期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Interfacial Interaction Between Polyurethane/Poly(Methacrylateco-Styrene) Coating and the Regenerated Cellulose Film 被引量:1
1
作者 Gong Ping, Yang Guang, Zhang Lina(Department of Chemistry, Wuhan University, Wuhan 430072, China) 《Wuhan University Journal of Natural Sciences》 EI CAS 1998年第1期92-97,共6页
Water-resistant films were prepared by coating the surface of regenerated cellulose films with castor oil-based polyurethane (PU)/ poly-(methacrylate-co-styrene) [P (MA-St)]. The effects of the ratio of PU to P (MA-St... Water-resistant films were prepared by coating the surface of regenerated cellulose films with castor oil-based polyurethane (PU)/ poly-(methacrylate-co-styrene) [P (MA-St)]. The effects of the ratio of PU to P (MA-St) copolymer on tensile strength (dry and wet states), vapor permeability, size stability, and water resistivity of the coated films were studied. The interfacial interaction between cellulose and the PU/P (MA-St) coating was analyzed using infrared (IR), ultraviolet (UV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal analysis (DTA), and electron probe microanalysis (EPMA). The results indicated that the mechanical properties and water resistivity of the coated films significantly enhanced, and the biodegradability was displayed, when the ratio of PU to P (MA-St) was 8∶2 by weight. The chemical bonds and hydrogen bonds between the cellulose, PU, and the copolymer exist in the coated films. It is regarded that PU/P (MA-St) semi-interpenetrating polymer networks (IPNs) were formed, and a shared network of PU with both the cellulose and the coating in the coated film occurred simultaneously resulting in a strong bonding between the coating layer and the film. 展开更多
关键词 Key words regenerated cellulose films water resistivity interfacial interaction coating IPNS
下载PDF
Effects of Coagulation Conditions on Tensile Properties of Regenerated Cellulose Fibers 被引量:1
2
作者 袁彬兰 张帅 +3 位作者 赵诗颖 李发学 俞建勇 顾利霞 《Journal of Donghua University(English Edition)》 EI CAS 2009年第6期607-610,共4页
The effects of coagulation conditions on tensile properties of the regenerated cellulose fibers prepared by wet-spinning from NaOH/thiourea/urea(8∶6.5∶8 by weight)aqueous solvent were investigated by tensile tester,... The effects of coagulation conditions on tensile properties of the regenerated cellulose fibers prepared by wet-spinning from NaOH/thiourea/urea(8∶6.5∶8 by weight)aqueous solvent were investigated by tensile tester,X-ray diffraction(XRD),and scanning electron microscope(SEM).The results show that the tensile properties of the as-spun fibers change with the coagualtion concentration,temperature,and time.When the spinning solution is coagulated in 10% H2SO4/12.5% Na2SO4 aqueous solution,the as-spun fibers have a typical structure of cellulose II,a circular cross-section,and homogeneous morphological structure. 展开更多
关键词 regenerated cellulose fibers NaOH/ thiourea / urea solvent WET-SPINNING COAGULANT
下载PDF
CHARACTERIZATION OF REGENERATED CELLULOSE MEMBRANES HYDROLYZED FROM CELLULOSE ACETATE
3
作者 Yun Chen Xiao-peng Xiong +3 位作者 Guang Yang Li-na Zhang Sen-lin Lei Hui Liang Electron Microscope Lab of Medical School, Wuhan University Wuhan 430072, China College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2002年第4期369-375,共7页
A series of cellulose acetate membranes were prepared by using formamide as additive, and then were hydrolyzed in 4 wt% aqueous NaOH solution for 8 h to obtain regenerated cellulose membranes. The dependence of degree... A series of cellulose acetate membranes were prepared by using formamide as additive, and then were hydrolyzed in 4 wt% aqueous NaOH solution for 8 h to obtain regenerated cellulose membranes. The dependence of degree of substitution, structure, porous properties, solubility and thermal stability on hydrolysis time was studied by chemical titration, Fourier transform infrared spectroscopy, scanning electron microscopy, wide-angle X-ray diffraction, and differential scanning calorimetry, respectively. The results indicated that the pore size of the regenerated cellulose membranes was slightly smaller than that of cellulose acetate membrane, while solvent-resistance, crystallinity and thermostability were significantly improved. This work provides a simple way to prepare the porous cellulose membranes, which not only kept the good pore characteristics of cellulose acetate membranes, but also possessed solvent-resistance, high crystallinity and thermostability. Therefore, the application range of cellulose acetate membranes can be expanded. 展开更多
