Basic climatic characteristics are analyzed concerning the precipitation anomalies in raining seasons over regions south of the Changjiang River (the Yangtze). It finds that the regions are the earliest in eastern Chi...Basic climatic characteristics are analyzed concerning the precipitation anomalies in raining seasons over regions south of the Changjiang River (the Yangtze). It finds that the regions are the earliest in eastern China where raining seasons begin and end. Precipitation there tends to decrease over the past 50 years. Waters bounded by 9(S -1(S, 121(E - 129(E are the key zones of SST anomalies that affect the precipitation in these regions over May ~ July in preceding years. Long-term air-sea interactions make it possible for preceding SST anomalies to affect the general circulation that come afterwards, causing precipitation anomalies in the raining seasons in regions south of the Changjiang River in subsequent years.展开更多
[Objective] The research aimed to analyze a regional heavy rainstorm process in North Henan.[Method] Based on routine weather chart,rainfall station in county and town,satellite cloud chart,etc.,by using synoptic diag...[Objective] The research aimed to analyze a regional heavy rainstorm process in North Henan.[Method] Based on routine weather chart,rainfall station in county and town,satellite cloud chart,etc.,by using synoptic diagnostic method,formation reason of the regional heavy rainstorm weather in North Henan during 18-19 August,2010 was analyzed initially from large-scale circulation background,influence system,physical quantity field and terrain influence.[Result] The strong precipitation had obvious meso-scale characteristics.The main influence systems were ground meso-scale convergence line,shear line at the middle and low layers,low-level southwest jet.The low-level southwest jet transported sufficient water vapor for generation of the heavy rainstorm.The ground converge line increased convergence ascending movement and water vapor convergence.Atmospheric divergence convergence center at the low layer was just in North Henan.Strong rise zone of the vertical velocity was also in North Henan.It provided sufficient dynamic condition for rainstorm generation.Generation,development and movement of the ground meso-scale convergence line had good indications for occurrence times and falling zones of the rainstorm and short-time strong precipitation.The big-value zones of K index and θse at the low layer both presented Ω distribution at the vertical direction,which had indicative significance for strong precipitation forecast.The strong precipitation center corresponded with fork horn terrain,and orographic rain characteristics were obvious.[Conclusion] The research provided reference basis for forecast of this kind of rainstorm.展开更多
Satellite rainfall estimates have predominantly been used for climate impact studies due to poor rain gauge network in sub-Saharan Africa. However, there are limited microscale studies within the sub-region that have ...Satellite rainfall estimates have predominantly been used for climate impact studies due to poor rain gauge network in sub-Saharan Africa. However, there are limited microscale studies within the sub-region that have assessed the performance of these satellite products, which is the focus of the present study. This paper therefore considers validation of Tropical Rainfall Measuring Mission (TRMM) and Famine Early Warning System (FEWS) satellite estimates with rain gauge measurements over Ashanti region of Ghana. First, a consistency assessment of the two gauge data products, the Automatic Rain Gauge (ARG) and Ghana Meteorological Agency (GMet) Standard Rain Gauge (SRG) measurements, was performed. This showed a very good agreement with correlation coefficient of 0.99. Secondly, satellite rainfall products from TRMM and FEWS were validated with the two gauge measurements. Validation results showed good agreement with correlation coefficients of 0.6 and 0.7 for TRMM and FEWS with SRG, and 0.87 and 0.86 for TRMM and FEWS with ARG respectively. Probability Of Detection (POD) and Volumetric Hit Index (VHI) were found to be greater than 0.9. Volumetric Critical Success Index (VCSI) was 0.9 and 0.8 for TRMM and FEWS respectively with low False Alarm Ratio (FAR) and insignificant Volumetric Miss Index (VMI). In general, relatively low biases and RMSE values were observed. The biases were less than 1.3 and 0.8 for TRMM and FEWS-RFE respectively. These indicate high rainfall detection capabilities of both satellite products. In addition, both TRMM and FEWS were able to capture the onset, peak and cessation of the rainy season, as well as the dry spells. Although TRMM and FEWS sometimes under/overestimated rainfall, they have the potential to be used for agricultural and other hydro-climatic impact studies over the region. The Dynamic-Aerosol-Cloud-Chemistry Interactions in West Africa (DACCIWA) project will provide an improved spatial gauge network database over the study area to enhance future validation and other climate impact studies.展开更多
The authors investigate possible changes of monsoon rainfall and associated seasonal (June-JulyAugust) anomaly patterns over eastern China in the late 21st century under the Intergovernmental Panel on Climate Change (...The authors investigate possible changes of monsoon rainfall and associated seasonal (June-JulyAugust) anomaly patterns over eastern China in the late 21st century under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 emission scenario as simulated by a high-resolution regional climate model (RegCM3) nested in a general circulation model (FvGCM/CCM3).Two sets of multi-decadal simulations are performed at 20-km grid spacing for present day and future climate conditions.Results show that the RegCM3 reproduces the mean rainfall distribution;however the evolution of the monsoon rain belt from South China to North China is not well simulated.Concerning the rain pattern classifications,RegCM3 overestimates the occurrence of Pattern 1 (excessive rainfall in northern China) and underestimates that of Pattern 2 (increased rainfall over the Huai River basin).Under future climate conditions,RegCM3 projects less occurrence of Pattern 1,more of Pattern 2,and little change of Pattern 3 (rainfall increase along the Yangtze River).These results indicate that there might be increased rainfall over the Huai-Yellow River area and reduced rainfall over North China in the future,while rainfall over the lower reaches of the Yangtze River basin is not modified significantly.Uncertainties exist in the present study are also discussed.展开更多
基金Interannual and Interdecadal Variation Laws Governing the Mei-yu in the Changjiang-Huanhe Rivers valley Key Foundation Project in National Natural Science Foundation (40233037) Research on the Interactions between the South Asia High and Asia Monsoon a
文摘Basic climatic characteristics are analyzed concerning the precipitation anomalies in raining seasons over regions south of the Changjiang River (the Yangtze). It finds that the regions are the earliest in eastern China where raining seasons begin and end. Precipitation there tends to decrease over the past 50 years. Waters bounded by 9(S -1(S, 121(E - 129(E are the key zones of SST anomalies that affect the precipitation in these regions over May ~ July in preceding years. Long-term air-sea interactions make it possible for preceding SST anomalies to affect the general circulation that come afterwards, causing precipitation anomalies in the raining seasons in regions south of the Changjiang River in subsequent years.
