The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydro...The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydrogen is one of the sustainable management strategies for ubiquitous crop residues.Production of green hydrogen from crop residue sources will contribute to deepening access to clean and affordable energy,mitigating climate change,and ensuring environmental sustainability.However,the deployment of conventional thermochemical technologies for the conversion of crop residues to green hydrogen is costly,requires long residence time,produces low-quality products,and therefore needs to be upgraded.The current review examines the conventional,advanced,and integrated thermochemical conversion technologies for crop residues for green hydrogen production.After a brief overview of the conventional thermochemical techniques,the review delves into the broad narration of advanced thermochemical technologies including catalytic pyrolysis,microwave pyrolysis,co-pyrolysis,hyropyrolysis,and autothermal pyrolysis.The study advocates the deployment of integrated pyrolysis,anaerobic digestion,pyrolysis,and gasification technologies will ensure scalability,decomposition of recalcitrant feedstocks,and generation of high grade green hydrogen.The outlook provides suggestions for future research into cost-saving and sustainable integrated technologies for green hydrogen production towards achieving carbon neutrality and a circular bio-economy.展开更多
The QuEChERS extraction technique is a pretreatment technique that has been rapidly applied in recent years and is widely used in the field of pesticide residues with many advantages. This technique is based on solid ...The QuEChERS extraction technique is a pretreatment technique that has been rapidly applied in recent years and is widely used in the field of pesticide residues with many advantages. This technique is based on solid phase extraction (SPE), which uses the interaction between adsorbent and impurities in the matrix to achieve the purpose of purification. The method has easier operation and better purification effect than SPE. In this paper, the research progress of the QuEChERS technique in pesticide residue detection in different fields in recent years and its future development were reviewed, hoping to provide reference for further development and utilization of the QuEChERS technique in pesticide residue detection in the future.展开更多
Chinese chive is a kind of medicinal and edible plant,with many diseases,and chemical fungicides are usually used for control.In order to find out the risk of pesticide residues in Chinese chives,this paper summarized...Chinese chive is a kind of medicinal and edible plant,with many diseases,and chemical fungicides are usually used for control.In order to find out the risk of pesticide residues in Chinese chives,this paper summarized relevant literatures published in recent years,and sorted out and analyzed the types of pesticides used and detection techniques of common diseases in Chinese chives.展开更多
In this study,our goal is to identify the land surface that has been polluted/degraded by petroleum products or other identified causes through laboratory analysis,to assess the depth of current contamination and to i...In this study,our goal is to identify the land surface that has been polluted/degraded by petroleum products or other identified causes through laboratory analysis,to assess the depth of current contamination and to identify the specific causes of contamination.The level of contamination will be assessed by analyzing a total of 90 soil samples,both within the first 30 cm depth and within the 30-60 cm interval.The potential impact of the petroleum activities and their effects on the environment and agricultural development in the area will be evaluated by studying the distribution of the chemical elements analyzed,particularly total petroleum hydrocarbons(TPH).In addition,a thematic map was created using MapSys 10.0 software based on their distribution,indicating the polluted areas using color codes and values.This analysis and mapping revealed that 7,473 square meters of the site were severely contaminated at 30 cm,representing approximately 25% of the site.展开更多
