The gel polymer electrolyte containing N-propyl, methylpyrrolidinium bis((trifiuoromethyl) sulfonyl)imide (PYR13TFSI) with better performance is prepared by radical polymerization method. The interface status be...The gel polymer electrolyte containing N-propyl, methylpyrrolidinium bis((trifiuoromethyl) sulfonyl)imide (PYR13TFSI) with better performance is prepared by radical polymerization method. The interface status between the LiFePO4 electrode and the electrolyte is characterized by a scanning electron microscope and X-ray photoelectron spectroscopy (XPS). There is a layer of membrane on the gel electrolyte and perfect shell membranes on the surface of active LiFePO4 cluster, on the other hand, N and S photoelectron signals are observed in XPS spectra after charge-discharge cycles. The results show that the ionic liquids and unpolymerized methyl methacrylate incorporate into the electrode surface and form the SEI membrane with Li ion and electrons while the gel electrolyte contacts with the electrode. The formation process of the SEI membrane needs at least three cycles, the discharge capacity increases as the SEI membrane becomes sufficiently thick, which blocks further electron transfer, and the system may approach steady state. The performance of cell with ionic liquid gel polymer electrolyte is measured at different rate. The cells retain 132 mAh/g at 0.2 C, 128 mAh/g at 0.5 C, and 120 mAh/g at 1.0 C after 30 cycles with charge-discharge efficiency of ca. 98% at every rate.展开更多
An overview of aqueous polymerizations, which include emulsion, miniemulsion and suspension polymerizations, under stable free radical polymerization (SFRP) conditions is presented. The success of miniemulsion and sus...An overview of aqueous polymerizations, which include emulsion, miniemulsion and suspension polymerizations, under stable free radical polymerization (SFRP) conditions is presented. The success of miniemulsion and suspension SFRP polymerizations is contrasted with the difficulties associated with obtaining a stable emulsion polymerization. A recently developed unique microprecipitation technique is referenced as a means of making submicron sized particles that can be used to achieve a stable emulsion SFRP process.展开更多
Amphiphilic star-block copolymers composed of polystyrene and poly(acrylic acid) were synthesized by iodide- mediated radical polymerization. Firstly, free radical polymerization of styrene was carried out with AIBN...Amphiphilic star-block copolymers composed of polystyrene and poly(acrylic acid) were synthesized by iodide- mediated radical polymerization. Firstly, free radical polymerization of styrene was carried out with AIBN as initiator and 1,1,1-trimethyolpropane tri(2-iodoisobutyrate) as chain transfer agent, giving iodine atom ended star-shaped polystyrene with three arm chains, R(polystyrene)3. Secondly, tert-butyl acrylate was polymerization using polystyrene obtained as macro-chain transfer agent, and star-block copolymer, R(polystyrene-b-poly(tert-butyl acrylate))3 with controlled molecular weight was obtained. Finally, amphiphilic star-block copolymer, R(polystyrene-b-poly(acrylic acid))3 was obtained by hydrolysis of R(polystyrene-b-poly(tert-butyl acrylate))3 under acidic condition.展开更多
A novel photo-induced initiating system, 2,2-dimethoxy-2-phenylacetophenone (DMPA)/ferric tri(NN-diethyldithiocarbamate) [Fe(DC)(3)], was developed and used for the atom transfer radical polymerization (ATRP) of styre...A novel photo-induced initiating system, 2,2-dimethoxy-2-phenylacetophenone (DMPA)/ferric tri(NN-diethyldithiocarbamate) [Fe(DC)(3)], was developed and used for the atom transfer radical polymerization (ATRP) of styrene in toluene. The polymerization proceeds with DMPA as photo-initiator, Fe(DC)(3) as catalyst and DC as a reversible transfer group, while the halogen and ligands are free. Well-defined PSt was prepared and the polymerization mechanism revealed by end group analysis belongs to a reverse ATRP. Block copolymer was prepared by using thus obtained PSt as macroinitiator and Fe(DC)(2) as catalyst under UV light irradiation via a conventional ATRP process.展开更多