关键词 HYDROLYSIS cellulose acetate thermal stability regenerated cellulose membrane pore size solvent-resistance SEM
下载PDF
STUDIES ON TUNG OIL COATED REGENERATED CELLULOSE FILMS WITH WATERRESISTANCE
4
作者 张俐娜 严山红 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1995年第1期78-83,共6页
Regenerated cellulose films with water-resistance were obtained by an improved method ofpreparing cellulose cuoxam solution from pulps of agricultural wastes (linters, wheat straw, reedand Bamao). Experimental results... Regenerated cellulose films with water-resistance were obtained by an improved method ofpreparing cellulose cuoxam solution from pulps of agricultural wastes (linters, wheat straw, reedand Bamao). Experimental results showed that the mechanical properties of both the dry. and wetfilms were excellent. Data from IR, SEM and tensile strength measurements implied that thesignificant improvement of water-resistance of the films was due to the cohesion between the thinTung oil covers with hydrophobicity and the regenerated cellulose films. The films werecompletely biodegraded after being buried in soil for 100 days. The transmittance of the filmsderived from linter and reed in visible band range were 80-90%. 展开更多
关键词 regenerated cellulose film Cuoxam Tong oil cover WATER-RESISTANCE BIODEGRADABILITY Agricultural waste Mechanical strength
下载PDF
BIODEGRADATION OF REGENERATED CELLULOSE FILMS BY FUNGI
5
作者 张俐娜 刘海清 +3 位作者 郑连爽 张甲耀 杜予民 柳卫莉 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1996年第4期338-345,共8页
The biodegradability of Aspergillus niger (A. niger), Mucor (M-305) and Trichoderma (T-311) strains on regenerated cellulose films in media was investigated. The results showed that T-311 strain isolated from soil adh... The biodegradability of Aspergillus niger (A. niger), Mucor (M-305) and Trichoderma (T-311) strains on regenerated cellulose films in media was investigated. The results showed that T-311 strain isolated from soil adhered on the cellulose film fragments has stronger degradation effect on the cellulose film than A. niger strain. The weights, molecular weights and tensile strengths of the cellulose films in both shake culture and solid media decreased with incubation time, accompanied by producing CO2 and saccharides. HPLC, IR and released CO2 analysis indicated that the biodegradation products of the regenerated cellulose films mainly contain oligosaccharides, cellobiose, glucose, arabinose, erythrose, glycerose, glycerol, ethanal, formaldehyde and organic acid, the end products were CO2 and water. After a month, the films were completely decomposed by fungi in the media at 30 degrees C. 展开更多
关键词 BIODEGRADATION regenerated cellulose film FUNGI MEDIUM
下载PDF
Thermally conductive poly(lactic acid)/boron nitride composites via regenerated cellulose assisted Pickering emulsion approach 被引量:1
6
作者 Yating Wang Hong Jin +5 位作者 Jiajun Shen Bijia Wang Xueling Feng Zhiping Mao Yumei Zhang Xiaofeng Sui 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第6期146-154,共9页
Polymer-based thermally conductive composites have attracted tremendous interest in thermal management of electronics.However,it remains challenging to achieve high thermal conductivity partly because the difficulty t... Polymer-based thermally conductive composites have attracted tremendous interest in thermal management of electronics.However,it remains challenging to achieve high thermal conductivity partly because the difficulty to obtain favorable distribution and orientation of conductive fillers within the polymer matrix.Herein,networked boron nitride(BN)conductive pathway was realized within the poly(lactic acid)(PLA)matrix,via regenerated cellulose(RC)-assisted assembly of BN on Pickering emulsion interface based on the noncovalent interaction,followed by solvent evaporation and hot-compressing.The strong noncovalent interactions between BN and RC were found critical to enhance the wettability and stability of BN in aqueous media with a lowest mass ratio of 1:40 of RC and BN.The obtained PLA/BN composites feature a thermal conductivity of 1.06 W/(m K)at 28.4 wt%BN loading,representing an enhancement of 430%comparing to neat PLA,and the crystallinity of the composites could increase significantly from11.7%(neat PLA)to 43.7%.This simple,environmentally friendly and effective strategy could be easily extended for effective construction of thermally conductive composites. 展开更多
关键词 Boron nitride regenerated cellulose EMULSION Noncovalent interaction Thermal conductivity
原文传递
Sustainable conversion regenerated cellulose into cellulose oleate by sonochemistry
7
作者 De-Fa Hou Pan-Pan Yuan +4 位作者 Zi-Wei Feng Meng An Pei-Yao Li Can Liu Ming-Bo Yang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第8期1096-1108,共13页
