCAD analysis show that the ionizing radiation damage of SiC MOSFET is affected by the intensity and direction of the electric field in the oxide layer and epitaxial layer.展开更多
Radiation hardened CC4007RH and non-radiation hardened CC4011 devices were irradiated using ^60Co gamma rays, 1 MeV electrons and 1-9 MeV protons to compare the ionizing radiation damage of the gamma rays with the cha...Radiation hardened CC4007RH and non-radiation hardened CC4011 devices were irradiated using ^60Co gamma rays, 1 MeV electrons and 1-9 MeV protons to compare the ionizing radiation damage of the gamma rays with the charged particles. For all devices examined, with experimental uncertainty, the radiation induced threshold voltage shifts (△Vth) generated by ^60Co gamma rays are equal to that of 1 MeV electron and 1-7 MeV proton radiation under 0 gate bias condition. Under 5 V gate bias condition, the distinction of threshold voltage shifts (△Vth) generated by ^60Co gamma rays and 1 MeV electrons irradiation are not large, and the radiation damage for protons energy the proton has, the less serious below 9 MeV is always less than the radiation damage becomes. that of ^60Co gamma rays. The lower展开更多
The elevated and room temperature annealing behavior of radiation damage in JFET-input operational amplifiers (op-amps) were investigated. High- and low-dose-rate irradiation results show that one of the JFET-input ...The elevated and room temperature annealing behavior of radiation damage in JFET-input operational amplifiers (op-amps) were investigated. High- and low-dose-rate irradiation results show that one of the JFET-input op-amps studied in this paper exhibits enhanced low-dose-rate sensitivity and the other shows time-dependent effect. The offset voltage of both op-amps increases during long-term annealing at room temperature. However, the offset voltage decreases at elevated temperature. The dramatic difference in annealing behavior at room and elevated temperatures indicates the migration behavior of radiation-induced species at elevated and room temperatures. This provides useful information to understand the degradation and annealing mechanisms in JFET-input op-amps under total ionizing radiation. Moreover, the annealing of oxide trapped charges should be taken into consideration, when using elevated temperature methods to evaluate low-dose-rate damage.展开更多
Natural MoS_2 surface bombarded by Au ions with 13.4 MeV/nucleon was investigated using scanning tunneling microscope (STM) in ambient air. Rather high ion doses 1×10^(13) cm^(-2) were used in order to have more ...Natural MoS_2 surface bombarded by Au ions with 13.4 MeV/nucleon was investigated using scanning tunneling microscope (STM) in ambient air. Rather high ion doses 1×10^(13) cm^(-2) were used in order to have more chances to get damaged images. Not only atomic structures of the original surface, but also arrangements on the elevated regions even at the bottom of the craters are clearly shown in the STM images. In general, there is a one-to-one correlation between the number of ion impacts and the number of craters.展开更多
Due to a radioactive decay Pu is vulnerable to aging.The behavior of He in Pu is the foundation for understanding Pu self-radiation damage aging.Molecular dynamics technique is performed to investigate the behavior of...Due to a radioactive decay Pu is vulnerable to aging.The behavior of He in Pu is the foundation for understanding Pu self-radiation damage aging.Molecular dynamics technique is performed to investigate the behavior of defects,the interaction between He and defects,the processes of initial nucleation and growth of He bubble and the dependence of He bubble on the macroscopical properties of Pu.Modified embedded atom method,Morse pair potential and the Lennard-Jones pair potential are used for describing the interactions of Pu-Pu,Pu-He and He-He,respectively.The main calculated results show that He atoms can combine with vacancies to form Hevacancy cluster(i.e.,the precursor of He bubble)during the process of self-radiation as a result of high binding energy of an interstitial He atom to vacancy;He bubble’s growth can be dominated by the mechanism of punching out of dislocation loop;the swelling induced by He bubble is very small;grain boundaries give rise to an energetically more favorable zone for the interstitial He atom and self-interstitial atom accumulation than for vacancy accumulation;the process of He release can be identified as the formation of release channel induced by the cracking of He bubble and surface structure.展开更多
Based on electromagnetic radiation characteristics, the present research studied the damage evolution of rock under uniaxial compression. Besides, this research built the coal-rock damage evolution model considered re...Based on electromagnetic radiation characteristics, the present research studied the damage evolution of rock under uniaxial compression. Besides, this research built the coal-rock damage evolution model considered residual strength. The applicability and accuracy of the model were verified through experiments. The results show that coal-rock damage evolution consists of four periods. The first period is from the beginning of compression to nearly 20% of the stress peak value, during which the damage variable changes stably about 0.1, and accordingly a few of electromagnetic radiation signals emerge. The second period is from about 20% to 70% of the stress peak value. The damage has stable development, and the parameter of electromagnetic radiation characteristics turns larger continuously with the increase of stress. The third period is when the damage has accelerated development, the coal-rock was broken which result from sharp increasing of the damage variable, meanwhile a great quantity of electromagnetic radiation signals emerge. The fourth period is after the coal-rock fracture, during which the damage variable corresponding to the parameter of electromagnetic radiation characteristics has a stable development. This research has great academic and realistic significance for further studies the electromagnetic radiation characteristics of coal-rock under loading and damage and the forecasting of coal-rock dynamic disasters.展开更多