Two new chiral ionic liquids, 1 -((-)-menthoxycarbonylmethylene)-3-methylimidazolium hexafluorophosphateand 1-((-)-menthoxycarbonylmethylene)-3-hexadecylimidazolium hexafluorophosphate, were designed an d prepared. Th...Two new chiral ionic liquids, 1 -((-)-menthoxycarbonylmethylene)-3-methylimidazolium hexafluorophosphateand 1-((-)-menthoxycarbonylmethylene)-3-hexadecylimidazolium hexafluorophosphate, were designed an d prepared. Theirchemical structures were characterized by ~1H-NMR. Reverse atom transfer radical polymerization of methyl methacrylate(MMA) in these two ionic liquids was carried out using AIBN/CuCl_2/bipy as the initiating system. The resultant well-definedpolymethyl methacrylate (PMMA) was employed as a macroinitiator to induce the atom transfer radical polymerization ofmenthyl methacrylate (MnMA) in chlorobenzene, which yielded a PMMA-b-PMnMA diblock copolymer with narrow polydispersity.展开更多
The polymerization behaviors of Styrene (St) in the presence of CuX/L [X=Cl or Br; L= 2,2 bipyridine (bpy), 1,10 phenanthroline (phen) or 4,7 diphenyl 1,10 phenanthroline (DPP) ] and R X (R=trichloromethyl, benz...The polymerization behaviors of Styrene (St) in the presence of CuX/L [X=Cl or Br; L= 2,2 bipyridine (bpy), 1,10 phenanthroline (phen) or 4,7 diphenyl 1,10 phenanthroline (DPP) ] and R X (R=trichloromethyl, benzyl or allyl; X=Cl or Br) have been studied and examined. In a CuCl/bpy/RCl/St system, a bimodal GPC peak at the early stage of polymerization was observed, and a concept of multi active species was proposed to explain this phenomenon. In a CuCl/phen (DPP)/RCl/St system, the \%M\%\-n of polystyrene (PS) increased linearly with St conversion and ln[M] o/[M] also increased linearly with time, indicating the living nature of this system. Furthermore, the stability of the propagating active species in a CuBr/phen/RBr/St system is higher than that in the CuBr/phen/RBr/St system.展开更多
The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 'C were performed. The obtained poly...The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 'C were performed. The obtained polyisoprene and polystyrene homopolymers served as macroinitiators for block copolymerization of isoprene and styrene to synthesize poly- (styrene-b-isoprene) and poly(isoprene-b-styrene) diblock copolymers. Diblock copolymers with well-defined structures as well as controlled and narrow molecular weight distribution were obtained from the lower-mass polystyrene and polyisoprene homopolymers. These copolymers were found to be active as macroinitiators in the synthesis of the poly(styrene-b-isoprene-b-styrene) and poly(isoprene-b-styrene-b-isoprene) triblock copolymers. 1H-NMR spectroscopy and gel permeation chromatography (GPC) were used for the investigation of polymer structure, molecular weight and polydispersity (PD).展开更多
A kinetic model was developed to describe the atom transfer radical polymerization (ATRP) of 2(N,N-dimethylarnino) ethyl methacrylate (DMAEMA). The model was based on a polymerization mechanism, which included the ato...A kinetic model was developed to describe the atom transfer radical polymerization (ATRP) of 2(N,N-dimethylarnino) ethyl methacrylate (DMAEMA). The model was based on a polymerization mechanism, which included the atom transfer equilibrium for primary radical, the propagation of growing polymer radical, and the atom transfer equilibrium for the growing polymer radical. An experiment was carried out to measure the conversion of monomer, the number-average molecular weight of polymer and molecular weight distribution for the ATRP process of DMAEMA. The experimental data were used to correlate the kinetic model and rate constants were obtained. The rate constants of activation and deactivation in the atom transfer equilibrium for primary radical are 1.0 x 10(4) L(.)mol(-1.)s(-1) and 0.04 L(.)mol(-1.)s(-1), respectively. The rate constant of the propagation of growing polymer radical is 8.50 L(.)mol(-1.)s(-1), and the rate constants of activation and deactivation in the atom transfer equilibrium for growing polymer radical are 0.045 L(.)mol(-1.)s(-1) and 1.2 x 10(5) L(.)mol(-1.)s(-1), respectively. The values of the rate constants represent the features of the ATRP process. The kinetic model was used to calculate the ATRP process of DMAEMA. The results show that the calculations agree well with the measurements.展开更多
Comblike poly(methyl methacrylate) was synthesized by atom transfer radical polymerization of methyl methacrylate with poly(ethyl 2-bromoacrylate) as a macroinitiator, which was prepared by conventional free radical p...Comblike poly(methyl methacrylate) was synthesized by atom transfer radical polymerization of methyl methacrylate with poly(ethyl 2-bromoacrylate) as a macroinitiator, which was prepared by conventional free radical polymerization of ethyl 2-bromoacrylate. The obtained comblike polymers were characterized by GPC and 1H NMR.展开更多