Derivatization has great potential for the high-value utilization of cellulose by enhancing its processability and functionality.However,due to the low reactivity of natural cellulose,it remains challenging to rapidly... Derivatization has great potential for the high-value utilization of cellulose by enhancing its processability and functionality.However,due to the low reactivity of natural cellulose,it remains challenging to rapidly prepare cellulose derivatives with high degrees of substitution.The“cavitation effect”of ultrasound can reduce the particle size and crystalline index of cellulose,which provides a possible method for preparing cellulose derivatives.Herein,a feasible method was proposed for efficiently converting regenerated cellulose to cellulose oleate with the assistance of ultrasonic treatment.By adjusting the reaction conditions including ultrasonic intensity,feeding ratios of oleic acid,reaction time,and reaction solvent,a series of cellulose oleates with degrees of substitution ranging from 0.37 to 1.71 were synthesized.Additionally,the effects of different reaction conditions on the chemical structures,crystalline structures,and thermal behaviors were investigated thoroughly.Cellulose oleates with degrees of substitution exceeding 1.23 exhibited amorphous structures and thermoplasticity with glass transition temperatures at 159.8 to 172.6℃.This study presented a sustainable and practicable method for effectively derivatizing cellulose. 展开更多
关键词 regenerated cellulose cellulose oleate SONOCHEMISTRY degree of substitution THERMOPLASTICITY
原文传递
Comparison between the Direct Dyeing Kinetics of Bamboo and Conventional Viscose Fibers
8
作者 曹机良 唐人成 陈文政 《Journal of Donghua University(English Edition)》 EI CAS 2010年第3期370-375,共6页
Two direct dyes were applied to conventional viscose(CV)and bamboo viscose(BV)fibers,which were prepared from bamboo cellulose pulps,and the dyeing kinetics of two fibers were compared.Three kinetic equations,namely C... Two direct dyes were applied to conventional viscose(CV)and bamboo viscose(BV)fibers,which were prepared from bamboo cellulose pulps,and the dyeing kinetics of two fibers were compared.Three kinetic equations,namely Chrastil,Cegarra-Puente,and Vickerstaff,were used to fit the experimental dyeing rate points,showing that the best result was obtained by the Chrastil equation.BV fibers displayed slightly higher dyeing rates and dye adsorption values at initial stages,but a bit lower dye adsorption values at equilibrium than CV fibers.Furthermore,the dyeing of BV fibers exhibited lower activation energies and higher dyeing rate constants than that of CV fibers,and therefore showed slightly lower dependence on temperature. 展开更多
关键词 direct dyes DYEING ADSORPTION KINETICS regenerated cellulose fiber bamboo viscose
下载PDF
Study on the Structure and Properties of Polynosic Fiber Treated by Alkali
9
作者 魏孟媛 薛文良 程隆棣 《Journal of Donghua University(English Edition)》 EI CAS 2007年第3期419-423,共5页
The regenerated cellulose fibers, made from wood pulp, have excellent physical properties like cotton fiber. Especially polynosic fibers can be mercerized by alkali, but conventional Viscose fiber can not be treated o... The regenerated cellulose fibers, made from wood pulp, have excellent physical properties like cotton fiber. Especially polynosic fibers can be mercerized by alkali, but conventional Viscose fiber can not be treated or mercerized by alkali. The paper studies on behavior of polynosic fibers treated by alkali, including physical properties, such as weight loss, tensile strength and elongation, and fiber structures properties. In this paper, on the basis of study on polynosic fibers treated by alkali, the conclusions were drawn as following. Firstly, polynosic fiber is good at alkali resistance. Secondly, the changes of fiber structure and physical properties begin declining at 5 wt% NaOH concentration and reverse changes take place at 10 wt%. 展开更多
关键词 regenerated cellulose fiber ~ Alkali treatmentphysical properties fiber structure
下载PDF
Beyond cotton and polyester: An evaluation of emerging feedstocks and conversion methods for the future of fashion industry 被引量:1
10
作者 Ryen M.Frazier Keren A.Vivas +8 位作者 Ivana Azuaje Ramon Vera Alonzo Pifano Naycari Forfora Hasan Jameel Ericka Ford Joel J.Pawlak Richard Venditti Ronalds Gonzalez 《Journal of Bioresources and Bioproducts》 EI CSCD 2024年第2期130-159,共30页