基金Project supported by the National MCF Energy Research and Development Program of China(Grant Nos.2022YFE03200200 and 2018YFE0308101)the National Natural Science Foundation of China(Grant No.12105194)the Natural Science Foundation of Sichuan Province,China(Grant Nos.2022NSFSC1265 and 2022NSFSC1251).
文摘Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation,thus,the problems associated with the safe operation of nuclear reactors have been put forward naturally.In this work,a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process inα-Fe.Specifically,the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe.The simulation results reveal that both electronic stopping(ES)and electron-phonon coupling(EPC)can contribute to the decrease of the number of defects in the thermal spike phase.The application of ES reduces the number of residual defects after the cascade evolution,whereas EPC has a reverse effect.The introduction of electronic effects promotes the formation of the dispersive subcascade:ES significantly changes the geometry of the damaged region in the thermal spike phase,whereas EPC mainly reduces the extent of the damaged region.Furthermore,the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials.
基金Project supported by the Dean’s Fund of China Institute of Atomic Energy(Grant No.219256)the CNNC Science Fund for Talented Young Scholars.
文摘The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects.The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V.The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects.Meanwhile,the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects.The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity.Furthermore,the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V.The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA,and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage.These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.
基金supported by funds from the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB 41000000)the National Natural Science Foundation of China(41973002,41772187)+1 种基金the Fundamental Research Funds for the Central UniversitiesNatural Sciences and Engineering Research Council of Canada(NSERC)Discovery Grant to J.M Hanchar(RGPIN/004649-2015)。
文摘Due to its ubiquitous occurrence in igneous,metamorphic,and sedimentary rocks and its wide application in geochronology and geochemistry,zircon has become the most widely used accessory mineral in the geological community.Nevertheless,the decay of U and Th causes radiation damage to the zircon structure,resulting in various degrees of metamictization,which can affect the accuracy of U–Pb dates and Hf and O isotope results.If the degree of zircon radiation damage can be quantified,the influence on geochemical analyses can be evaluated,and the results can be corrected more precisely.In this paper,synthetic and natural zircon crystals with different crystallization ages were selected for Raman spectroscopy analysis,cathodoluminescence imaging,and determination of the U and Th concentrations.The results show that Raman FWHM(full width at half bandmaximum)and Raman shift correlate with alpha dose(Da)ofzirconsfollowingtheseequations,FWHM=44.36(±2.32)×[1-exp(-2.74×Da)]-+1.7(±0.19),Raman Shift=-6.53×Da+1007.69.Analysis of synthetic zircon crystals shows that doped REEs(rare earth elements and P)can also lead to an increase in the FWHM.However,this effect can be ignored for natural zircon samples with REE contents at a normal level of hundreds to a few thousand ppm.The FWHM and Raman shift can be used as proxies to measure the degree of zircon radiation damage.Using the updated equations to calculate the latest age when zircon began to accumulate radiation damage,a more accurate and more meaningful“radiation damage age”can be obtained.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10675023,11075018,11375028 and 11675020the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20120003110011
文摘The radiation damage of three individual subcells for GalnP/GaAs//Ge triple-junction solar cells irradiated with electrons and protons is investigated using photoluminescence (PL) measurements. The PL spectra of each subcell are obtained using different excitation lasers. The PL intensity has a fast degradation after irradiation, and decreases as the displacement damage dose increases. Furthermore, the normalized PL intensity varying with the displacement damage dose is analyzed in detail, and then the lifetime damage coefficients of the recombination centers for GaInP top-cell, GaAs mid-cell and Ge bottom-cell of the triple-junction solar cells are determined from the PL radiative efficiency.
