In the field of phylogenetic analyses, the rbcL gene encoded large subunit Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco, EC4.1.1.39), which plays a crucial role in the process of photosynthesis for most ...In the field of phylogenetic analyses, the rbcL gene encoded large subunit Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco, EC4.1.1.39), which plays a crucial role in the process of photosynthesis for most terrestrial plants, has been considered to be conserved; however, recent controversy regarding rbcL conservation has appeared since it was proposed to be under natural selection within all principal lineages of land plants. In this study, by examining the variation of DNA and protein sequences among 17 species in the family Tamaricaceae, three nonsynonymous mutations were identified to be under positive selection. The favored sites were located in the alph-helix domains of Rubisco, with decreased hydrophobicity and increased entropy, which could facilitate C〇 2 penetration into the active site of Rubisco. We also found that the expression level of rbcL in different genotypes of Reaumuria soongarica shifted in response to various stresses such as drought, temperature, salt, and light. This study not only sheds light on the functional/structural features of Rubisco in the evolution scenarios from 〇 3-like into C4 in Tamaricaceae but also provides useful information on directing genetic performance to enhance photosynthesis efficiency of desert plants for sustaining fragile desert ecosystems; fur-thermore, it promotes the ability to cope with desert aridification and global warming.展开更多
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.31370395 and 31500266)the"One Hundred Talents"project of the Chinese Academy of Sciences(Grant No.29Y127E71)
文摘In the field of phylogenetic analyses, the rbcL gene encoded large subunit Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco, EC4.1.1.39), which plays a crucial role in the process of photosynthesis for most terrestrial plants, has been considered to be conserved; however, recent controversy regarding rbcL conservation has appeared since it was proposed to be under natural selection within all principal lineages of land plants. In this study, by examining the variation of DNA and protein sequences among 17 species in the family Tamaricaceae, three nonsynonymous mutations were identified to be under positive selection. The favored sites were located in the alph-helix domains of Rubisco, with decreased hydrophobicity and increased entropy, which could facilitate C〇 2 penetration into the active site of Rubisco. We also found that the expression level of rbcL in different genotypes of Reaumuria soongarica shifted in response to various stresses such as drought, temperature, salt, and light. This study not only sheds light on the functional/structural features of Rubisco in the evolution scenarios from 〇 3-like into C4 in Tamaricaceae but also provides useful information on directing genetic performance to enhance photosynthesis efficiency of desert plants for sustaining fragile desert ecosystems; fur-thermore, it promotes the ability to cope with desert aridification and global warming.