As the global population grows,the demand for textiles is increasing rapidly.However,this puts immense pressure on manufacturers to produce more fiber.While synthetic fibers can be pro-duced cheaply,they have a negati... As the global population grows,the demand for textiles is increasing rapidly.However,this puts immense pressure on manufacturers to produce more fiber.While synthetic fibers can be pro-duced cheaply,they have a negative impact on the environment.On the other hand,fibers from wool,sisal,fique,wood pulp(viscose),and man-made cellulose fibers(MMCFs)from cotton can-not alone meet the growing fiber demand without major stresses on land,water,and existing markets using these materials.With a greater emphasis on transparency and circular economy practices,there is a need to consider natural non-wood alternative sources for MMCFs to supple-ment other fiber types.However,introducing new feedstocks with different compositions may require different biomass conversion methods.Therefore,based on existing work,this review ad-dresses the technical feasibility of various alternative feedstocks for conversion to textile-grade fibers.First,alternative feedstocks are introduced,and then conventional(dissolving pulp)and emerging(fibrillated cellulose and recycled material)conversion technologies are evaluated to help select the most suitable and promising processes for these emerging alternative sources of cellulose.It is important to note that for alternative feedstocks to be adopted on a meaningful scale,high biomass availability and proximity of conversion facilities are critical factors.In North America,soybean,wheat,rice,sorghum,and sugarcane residues are widely available and most suitable for conventional conversion through various dissolving pulp production methods(pre-hydrolysis kraft,acid sulfite,soda,SO2-ethanol-water,and potassium hydroxide)or by emerging cellulose fibrillation methods.While dissolving pulp conversion is well-established,fibrillated cel-lulose methods could be beneficial from cost,efficiency,and environmental perspectives.Thus,the authors strongly encourage more work in this growing research area.However,conducting thorough cost and sustainability assessments is important to determine the best feedstock and technology combinations. 展开更多
关键词 NON-WOOD RESIDUE regenerated cellulose Dissolving pulp Man-made cellulose fiber Apparel textile
原文传递
Textiles from non-wood feedstocks: Challenges and opportunities of current and emerging fiber spinning technologies
11
作者 Ryen M.Frazier Mariana Lendewig +8 位作者 Ramon E.Vera Keren A.Vivas Naycari Forfora Ivana Azuaje Autumn Reynolds Richard Venditti Joel J.Pawlak Ericka Ford Ronalds Gonzalez 《Journal of Bioresources and Bioproducts》 EI CSCD 2024年第4期410-432,共23页
As the global population continues growing, the demand for textiles also increases, putting pres- sure on cotton manufacturers to produce more natural fiber from this already undersupplied resource. Synthetic fibers s... As the global population continues growing, the demand for textiles also increases, putting pres- sure on cotton manufacturers to produce more natural fiber from this already undersupplied resource. Synthetic fibers such as polyester (PET) can be manufactured quickly and cheaply, but these petroleum-based products are detrimental to the environment. With increased efforts to encourage transparency and create a more circular textile economy, other natural alternatives must be considered. This article discusses the existing condition and future possibilities for man- made cellulosic fibers (MMCFs), with an emphasis on using non-woody alternative feedstocks as a starting material. This work focuses on conversion technology suitable for producing textile- grade fibers from non-wood-based dissolving pulp, which may be different in nature from its woody counterpart and therefore behave differently in spinning processes. Derivatization and dissolution methods are detailed, along with spinning techniques and parameters for these pro- cesses. Existing research related to the spinning of non-woody-based dissolving pulp is covered, along with suggestions for the most promising feedstock and technology combinations. In addi- tion, an emerging method of conversion, in which textile fibers are spun from a hydrogel made of an undissolved nano/micro-fibrillated fiber suspension, is briefly discussed due to its unique po- tential. Methods and concepts compiled in this review relate to utilizing alternative feedstocks for future fibers while providing a better understanding of conventional and emerging fiber spinning processes for these fibers. 展开更多
关键词 NON-WOOD RESIDUE regenerated cellulose Fibrillated cellulose Biobased fiber Textile Man-made cellulosic fiber
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部