文摘[Objective] The research aimed to analyze a regional heavy rainstorm process in North Henan.[Method] Based on routine weather chart,rainfall station in county and town,satellite cloud chart,etc.,by using synoptic diagnostic method,formation reason of the regional heavy rainstorm weather in North Henan during 18-19 August,2010 was analyzed initially from large-scale circulation background,influence system,physical quantity field and terrain influence.[Result] The strong precipitation had obvious meso-scale characteristics.The main influence systems were ground meso-scale convergence line,shear line at the middle and low layers,low-level southwest jet.The low-level southwest jet transported sufficient water vapor for generation of the heavy rainstorm.The ground converge line increased convergence ascending movement and water vapor convergence.Atmospheric divergence convergence center at the low layer was just in North Henan.Strong rise zone of the vertical velocity was also in North Henan.It provided sufficient dynamic condition for rainstorm generation.Generation,development and movement of the ground meso-scale convergence line had good indications for occurrence times and falling zones of the rainstorm and short-time strong precipitation.The big-value zones of K index and θse at the low layer both presented Ω distribution at the vertical direction,which had indicative significance for strong precipitation forecast.The strong precipitation center corresponded with fork horn terrain,and orographic rain characteristics were obvious.[Conclusion] The research provided reference basis for forecast of this kind of rainstorm.
文摘Satellite rainfall estimates have predominantly been used for climate impact studies due to poor rain gauge network in sub-Saharan Africa. However, there are limited microscale studies within the sub-region that have assessed the performance of these satellite products, which is the focus of the present study. This paper therefore considers validation of Tropical Rainfall Measuring Mission (TRMM) and Famine Early Warning System (FEWS) satellite estimates with rain gauge measurements over Ashanti region of Ghana. First, a consistency assessment of the two gauge data products, the Automatic Rain Gauge (ARG) and Ghana Meteorological Agency (GMet) Standard Rain Gauge (SRG) measurements, was performed. This showed a very good agreement with correlation coefficient of 0.99. Secondly, satellite rainfall products from TRMM and FEWS were validated with the two gauge measurements. Validation results showed good agreement with correlation coefficients of 0.6 and 0.7 for TRMM and FEWS with SRG, and 0.87 and 0.86 for TRMM and FEWS with ARG respectively. Probability Of Detection (POD) and Volumetric Hit Index (VHI) were found to be greater than 0.9. Volumetric Critical Success Index (VCSI) was 0.9 and 0.8 for TRMM and FEWS respectively with low False Alarm Ratio (FAR) and insignificant Volumetric Miss Index (VMI). In general, relatively low biases and RMSE values were observed. The biases were less than 1.3 and 0.8 for TRMM and FEWS-RFE respectively. These indicate high rainfall detection capabilities of both satellite products. In addition, both TRMM and FEWS were able to capture the onset, peak and cessation of the rainy season, as well as the dry spells. Although TRMM and FEWS sometimes under/overestimated rainfall, they have the potential to be used for agricultural and other hydro-climatic impact studies over the region. The Dynamic-Aerosol-Cloud-Chemistry Interactions in West Africa (DACCIWA) project will provide an improved spatial gauge network database over the study area to enhance future validation and other climate impact studies.
基金jointly supported by the National Basic Research Program of China (Grant No.2009CB421407) the R&D Special Fund for Public Welfare Industry (meteorology) (GYHY200806010)
文摘The authors investigate possible changes of monsoon rainfall and associated seasonal (June-JulyAugust) anomaly patterns over eastern China in the late 21st century under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 emission scenario as simulated by a high-resolution regional climate model (RegCM3) nested in a general circulation model (FvGCM/CCM3).Two sets of multi-decadal simulations are performed at 20-km grid spacing for present day and future climate conditions.Results show that the RegCM3 reproduces the mean rainfall distribution;however the evolution of the monsoon rain belt from South China to North China is not well simulated.Concerning the rain pattern classifications,RegCM3 overestimates the occurrence of Pattern 1 (excessive rainfall in northern China) and underestimates that of Pattern 2 (increased rainfall over the Huai River basin).Under future climate conditions,RegCM3 projects less occurrence of Pattern 1,more of Pattern 2,and little change of Pattern 3 (rainfall increase along the Yangtze River).These results indicate that there might be increased rainfall over the Huai-Yellow River area and reduced rainfall over North China in the future,while rainfall over the lower reaches of the Yangtze River basin is not modified significantly.Uncertainties exist in the present study are also discussed.
基金林业公益性行业科研专项(201104005200904056)+2 种基金国家自然科学基金项目(41071023)中挪合作项目"Forest in south China:Animportant sink for reactive nitrogen and a regional hotspot for N2O"国家林业局森林生态环境与保护重点实验室资助