A supported iron catalyst, which was prepared by anchoring FeCl2/FeCl3 on the cross-linking macroporous polyacrylate ion exchange resin, was evaluated via the controlled radical polymerization. When a small amount of ...A supported iron catalyst, which was prepared by anchoring FeCl2/FeCl3 on the cross-linking macroporous polyacrylate ion exchange resin, was evaluated via the controlled radical polymerization. When a small amount of CuCl2/ Me6TREN was added, the controllability of the polymerization over the iron-mediated catalyst was significantly improved(Mw/Mn = 1.23-1.73 ), affording a polymer with a low residual metal via a simple catalyst separation procedure. After suitable regeneration, the supported iron catalyst could also he recycled. UV-Vis analysis showed that the additional copper catalyst could facilitate the radical deactivation process.展开更多
Heteroarm star-shaped polymers were synthesized by conventional free radical polymerization in two steps by the use of polyfunctional chain transfer agent.In the first step,free radical polymerization of methyl methac...Heteroarm star-shaped polymers were synthesized by conventional free radical polymerization in two steps by the use of polyfunctional chain transfer agent.In the first step,free radical polymerization of methyl methacrylate was carried out in the presence of a polyfunctional chain transfer agent,pentaerythritol tetrakis(3-mercaptopropinate).At appropriate monomer conversions,two-arm PMMA having two residual thiol groups at the chain center or three-arm PMMA having one residual thiol group at the core were o...展开更多
A novel approach for the surface modification of poly(vinylidene fluoride)(PVDF)membrane was successfully realized through alkaline treatment,UV-induced bromine addition,and followed by surface-initiated atom transfer...A novel approach for the surface modification of poly(vinylidene fluoride)(PVDF)membrane was successfully realized through alkaline treatment,UV-induced bromine addition,and followed by surface-initiated atom transfer radical polymerization(ATRP)of methyl methacrylate(MMA).Chemical changes on the PVDF membrane before and after modification were analyzed with attenuated total reflectance Fourier transform infrared spectroscopy(ATR/FT-IR)and X-ray photoelectron spectroscopy(XPS).Primary kinetic study revealed...展开更多
The design and synthesis of novel dendritic-linear block copolymers were described. The copolymers were synthesized by atom transfer radical polymerization (ATRP) using dendritic polyarylether 2-bromoisobutyrate macr...The design and synthesis of novel dendritic-linear block copolymers were described. The copolymers were synthesized by atom transfer radical polymerization (ATRP) using dendritic polyarylether 2-bromoisobutyrate macroinitiator. ATRP carried out in bulk with CuBr/bipy catalyst at 120癈, yielded well-defined block copolymers with polydispersities less than 1.36.展开更多
The reverse atom transfer radical polymerization(RATRP) of (-)-menthyl methacrylate ((-)-MnMA) with AIBN(AIBN/CuCl2/bipyridine(bipy) or (-)sparteine((-)Sp) =1/2/4) initiating system in THF has been studied. The depen...The reverse atom transfer radical polymerization(RATRP) of (-)-menthyl methacrylate ((-)-MnMA) with AIBN(AIBN/CuCl2/bipyridine(bipy) or (-)sparteine((-)Sp) =1/2/4) initiating system in THF has been studied. The dependence of the specific rotation on molecular weight was investigated.展开更多
Silk was grafted using 2-hydroxyethyl methacrylate(HEMA)by atom transfer radical polymerization(ATRP)method.The amino groups and hydroxyl groups on the side chains of the silk fibroin was reacted with 2-bromoisobutyry...Silk was grafted using 2-hydroxyethyl methacrylate(HEMA)by atom transfer radical polymerization(ATRP)method.The amino groups and hydroxyl groups on the side chains of the silk fibroin was reacted with 2-bromoisobutyryl bromide(BriB-Br)to obtain efficient macroinitiator for ATRP.And the macroinitiator was grafted with HEMA in water aqueous using CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine(PMDETA)as catalyst system.The effects of monomer concentration,the proportion of CuBr and PMDETA,grafting temperature and time on the silk grafting were discussed,and the optimal grafting technology was obtained.FT-IR characterization of the grafted silk showed a peak corresponding to HEMA,which indicated that HEMA was grafted onto the surface of silk.ATRP method could be applied on the silk modification and this technique provided a new way for silk grafting.展开更多