基金The project supported by National Meg-science Engineering Project of the Chinese Government
文摘Radiation damage to structural material of fusion facilities is of high concern for safety. The superconducting tokamak EAST will conduct D-D plasma experiments with the neutron production of 10^15 neutrons per second. To evaluate the material radiation damage a programme system has been devised with the Monte Carlo transport code MCNP-4C, the inventory code FISPACT99, a specific interface, and the fusion evaluated nuclear data library FENDL-2. The key nuclear responses, i.e. fast neutron flux, displacement per atom, and the helium and hydrogen production, are calculated for the structural material SS-316L of the first wall, and the vacuum vessel, using this programme. The results demonstrate that the radiation damage to the structural material is so little that it will not lead to any significant change of material properties according to the reference design. This indicates that there is a large potential space for EAST to test advanced operation regime from the viewpoint of structural material safety.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274106 and 61574171)
文摘Different SiGe processes and device designs are the critical influences of ionizing radiation damage. Based on the different ionizing radiation damage in SiGe HBTs fabricated by Huajie and an IBM SiGe process, quantitatively numerical simulation of ionizing radiation damage was carried out to explicate the distribution of radiation-induced charges buildup in KT9041 and IBM SiGe HBTs. The sensitive areas of the EB-spacer and isolation oxide of KT9041 are much larger than those of the IBM SiGe HBT, and the distribution of charge buildup in KT9041 is several orders of magnitude greater than that of the IBM SiGe HBT. The result suggests that the simulations are consistent with the experiment, and indicates that the geometry of the EB-spacer, the area of the Si/SiO2 interface and the isolation structure could be contributing to the different ionizing radiation damage.
基金supported by the State Major Basic Research Development Program in China(No.2009GB109000)National Science Foundation of China(No.11005158)
文摘The dependences of radiation induced defects on irradiation temperature up to 700℃ at 15 dpa and on irradiation dose up to 85 dpa at room temperature have been investigated by the heavy ion irradiation and the positron annihilation lifetime spectroscopy for the CLAM. A void size peak is observed at -500℃ where the vacancy cluster contains 9 vacancies and has an average diameter of 0.59 nm. The size of the vacancy clusters increases with the increase of irradiation dose at room temperature, and the vacancy cluster at 85 dpa consists of 9 vacancies and reaches a size of 0.60 nm in diameter. The absolute values of the void size at the peak and the increase of void size with dose in the CLAM steel are negligible compared to those of the normal stainless steels, indicating that the CLAM steel has good radiation resistant property.
文摘High energy radiation exists in the space natural radiation environment may cause the degradation of the performance of charge coupled devices used in space. The Solar A satellite was launched in 1991. Since then, radiation damage effected phenomena have been reported. The flatband voltage shift resulted from the trapped holes within the insulator layer between the CCD gates and bulk silicon may throw light on the interpretation of some of the radiation damage phenomena.
文摘A research was carried out to determine the period of time during which it is possible to reduce the radiation damage in mice by means of laser radiation (650 nm) after gamma irradiation. First, the mice were exposed to γ- radiation (whole body irradiation), then after 2 h or 24 h they were irradiated with laser radiation. The results of these studies have shown that the use of laser irradiation to reduce radiation damage in mice is effective 24 h after the exposure to 5 Gy ionizing radiation which leads to the bone-marrow clinical form of the ARS (Acute radiation sickness). In case of the lethal dose of ionizing radiation 7 Gy (the transitional clinical form of the ARS), the increase in life expectancy of mice is observed using laser radiation both 2 and 24 h after the exposure to γ- radiation, but the effectiveness of the laser used 2 h after the ionizing radiation is significantly more efficient.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE03110000)the National Natural Science Foundation of China(Nos.52171084 and 12192282)the Foundation of President of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Nos.YZJJQY202203 and BJPY2021A05).