Soybean production systems that return plant residues to the soil surface are gaining in popularity. As these practices become more widespread, more crop and weed residues are being introduced into the upper soil prof...Soybean production systems that return plant residues to the soil surface are gaining in popularity. As these practices become more widespread, more crop and weed residues are being introduced into the upper soil profile. Greenhouse studies were conducted to determine the effects of varying concentrations of Palmer amaranth and pitted morningglory plant residues (aboveground portion of the plant) on soybean production. The study was arranged in a completely randomized experimental design with five treatments and five replications. Palmer amaranth and pitted morningglory residues were incorporated into soil at 20,000, 40,000, 80,000 and 160,000 ppm. Inert plastic residue at the same residue levels was included as a check. Soybean dry weight, leaf area and leaf tissue nutrient content were recorded during the study. A decrease in soybean dry weight and leaf area was observed as Palmer amaranth residue in the soil increased. Palmer amaranth residues of 160,000 ppm and 80,000 ppm in the soil significantly reduced soybean dry weight by 69% and 59%, respectively, and soybean leaf area by 60% and 57%, respectively. In contrast, pitted morningglory and inert plastic residues had no observable effect on soybean growth and development. This study demonstrated Palmer amaranth residues in the soil impacted early season soybean growth and development.展开更多
Novel substrates consisted of different fresh agro-industrial residues,their corresponding and commercial spent mushroom substrates(i.e.SMS deriving from laboratory-scale experiments and SMS deriving from industrial-s...Novel substrates consisted of different fresh agro-industrial residues,their corresponding and commercial spent mushroom substrates(i.e.SMS deriving from laboratory-scale experiments and SMS deriving from industrial-scale experiments by Green Zin S.A.-SMS GZ)and Pleurotus waste(PW;stipes/mishappen mushrooms)were used in blends for a new cultivation cycle of Pleurotus ostreatus and P.eryngii mushrooms in bags.Their impact on the biochemical properties(intra-cellular polysaccharides-IPSs,protein,lipid,total phenolic compounds-TPCs,individual carbohydrates composition of the IPSs)in the first-and second-flush whole mushrooms,pilei and stipes,as well as the fatty acids composition,the antioxidant activity(in the first-flush mushroom parts)and glucan content of stipes were examined.Both species produced satisfactory IPSs quantities in all substrates(28.69-46.38%,w/w)and significant protein amounts(18.37-26.80%,w/w).The further SMS addition(80%,w/w instead of 40%,w/w)in the cultivation substrates affected positively the mushroom IPSs values,whereas the highest protein content was detected in mushroom’s parts cultivated on substrates consisted of fresh agro-industrial residues.Mushroom’s lipid content was affected differently by the various substrate combinations,with SMS presence resulting in mushrooms with a lower fat content than those produced in substrates with PW addition.Fresh substrates with PW and those with coffee residue were the most favorable for TPCs production.Regarding production flushes,the nutritional value of mushrooms was comparable between them,only a slight increase in TPCs of second-flush carposomes was detected.Glucose was the predominant monosaccharide of the produced IPSs,combined with a significant production of total and β-glucans.SMSs and PW addition had a positive impact on antioxidant activity,too.A higher quantity of lipids,TPCs and significant antioxidant activity were detected in all Pleurotus pilei than stipes,whereas the latter were richer in IPSs.Both pilei and stipes had a significant protein amount.Hence,the data obtained by this study support the positive effect of different types of SMS and mushroom waste on P.ostreatus and P.eryngii nutritional value.展开更多
Global crises, notably climate shocks, degraded ecosystems, and growing energy demand, enforce sustainable production and consumption pathways. A circular bioeconomy offers the opportunities to actualize resource and ...Global crises, notably climate shocks, degraded ecosystems, and growing energy demand, enforce sustainable production and consumption pathways. A circular bioeconomy offers the opportunities to actualize resource and eco-efficiency enhancement, valorization of waste streams, reduction of fossil energy and greenhouse gas (GHG) emissions. Albeit biomass resources are a potential feedstock for bio-hydrogen (bio-H2) production, Ghana’s agricultural residues are not fully utilized. This paper examines the economic and environmental impact of bio-H2 electricity generation using agricultural residues in Ghana. The bio-H2 potential was determined based on biogas steam reforming (BSR). The research highlights that BSR could generate 2617 kt of bio-H2, corresponding to 2.78% of the global hydrogen demand. Yam and maize residues contribute 50.47% of the bio-H2 produced, while millet residues have the most negligible share. A tonne of residues could produce 16.59 kg