A novel acrylate inimer, 2-(2-chloroacetyloxy) ethyl acrylate, was prepared by the reaction of 2-hydroxyethyl acrylate with chloroacetyl chloride in the presence of triethylamine. The self-condensing vinyl living ra...A novel acrylate inimer, 2-(2-chloroacetyloxy) ethyl acrylate, was prepared by the reaction of 2-hydroxyethyl acrylate with chloroacetyl chloride in the presence of triethylamine. The self-condensing vinyl living radical polymerization of the inimer was studied and the hyperbranched macromolecules containing ester linkages on their backbone were prepared. All the polymerization products were characterized by 1H NMR. The polymerization degree and the branching parameter were calculated based on the 1H NMR spectra. It has been shown that this inimer exhibits a very distinctive polymerization behavior. Similar to step-growth polymerization, the polymerization degree of the products formed increased exponentially during the early stage of the polymerization, and then the increasing rate slowed down. However, the inimer remained present throughout the polymerization consistent with conventional free radical polymerization. Also, if much longer polymerization time was used, the polymerization system would become gel due to the crosslinking reaction derived from radical-radical recombination. As a result of the unequal reactivity of -CH2Cl and >CHCl, an almost linear product was obtained at a molar ratio of bipy to inimer=0.05, while a relatively high ratio of bipy to inimer 1 favored the formation of the branched structure. The macromolecules formed at a high ratio of bipy to inimer 1 exhibited an excellent solubility in organic solvents such as acetone.展开更多
This review summarizes our achievements in designing new initiation systems for atom transfer radical polymerization (ATRP). First-order kinetics and extension experiments revealed the living nature of these reactions...This review summarizes our achievements in designing new initiation systems for atom transfer radical polymerization (ATRP). First-order kinetics and extension experiments revealed the living nature of these reactions. Tailor- made vinyl polymers with functional end groups were characterized by 1H-NMR and UV-vis spectroscopic analyses. Replacing traditional radical initiators AIBN and BPO, carbon-carbon bond compounds, 1,1,2,2-tetraphenyl-1,2-ethanediol, diethyl 2,3-dicyano-2,3-diphenylsuccinate and diethyl 2,3-dicyano-2,3-di(p-tolyl)succinate, were utilized in reverse ATRP to produce the initiating radical. Sulfur-sulfur bond iniferter, tetraethylthiuram disulfide (TD), in conjunction with CuBr/bpy or NiCl2/PPh3 complex could control the styrene polymerization via redox reaction. Pseudo-halogen transfer reaction was demonstrated to maintain the dormant-active species equilibrium in normal and reverse ATRP with Cu(S2CNEt2), Cu(S2CNEt2)Cl and Fe(S2CNEt2)3 as catalysts. The organic halide initiator and reduced transition metal compound that started the living polymerization were produced in situ from the components of TD/FeCl3/PPh3, TD/CuBr2/bpy and Fe(S2CNEt2)3/FeCl3/PPh3 systems. Accurate control of UV irradiation time favored the radical generation process in photo ATRP with the 2,2-dimethoxy-2-phenylacetophenone/Fe(S2CNEt2)3 initiation system.展开更多
Functional monomer (MP)_2PT having tertiary aromatic amino group was systhesized from the reaction of N, N-di (2-hydroxypropyl)-p-toluidine with 2-methyl acryloyl chloride. In the presence of organic peroxide, the rad...Functional monomer (MP)_2PT having tertiary aromatic amino group was systhesized from the reaction of N, N-di (2-hydroxypropyl)-p-toluidine with 2-methyl acryloyl chloride. In the presence of organic peroxide, the radical polymerization of (MP)_2PT in toluene took place. The kinetics of (MP)_2PT polymerization and the ESR spectra of LPO-(MP)2PT-MNP systems were determined respectively.展开更多