文摘So far, it has been a challenge for existing interatomic potentials to accurately describe a wide range of physical properties and maintain reasonable efficiency. In this work, we develop an interatomic potential for simulating radiation damage in body-centered cubic tungsten by employing deep potential, a neural network-based deep learning model for representing the potential energy surface. The resulting potential predicts a variety of physical properties consistent with first-principles calculations, including phonon spectrum, thermal expansion, generalized stacking fault energies, energetics of free surfaces, point defects, vacancy clusters, and prismatic dislocation loops. Specifically, we investigated the elasticity-related properties of prismatic dislocation loops, i.e., their dipole tensors, relaxation volumes, and elastic interaction energies. This potential is found to predict the maximal elastic interaction energy between two 1/2 <1 1 1> loops better than previous potentials, with a relative error of only 7.6%. The predicted threshold displacement energies are in reasonable agreement with experimental results, with an average of 128 eV. The efficiency of the present potential is also comparable to the tabulated gaussian approximation potentials and modified embedded atom method potentials, meanwhile, can be further accelerated by graphical processing units. Extensive benchmark tests indicate that this potential has a relatively good balance between accuracy, transferability, and efficiency.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51671021,11790293,51871016,52071024,and 51961160729)the Funds for Creative Research Groups of China(No.51921001)+1 种基金the 111 Project(No.B07003)the Fundamental Research Funds for the Central Universities.
文摘Multi-principal element alloys(MPEAs)have attracted much attention as future nuclear materials due to their extraordinary radiation resistances.In this work,we have elucidated the development of local chemical orderings(LCOs)and their influences on radiation damage behavior in the typical CrFeNi MPEA by hybrid-molecular dynamics and Monte Carlo simulations.It was found that considerable LCOs consist-ing of the Cr-Cr and Ni-Fe short-range orders existed in the ordered configuration with optimized system energy.Through modeling the accumulation cascades up to 1000 recoils,we revealed that the size of de-fect clusters and dislocation loops is smaller in the ordered configuration than those in the random one,although the former formed more Frenkel pairs(i.e.,self-interstitials and vacancies).In addition,the dis-tribution of dislocation loops is relatively more dispersed in the ordered configuration,and the stair-rod dislocations related to irradiation swelling are also smaller,implying that the existence of LCOs is con-ducive to enhancing radiation damage tolerance.To understand the underlying mechanism,the effects of LCOs on the formation and evolution of defects and radiation resistance were discussed from the aspects of atomic bonding,migration path,and energy of defect diffusion,which provides theoretical guidance for the design of MPEAs with enhanced radiation resistance.
基金supported jointly by the National Natural Science Foundation of China(Grant Nos.41873061,42022016,and 41930217)the Youth Innovation Team of Shaanxi Universities,and the MOST Special Fund from the State Key Laboratory of Continental Dynamics,Northwest University.The criticalconstructive comments from two anonymous reviewers are highly appreciated.
文摘Zircon radiation damage dating is a low-temperature thermochronological method that can reveal the cooling histories of magmatic intrusions and discriminate sedimentary provenance in combination with other dating methods.This method has broad application prospects because of its advantages of nondestructive,high efficiency,and capable of double(or multiple)dating,involving only multiple measurements by Raman spectrometer and laser ablation-inductively coupled plasma-mass spectrometry.However,several factors,such as zircon chemical composition and the non-uniformity of radiation damage annealing kinetics,can cause poor precision when using this method and thus restricts its wide application.This study examined the effect of chemical composition(P,Ti,Dy,Th,U,and Hf)on Raman spectra using synthetic zircon crystals grown in a lithium-molybdate flux.The results show that the full width at half-maximum(FWHM)of the v_(3)(SiO_(4))band has positive linear correlations with the concentrations of P,Ti,Dy,Th,and U in decreasing order of influence,while the FWHM is unaffected by Hf at concentrations<1 wt.%but increases at concentrations>10 wt.%.Furthermore,the Raman shift is negatively correlated with Th,U,and Dy concentrations,positively correlated with Hf,and shows no obvious correlation with Ti and P.Thus,our study shows that chemical composition is a non-ignorable factor for calculating zircon radiation damage age using Raman spectroscopy,especially for zircon with relatively high concentrations of P,rare earth elements(REEs),Th,U,and Hf.The obtained multiple linear regression equation provides a potential means for estimating the FWHM at zero dose and implication for improving the dating precision of this method.In addition,the observed effects of REEs,Th,U,and Hf on the Raman shift of the v_(3)(SiO_(4))band indicate that chemical composition in zircon might affect the estimation of the P-T conditions of geological processes when using entrapped zircon inclusions in host minerals or the field of zircon as an in situ pressure sensor in hydrothermal experiments.Our study suggests that zircon radiation damage dating,excluding geochemical effects,will be more accurate for addressing lower-temperature geological processes.