of bio-H2 and 29.83 kWh of electricity. A total of 4,705.89 GWh of electricity produced could replace the consumption of 21.92% of Ghana’s electricity. The economic viability reveals that electricity cost is $0.174/kWh and has a positive net present value of $2135550609.45 with a benefit-to-cost ratio of 1.26. The fossil diesel displaced is 1421.09 ML, and 3862.55 kt CO2eq of carbon emissions decreased corresponding to an annual reduction potential of 386.26 kt CO2eq. This accounts for reducing 10.26% of Ghana’s GHG emissions. The study demonstrates that hydrogen-based electricity production as an energy transition is a strategic innovation pillar to advance the circular bioeconomy and achieve sustainable development goals.展开更多
The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction ...The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed.Results revealed that high pH value,high cyanide concentration,and high pyrite dosage promoted the interaction of cyanide with pyrite.The cyanidation of pyrite was pseudo-second-order with respect to cyanide.The decyanation of pyrite cyanide residue by Na_(2)SO_(3)/air oxidation was performed.The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2,SO_(3)^(2-) dosage of 22 mg·g^(-1),and air flow rate of 1.46 L·min^(-1).X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(Ⅲ)and FeSO_(4) during the cyanidation process.The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide(CN^(-))and ferrocyanide(Fe(CN)_(6)^(4-)),which were effectively removed by Na_(2)SO_(3)/air oxidation.During the decyanation process,air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface.This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues.展开更多
The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with tradit...The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with traditional supercapacitors and lithium-ion batteries,respectively.However,the ion kinetics mismatch between cathode and anode leads to unsatisfied cycling lifetime and anode degradation.Tremendous efforts have been devoted to solving the abovementioned issue.One promising strategy is altering high conductive hard carbon anode with excellent structural stability to match with activated carbon cathode,assembling dual-carbon LIC.In this contribution,one-pot in-situ expansion and heteroatom doping strategy was adopted to prepare sheet-like hard carbon,while activated carbon was obtained involving activation.Ammonium persulfate was used as expanding and doping agent simultaneously.While furfural residues (FR) were served as carbon precursor.The resulting hard carbon (FRNS-HC) and activated carbon (FRNS-AC)show excellent electrochemical performance as negative and positive electrodes in a lithium-ion battery (LIB).To be specific,374.2 m Ah g^(-1)and 123.1 m Ah g^(-1)can be achieved at 0.1 A g^(-1)and 5 A g^(-1)when FRNS-HC was tested as anode.When combined with a highly porous carbon cathode (S_(BET)=2961 m^(2)g^(-1)) synthesized from the same precursor,the LIC showed high specific energy of147.67 Wh kg^(-1)at approximately 199.93 W kg^(-1),and outstanding cycling life with negligible capacitance fading over 1000 cycles.This study could lead the way for the development of heteroatom-doped porous carbon nanomaterials applied to Li-based energy storage applications.展开更多
To address the hazardous by-product of zinc smelting and resource utilization of jarosite residue,this study applies an electric field-assisted hot acid treatment to completely recycle iron(Fe).This innovative approac...To address the hazardous by-product of zinc smelting and resource utilization of jarosite residue,this study applies an electric field-assisted hot acid treatment to completely recycle iron(Fe).This innovative approach aims to enhance the leaching efficiency of Fe from jarosite residue.The introduction of an electric field changes the charge distribution on the surface of the particles to enhance ions and electrons exchange and promotes the collision between particles to strengthen reaction kinetics.Based on the above,the leaching efficiency of Fe in jarosite under sulfuric acid attack has improved observably.The result shows that Fe leaching efficiency reaches 98.83%,which is increased by 28%under the optimal experimental conditions:current density of 30 mA·cm^(-2),H_(2)SO_(4) concentration of 1.5 mol·L^(-1),solid-liquid ratio of 70 g·L^(-1),temperature of 80℃ and time of 12 h.Leaching kinetics calculations show that the apparent activation energy is 16.97 kJ·mol^(-1) and the leaching of jarosite residue is controlled by a mixture of chemical reaction and diffusion,as well as the temperature and concentration of the leaching solution have an influence on leaching.This work provides a feasible idea for the efficient leaching of Fe from jarosite residue.展开更多
Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowled...Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowledge on how SOC and its fractions(POC:particulate organic carbon;MAOC:mineral-associated organic carbon)respond to different harvest residue managements is limited.Methods In this study,a randomized block experiment containing SOH and WTH was conducted in a Chinese fir(Cunninghamia lanceolata)plantation.The effect of harvest residue management on SOC and its fractions in topsoil(0–10cm)and subsoil(20–40cm)was determined.Plant inputs(harvest residue retaining mass and fine root biomass)and microbial and mineral properties were also measured.Results The responses of SOC and its fractions to different harvest residue managements varied with soil depth.Specifically,SOH enhanced the content of SOC and POC in topsoil with increases of 15.9%and 29.8%,respectively,compared with WTH.However,SOH had no significant effects on MAOC in topsoil and SOC and its fractions in subsoil.These results indicated that the increase in POC induced by the retention of harvest residue was the primary contributor to SOC accumulation,especially in topsoil.The harvest residue managements affected SOC and its fractions through different pathways in topsoil and subsoil.The plant inputs(the increase in fine root biomass induced by SOH)exerted a principal role in the SOC accumulation in topsoil,whereas mineral and microbial properties played a more important role in regulating SOC dynamics than plants inputs in subsoil.Conclusion The retention of harvest residues can promote SOC accumulation by increasing POC,and is thus suggested as an effective technology to enhance the soil carbon sink for mitigating climate change in plantation management.展开更多
Spodoptera litura is the most threatening pest in lotus production,seriously affecting the lotus yield and quality.Emamectin benzoate and chlorantraniliprole,the main insecticides for controlling S.litura on vegetable...Spodoptera litura is the most threatening pest in lotus production,seriously affecting the lotus yield and quality.Emamectin benzoate and chlorantraniliprole,the main insecticides for controlling S.litura on vegetables,are widely used by farmers to control S.litura on lotus plants.To determine the application concentrations,control effects,and safety of the two insecticides in lotus fields,indoor experiments were conducted to determine the control effects of 200 g/L chlorantraniliprole(SC)and 5%emamectin benzoate(WDG),and the residues of the two insecticides in the water,lotus leaves,and lotus seeds after field application were determined by HPLC-MS/MS.The indoor experiment results showed that chlorantraniliprole and emamectin benzoate both had good control effects on S.litura,with the median lethal concentrations(LC50)of 17.700 and 1.694 mg/L,respectively.After unmanned aerial vehicle spraying of emamectin benzoate at 20 g/667m^(2),there was no residue of emamectin benzoate in the water or lotus leaves after 5 d.After spraying of chlorantraniliprole at 20 mL/667m^(2),the residual amounts in the water and lotus leaves after 9 d were 0.005 and 0.007 mg/L,respectively.No residue of the two insecticides was detected in lotus seeds(dry and fresh)2 h after spraying.Therefore,it was recommended that chlorantraniliprole and emamectin benzoate can be used to control S.litura in lotus fields during the growth period,while attention should be paid to the application interval for safety.Considering the safe harvesting of lotus seeds and leaves,it was recommended that the preharvest intervals of chlorantraniliprole and 5%emamectin benzoate should be 9 d.展开更多
[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by ga...[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by gas chromatography-mass spectrometry(GC-MS)in selective ion scanning mode(SIM).[Results]The organophosphorus pesticide standard solutions showed good linearity in the mass concentration range of 0.1-10.0μg/ml with correlation coefficients(r)not lower than 0.999,and the detection limits(S=3 N)ranged from 0.01 to 0.05 mg/kg.The average recovery values were in the range of 80.2%-99.7%,with relative standard deviations(RSDs,n=3)in the range of 1.8%-6.3%,at the addition levels of 0.5,1.0 and 2.0 mg/kg.[Conclusions]The method is simple,sensitive and accurate,and can be used for the determination of organophosphorus pesticide residues in mutton.展开更多