Controlled polymerization of N-n-propylacrylamide was achieved by atom transfer radical polymerization(ATRP) in a N,N-dimethylformamide-water mixture(50 vol%)at room temperature with methyl 2-chloropropinonate as init...Controlled polymerization of N-n-propylacrylamide was achieved by atom transfer radical polymerization(ATRP) in a N,N-dimethylformamide-water mixture(50 vol%)at room temperature with methyl 2-chloropropinonate as initiator and CuCl/tris(2-dimethylaminoethyl)amine as the catalytic system in a ratio of 1:1:1.High molecular weight homopolymers(up to 3.7×10~4)with narrow molecular weight distribution(less than 1.2)were obtained.The living character of the polymerization was further demonstrated by self-blocking...展开更多
Cross-linked polystyrene with azo-crown ether functional side chain (PSt-1, 10-dicarbonyl-3,6,9-trizaoeylcode-cane) was prepared under microwave irradiation and the structure was characterized through FT-IR and elemen...Cross-linked polystyrene with azo-crown ether functional side chain (PSt-1, 10-dicarbonyl-3,6,9-trizaoeylcode-cane) was prepared under microwave irradiation and the structure was characterized through FT-IR and element analysis. The functionalized cross-linked polystyrene (cross-link degree, 3.5%) combining with immobilized catalyst system (CuBr and ethylα-bromo-isobutyrate) can catalyze atom transfer radical polymerization of Styrene. Neat polymer products can be obtained then. Complex of La and the polymer end group (EBiB) was synthesized. The third order nonlinear optical property of the polymer-La complex was investigated and the structure was also characterized by FT-IR and XPS.展开更多
基金V. ACKNOWLEDGMENTS This work was supported by the Innovative Research Team of green chemical technology in University of Heilongjiang Province, the Natural Science Foundation of Heilongjiang Province of China (No.B201007 and No.E201141), Harbin Innovation Talents of Science and Technology of Special Fund Project (No.2012RFQXG085), and Educational Commission of Heilongjiang Province of China (No.12521z008 and No.12511443).
文摘The gel polymer electrolyte containing N-propyl, methylpyrrolidinium bis((trifiuoromethyl) sulfonyl)imide (PYR13TFSI) with better performance is prepared by radical polymerization method. The interface status between the LiFePO4 electrode and the electrolyte is characterized by a scanning electron microscope and X-ray photoelectron spectroscopy (XPS). There is a layer of membrane on the gel electrolyte and perfect shell membranes on the surface of active LiFePO4 cluster, on the other hand, N and S photoelectron signals are observed in XPS spectra after charge-discharge cycles. The results show that the ionic liquids and unpolymerized methyl methacrylate incorporate into the electrode surface and form the SEI membrane with Li ion and electrons while the gel electrolyte contacts with the electrode. The formation process of the SEI membrane needs at least three cycles, the discharge capacity increases as the SEI membrane becomes sufficiently thick, which blocks further electron transfer, and the system may approach steady state. The performance of cell with ionic liquid gel polymer electrolyte is measured at different rate. The cells retain 132 mAh/g at 0.2 C, 128 mAh/g at 0.5 C, and 120 mAh/g at 1.0 C after 30 cycles with charge-discharge efficiency of ca. 98% at every rate.
文摘An overview of aqueous polymerizations, which include emulsion, miniemulsion and suspension polymerizations, under stable free radical polymerization (SFRP) conditions is presented. The success of miniemulsion and suspension SFRP polymerizations is contrasted with the difficulties associated with obtaining a stable emulsion polymerization. A recently developed unique microprecipitation technique is referenced as a means of making submicron sized particles that can be used to achieve a stable emulsion SFRP process.
基金The authors gratefully acknowledge the support from Beijing Municipal Commission of Education.
文摘Amphiphilic star-block copolymers composed of polystyrene and poly(acrylic acid) were synthesized by iodide- mediated radical polymerization. Firstly, free radical polymerization of styrene was carried out with AIBN as initiator and 1,1,1-trimethyolpropane tri(2-iodoisobutyrate) as chain transfer agent, giving iodine atom ended star-shaped polystyrene with three arm chains, R(polystyrene)3. Secondly, tert-butyl acrylate was polymerization using polystyrene obtained as macro-chain transfer agent, and star-block copolymer, R(polystyrene-b-poly(tert-butyl acrylate))3 with controlled molecular weight was obtained. Finally, amphiphilic star-block copolymer, R(polystyrene-b-poly(acrylic acid))3 was obtained by hydrolysis of R(polystyrene-b-poly(tert-butyl acrylate))3 under acidic condition.