基金supported by the National Natural Science Foundation of China,No.81360276a grant from the Science and Technology Project of Xinjiang Uygur Autonomous Region in China,No.2013911129+2 种基金a grant from the Youth Science and Technology Innovation Talents Project of Xinjiang Uygur Autonomous Region-Young Doctor Talents Training Project,No.2013731013the Natural Science Foundation of Xinjiang Uygur Autonomous Region,No.2012211B34the China Postdoctoral Science Foundation,No.2014M552566XB
文摘During radiotherapy to kill femoral hydatid tapeworms, the sciatic nerve surrounding the focus can be easily damaged by the treatment. Thus, it is very important to evaluate the effects of ra- diotherapy on the surrounding nervous tissue. In the present study, we used three-dimensional, conformal, intensity-modulated radiation therapy to treat bilateral femoral hydatid disease in Meriones meridiani. The focus of the hydatid disease on the left femur was subiected to radio- therapy (40 Gy) for 14 days, and the right femur received sham irradiation. Hematoxylin-eosin staining, electron microscopy, and terminal deoxynucleotidyl transferase-dUTP nick end labeling assays on the left femurs showed that the left sciatic nerve cell structure was normal, with no ob- vious apoptosis after radiation. Trypan blue staining demonstrated that the overall protoscolex structure in bone parasitized with Echinococcus granulosus disappeared in the left femur of the animals after treatment. The mortality of the protoscolex was higher in the left side than in the right side. The succinate dehydrogenase activity in the protoscolex in bone parasitized with Echi- nococcus granulosus was lower in the left femur than in the right femur. These results suggest that three-dimensional conformal intensity-modulated radiation therapy achieves good therapeutic effects on the secondary bone in hydatid disease in Meriones meridiani without damaging the morphology or function of the sciatic nerve.
基金Project supported by the National Natural Science Foundation of China(Grant No.12075065)。
文摘Radiation effects of silicon carbide metal–oxide–semiconductor field-effect transistors(SiC MOSFETs)induced by 20 MeV proton under drain bias(V_(D)=800 V,V_(G)=0 V),gate bias(V_(D)=0 V,V_(G)=10 V),turn-on bias(V_(D)=0.5 V,V_(G)=4 V)and static bias(V_(D)=0 V,V_(G)=0 V)are investigated.The drain current of SiC MOSFET under turn-on bias increases linearly with the increase of proton fluence during the proton irradiation.When the cumulative proton fluence reaches 2×10^(11)p·cm^(-2),the threshold voltage of SiC MOSFETs with four bias conditions shifts to the left,and the degradation of electrical characteristics of SiC MOSFETs with gate bias is the most serious.In the deep level transient spectrum test,it is found that the defect energy level of SiC MOSFET is mainly the ON2(E_(c)-1.1 eV)defect center,and the defect concentration and defect capture cross section of SiC MOSFET with proton radiation under gate bias increase most.By comparing the degradation of SiC MOSFET under proton cumulative irradiation,equivalent 1 MeV neutron irradiation and gamma irradiation,and combining with the defect change of SiC MOSFET under gamma irradiation and the non-ionizing energy loss induced by equivalent 1 MeV neutron in SiC MOSFET,the degradation of SiC MOSFET induced by proton is mainly caused by ionizing radiation damage.The results of TCAD analysis show that the ionizing radiation damage of SiC MOSFET is affected by the intensity and direction of the electric field in the oxide layer and epitaxial layer.