文摘A novel photo-induced initiating system, 2,2-dimethoxy-2-phenylacetophenone (DMPA)/ferric tri(NN-diethyldithiocarbamate) [Fe(DC)(3)], was developed and used for the atom transfer radical polymerization (ATRP) of styrene in toluene. The polymerization proceeds with DMPA as photo-initiator, Fe(DC)(3) as catalyst and DC as a reversible transfer group, while the halogen and ligands are free. Well-defined PSt was prepared and the polymerization mechanism revealed by end group analysis belongs to a reverse ATRP. Block copolymer was prepared by using thus obtained PSt as macroinitiator and Fe(DC)(2) as catalyst under UV light irradiation via a conventional ATRP process.
基金This work was supported by the National Natural Science Foundation of China (Grants 20174001, 29992590-4) and the Ministry of Education of China for the teaching and research award fund for outstanding young teacher in higher education institutions.
文摘Two new chiral ionic liquids, 1 -((-)-menthoxycarbonylmethylene)-3-methylimidazolium hexafluorophosphateand 1-((-)-menthoxycarbonylmethylene)-3-hexadecylimidazolium hexafluorophosphate, were designed an d prepared. Theirchemical structures were characterized by ~1H-NMR. Reverse atom transfer radical polymerization of methyl methacrylate(MMA) in these two ionic liquids was carried out using AIBN/CuCl_2/bipy as the initiating system. The resultant well-definedpolymethyl methacrylate (PMMA) was employed as a macroinitiator to induce the atom transfer radical polymerization ofmenthyl methacrylate (MnMA) in chlorobenzene, which yielded a PMMA-b-PMnMA diblock copolymer with narrow polydispersity.
文摘The polymerization behaviors of Styrene (St) in the presence of CuX/L [X=Cl or Br; L= 2,2 bipyridine (bpy), 1,10 phenanthroline (phen) or 4,7 diphenyl 1,10 phenanthroline (DPP) ] and R X (R=trichloromethyl, benzyl or allyl; X=Cl or Br) have been studied and examined. In a CuCl/bpy/RCl/St system, a bimodal GPC peak at the early stage of polymerization was observed, and a concept of multi active species was proposed to explain this phenomenon. In a CuCl/phen (DPP)/RCl/St system, the \%M\%\-n of polystyrene (PS) increased linearly with St conversion and ln[M] o/[M] also increased linearly with time, indicating the living nature of this system. Furthermore, the stability of the propagating active species in a CuBr/phen/RBr/St system is higher than that in the CuBr/phen/RBr/St system.
文摘The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 'C were performed. The obtained polyisoprene and polystyrene homopolymers served as macroinitiators for block copolymerization of isoprene and styrene to synthesize poly- (styrene-b-isoprene) and poly(isoprene-b-styrene) diblock copolymers. Diblock copolymers with well-defined structures as well as controlled and narrow molecular weight distribution were obtained from the lower-mass polystyrene and polyisoprene homopolymers. These copolymers were found to be active as macroinitiators in the synthesis of the poly(styrene-b-isoprene-b-styrene) and poly(isoprene-b-styrene-b-isoprene) triblock copolymers. 1H-NMR spectroscopy and gel permeation chromatography (GPC) were used for the investigation of polymer structure, molecular weight and polydispersity (PD).
文摘A kinetic model was developed to describe the atom transfer radical polymerization (ATRP) of 2(N,N-dimethylarnino) ethyl methacrylate (DMAEMA). The model was based on a polymerization mechanism, which included the atom transfer equilibrium for primary radical, the propagation of growing polymer radical, and the atom transfer equilibrium for the growing polymer radical. An experiment was carried out to measure the conversion of monomer, the number-average molecular weight of polymer and molecular weight distribution for the ATRP process of DMAEMA. The experimental data were used to correlate the kinetic model and rate constants were obtained. The rate constants of activation and deactivation in the atom transfer equilibrium for primary radical are 1.0 x 10(4) L(.)mol(-1.)s(-1) and 0.04 L(.)mol(-1.)s(-1), respectively. The rate constant of the propagation of growing polymer radical is 8.50 L(.)mol(-1.)s(-1), and the rate constants of activation and deactivation in the atom transfer equilibrium for growing polymer radical are 0.045 L(.)mol(-1.)s(-1) and 1.2 x 10(5) L(.)mol(-1.)s(-1), respectively. The values of the rate constants represent the features of the ATRP process. The kinetic model was used to calculate the ATRP process of DMAEMA. The results show that the calculations agree well with the measurements.
文摘Comblike poly(methyl methacrylate) was synthesized by atom transfer radical polymerization of methyl methacrylate with poly(ethyl 2-bromoacrylate) as a macroinitiator, which was prepared by conventional free radical polymerization of ethyl 2-bromoacrylate. The obtained comblike polymers were characterized by GPC and 1H NMR.
文摘A supported iron catalyst, which was prepared by anchoring FeCl2/FeCl3 on the cross-linking macroporous polyacrylate ion exchange resin, was evaluated via the controlled radical polymerization. When a small amount of CuCl2/ Me6TREN was added, the controllability of the polymerization over the iron-mediated catalyst was significantly improved(Mw/Mn = 1.23-1.73 ), affording a polymer with a low residual metal via a simple catalyst separation procedure. After suitable regeneration, the supported iron catalyst could also he recycled. UV-Vis analysis showed that the additional copper catalyst could facilitate the radical deactivation process.
文摘Heteroarm star-shaped polymers were synthesized by conventional free radical polymerization in two steps by the use of polyfunctional chain transfer agent.In the first step,free radical polymerization of methyl methacrylate was carried out in the presence of a polyfunctional chain transfer agent,pentaerythritol tetrakis(3-mercaptopropinate).At appropriate monomer conversions,two-arm PMMA having two residual thiol groups at the chain center or three-arm PMMA having one residual thiol group at the core were o...
基金This work was financially supported by the National Natural Science Foundation of China for Distinguished Young Scholars(No. 50625309)the Zhejiang Provincial Natural Science Foundation of China(No. Z406260).
文摘A novel approach for the surface modification of poly(vinylidene fluoride)(PVDF)membrane was successfully realized through alkaline treatment,UV-induced bromine addition,and followed by surface-initiated atom transfer radical polymerization(ATRP)of methyl methacrylate(MMA).Chemical changes on the PVDF membrane before and after modification were analyzed with attenuated total reflectance Fourier transform infrared spectroscopy(ATR/FT-IR)and X-ray photoelectron spectroscopy(XPS).Primary kinetic study revealed...
文摘The design and synthesis of novel dendritic-linear block copolymers were described. The copolymers were synthesized by atom transfer radical polymerization (ATRP) using dendritic polyarylether 2-bromoisobutyrate macroinitiator. ATRP carried out in bulk with CuBr/bipy catalyst at 120癈, yielded well-defined block copolymers with polydispersities less than 1.36.
文摘The reverse atom transfer radical polymerization(RATRP) of (-)-menthyl methacrylate ((-)-MnMA) with AIBN(AIBN/CuCl2/bipyridine(bipy) or (-)sparteine((-)Sp) =1/2/4) initiating system in THF has been studied. The dependence of the specific rotation on molecular weight was investigated.
基金National Natural Science Foundation of China(No.50673071,No.50973079)Natural Science Fund for Colleges and Universities in Jiangsu Province,China(No.07KJD540188,No.09KJA540001)
文摘Silk was grafted using 2-hydroxyethyl methacrylate(HEMA)by atom transfer radical polymerization(ATRP)method.The amino groups and hydroxyl groups on the side chains of the silk fibroin was reacted with 2-bromoisobutyryl bromide(BriB-Br)to obtain efficient macroinitiator for ATRP.And the macroinitiator was grafted with HEMA in water aqueous using CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine(PMDETA)as catalyst system.The effects of monomer concentration,the proportion of CuBr and PMDETA,grafting temperature and time on the silk grafting were discussed,and the optimal grafting technology was obtained.FT-IR characterization of the grafted silk showed a peak corresponding to HEMA,which indicated that HEMA was grafted onto the surface of silk.ATRP method could be applied on the silk modification and this technique provided a new way for silk grafting.