基金Supported by National Defence Foundation of China (3110060403)
文摘Radiation hardened CC4007RH and non-radiation hardened CC4011 devices were irradiated using ^60Co gamma rays, 1 MeV electrons and 1-9 MeV protons to compare the ionizing radiation damage of the gamma rays with the charged particles. For all devices examined, with experimental uncertainty, the radiation induced threshold voltage shifts (△Vth) generated by ^60Co gamma rays are equal to that of 1 MeV electron and 1-7 MeV proton radiation under 0 gate bias condition. Under 5 V gate bias condition, the distinction of threshold voltage shifts (△Vth) generated by ^60Co gamma rays and 1 MeV electrons irradiation are not large, and the radiation damage for protons energy the proton has, the less serious below 9 MeV is always less than the radiation damage becomes. that of ^60Co gamma rays. The lower
文摘The elevated and room temperature annealing behavior of radiation damage in JFET-input operational amplifiers (op-amps) were investigated. High- and low-dose-rate irradiation results show that one of the JFET-input op-amps studied in this paper exhibits enhanced low-dose-rate sensitivity and the other shows time-dependent effect. The offset voltage of both op-amps increases during long-term annealing at room temperature. However, the offset voltage decreases at elevated temperature. The dramatic difference in annealing behavior at room and elevated temperatures indicates the migration behavior of radiation-induced species at elevated and room temperatures. This provides useful information to understand the degradation and annealing mechanisms in JFET-input op-amps under total ionizing radiation. Moreover, the annealing of oxide trapped charges should be taken into consideration, when using elevated temperature methods to evaluate low-dose-rate damage.
文摘Natural MoS_2 surface bombarded by Au ions with 13.4 MeV/nucleon was investigated using scanning tunneling microscope (STM) in ambient air. Rather high ion doses 1×10^(13) cm^(-2) were used in order to have more chances to get damaged images. Not only atomic structures of the original surface, but also arrangements on the elevated regions even at the bottom of the craters are clearly shown in the STM images. In general, there is a one-to-one correlation between the number of ion impacts and the number of craters.
基金This work was supported by the National Natural Science Foundation of China(Grant No.20801007).
文摘Due to a radioactive decay Pu is vulnerable to aging.The behavior of He in Pu is the foundation for understanding Pu self-radiation damage aging.Molecular dynamics technique is performed to investigate the behavior of defects,the interaction between He and defects,the processes of initial nucleation and growth of He bubble and the dependence of He bubble on the macroscopical properties of Pu.Modified embedded atom method,Morse pair potential and the Lennard-Jones pair potential are used for describing the interactions of Pu-Pu,Pu-He and He-He,respectively.The main calculated results show that He atoms can combine with vacancies to form Hevacancy cluster(i.e.,the precursor of He bubble)during the process of self-radiation as a result of high binding energy of an interstitial He atom to vacancy;He bubble’s growth can be dominated by the mechanism of punching out of dislocation loop;the swelling induced by He bubble is very small;grain boundaries give rise to an energetically more favorable zone for the interstitial He atom and self-interstitial atom accumulation than for vacancy accumulation;the process of He release can be identified as the formation of release channel induced by the cracking of He bubble and surface structure.
基金provided by the National Key Technology R&D Program of China (No. 2012BAK09B01)the National Natural Science Foundation of China (Nos. 50904067 and 51104156)+1 种基金the Program for the New Century Excellent Talents in University of China (No. NCET-10-0768)the Jiangsu Planned Projects for Postdoctoral Research Funds of China (No. 1102085C)
文摘Based on electromagnetic radiation characteristics, the present research studied the damage evolution of rock under uniaxial compression. Besides, this research built the coal-rock damage evolution model considered residual strength. The applicability and accuracy of the model were verified through experiments. The results show that coal-rock damage evolution consists of four periods. The first period is from the beginning of compression to nearly 20% of the stress peak value, during which the damage variable changes stably about 0.1, and accordingly a few of electromagnetic radiation signals emerge. The second period is from about 20% to 70% of the stress peak value. The damage has stable development, and the parameter of electromagnetic radiation characteristics turns larger continuously with the increase of stress. The third period is when the damage has accelerated development, the coal-rock was broken which result from sharp increasing of the damage variable, meanwhile a great quantity of electromagnetic radiation signals emerge. The fourth period is after the coal-rock fracture, during which the damage variable corresponding to the parameter of electromagnetic radiation characteristics has a stable development. This research has great academic and realistic significance for further studies the electromagnetic radiation characteristics of coal-rock under loading and damage and the forecasting of coal-rock dynamic disasters.