基金Supported by the National Natural Science Foundation of China(No. 2 980 40 0 6 ) and the Youth Foundation of Jiangsuprovince(No.BQ980 2 4)
文摘A novel acrylate inimer, 2-(2-chloroacetyloxy) ethyl acrylate, was prepared by the reaction of 2-hydroxyethyl acrylate with chloroacetyl chloride in the presence of triethylamine. The self-condensing vinyl living radical polymerization of the inimer was studied and the hyperbranched macromolecules containing ester linkages on their backbone were prepared. All the polymerization products were characterized by 1H NMR. The polymerization degree and the branching parameter were calculated based on the 1H NMR spectra. It has been shown that this inimer exhibits a very distinctive polymerization behavior. Similar to step-growth polymerization, the polymerization degree of the products formed increased exponentially during the early stage of the polymerization, and then the increasing rate slowed down. However, the inimer remained present throughout the polymerization consistent with conventional free radical polymerization. Also, if much longer polymerization time was used, the polymerization system would become gel due to the crosslinking reaction derived from radical-radical recombination. As a result of the unequal reactivity of -CH2Cl and >CHCl, an almost linear product was obtained at a molar ratio of bipy to inimer=0.05, while a relatively high ratio of bipy to inimer 1 favored the formation of the branched structure. The macromolecules formed at a high ratio of bipy to inimer 1 exhibited an excellent solubility in organic solvents such as acetone.
文摘This review summarizes our achievements in designing new initiation systems for atom transfer radical polymerization (ATRP). First-order kinetics and extension experiments revealed the living nature of these reactions. Tailor- made vinyl polymers with functional end groups were characterized by 1H-NMR and UV-vis spectroscopic analyses. Replacing traditional radical initiators AIBN and BPO, carbon-carbon bond compounds, 1,1,2,2-tetraphenyl-1,2-ethanediol, diethyl 2,3-dicyano-2,3-diphenylsuccinate and diethyl 2,3-dicyano-2,3-di(p-tolyl)succinate, were utilized in reverse ATRP to produce the initiating radical. Sulfur-sulfur bond iniferter, tetraethylthiuram disulfide (TD), in conjunction with CuBr/bpy or NiCl2/PPh3 complex could control the styrene polymerization via redox reaction. Pseudo-halogen transfer reaction was demonstrated to maintain the dormant-active species equilibrium in normal and reverse ATRP with Cu(S2CNEt2), Cu(S2CNEt2)Cl and Fe(S2CNEt2)3 as catalysts. The organic halide initiator and reduced transition metal compound that started the living polymerization were produced in situ from the components of TD/FeCl3/PPh3, TD/CuBr2/bpy and Fe(S2CNEt2)3/FeCl3/PPh3 systems. Accurate control of UV irradiation time favored the radical generation process in photo ATRP with the 2,2-dimethoxy-2-phenylacetophenone/Fe(S2CNEt2)3 initiation system.
文摘Functional monomer (MP)_2PT having tertiary aromatic amino group was systhesized from the reaction of N, N-di (2-hydroxypropyl)-p-toluidine with 2-methyl acryloyl chloride. In the presence of organic peroxide, the radical polymerization of (MP)_2PT in toluene took place. The kinetics of (MP)_2PT polymerization and the ESR spectra of LPO-(MP)2PT-MNP systems were determined respectively.
基金This work was supported by the National Natural Science Foundation of China through Young Investigator Award(No.20328407)Nankai University,and the Canada Research Chair program.
文摘Controlled polymerization of N-n-propylacrylamide was achieved by atom transfer radical polymerization(ATRP) in a N,N-dimethylformamide-water mixture(50 vol%)at room temperature with methyl 2-chloropropinonate as initiator and CuCl/tris(2-dimethylaminoethyl)amine as the catalytic system in a ratio of 1:1:1.High molecular weight homopolymers(up to 3.7×10~4)with narrow molecular weight distribution(less than 1.2)were obtained.The living character of the polymerization was further demonstrated by self-blocking...
基金Project supported by Jiangsu Province Natural Science Foundation (BK 2002042)
文摘Cross-linked polystyrene with azo-crown ether functional side chain (PSt-1, 10-dicarbonyl-3,6,9-trizaoeylcode-cane) was prepared under microwave irradiation and the structure was characterized through FT-IR and element analysis. The functionalized cross-linked polystyrene (cross-link degree, 3.5%) combining with immobilized catalyst system (CuBr and ethylα-bromo-isobutyrate) can catalyze atom transfer radical polymerization of Styrene. Neat polymer products can be obtained then. Complex of La and the polymer end group (EBiB) was synthesized. The third order nonlinear optical property of the polymer-La complex was investigated and the structure was also characterized by FT-IR and XPS.