[Objective] This study was conducted to develop a system for simultaneous determination of imidacloprid, diflubenzuron, thiabendazole and carbendazim in fruit juice by HPLC. [Method] Using acetonitrile as the extracti...[Objective] This study was conducted to develop a system for simultaneous determination of imidacloprid, diflubenzuron, thiabendazole and carbendazim in fruit juice by HPLC. [Method] Using acetonitrile as the extraction solvent, the pesticides in fruit juice were purified through a NH2 solid phase extraction (SPE) cartridge, then detected by HPLC. [Result] There was a good linear relationship between the peak area and the concentrations of imidacloprid, diflubenzuron, thiabendazole and carbendazim in a range of 0.05-5.0 μg/ml, and the linear correlation coefficient varied in a range of 0.999 0-0.999 8; the limit of detection for imidacloprid, diflubenzuron, thiabendazole and carbendazim was 0.003, 0.005, 0.003 and 0.007 mg/kg, respectively. The recovery rate of imidacloprid, diflubenzuron, thiabendazole and carbendazim standards added at three levels (0.1, 0.5 and 1.0 mg/kg) ranged from 82% to 107%, with RSD less than 4.5%. [Conclusion] The sensitivity, accuracy and precision of this method were able to meet the requirements for pesticide residue analysis.展开更多
With a view to improving rabbit production performance, a trial on the chemical composition of pineapple press residue (Ananas comosus) and the effect of its incorporation in the ration on rabbit growth performance (O...With a view to improving rabbit production performance, a trial on the chemical composition of pineapple press residue (Ananas comosus) and the effect of its incorporation in the ration on rabbit growth performance (Oryctolagus cuniculus) was carried out at the KUATE Cunicole Farm in Bandjoun, in Western Cameroon. To do this, 36 rabbits of the local breed, aged 53 days with an average weight of 1337 ± 119 g were distributed and randomly assigned to 3 experimental rations corresponding respectively to treatments or batches T0, T1 and T2. The animals in treatment T0 received a ration containing no pineapple press residue, while those in treatments T1 and T2 received a ration containing 20% and 40% pineapple press residue, respectively. These residues were dried and ground for chemical composition analysis. The feed served as well as refusals from the previous day were weighed each morning to assess feed intake. The animals were weighed every 7 days to assess weight performance. At the end of the trial which lasted 7 weeks, the animals were fasted for 24 hours, then sacrificed to evaluate carcass characteristics and the relative weights of some digestive organs. The results of this study showed that pineapple press residues had a high crude fiber content (19.2%) and energy (2500 Kcal/kg DM). Their incorporation had no significant effect on feed intake and feed conversion ratio. The average live weight, weight gain and average daily weight gain of the animals receiving the ration with 20% inclusion of pineapple press residue were comparable to those of the control group and significantly higher than those of animals fed with 40% inclusion of pineapple residue. The highest carcass yields were obtained with rabbits fed 20% pineapple press residue in their ration. The cost of feed for the production of a kilogram live weight of rabbit tends to decrease with the ration incorporated with 20% pineapple press residue. Pineapple press residues constitute a by-product that can be recycled and their incorporation at 20% can increase rabbit growth performance and reduce production costs.展开更多
[Objective] A method was developed for the determination of 10 pyrethroids pesticide residues in rice by GC-MS-MS. [Method] Pyrethroids were extracted with acetonitrile, followed by a salting-out step with anhydrous m...[Objective] A method was developed for the determination of 10 pyrethroids pesticide residues in rice by GC-MS-MS. [Method] Pyrethroids were extracted with acetonitrile, followed by a salting-out step with anhydrous magnesium sulfate and sodium chloride, cleaned up by florisil solid phase extraction (SPE) cartridge, and determined by multiple reaction monitoring mode. [Result] The method showed good linearity over the range of 0.010-0.500 mg/L for 10 pyrethroid pesticide with correlation coefficients over 0.99. The detection limits were 0.005 -0.010 mg/kg. The method was validated by analyzing samples spiked with 0.05, 0.10, 0.20 mg/kg of 10 pyrethroid pesticides, respectively. The average recoveries in rice ranged from 75.0-115.5%, and the relative standard deviations (RSD) were between 3.9%-6.9%. [Conclusion] The method is easy, accurate and reliable, which can meet the requirement for the simultaneous determination and confirmation of pyrethroid pesticide residues in rice.展开更多
[Objective] The aim was to explore key technology to cultivate Holotdchia diomphalia larvae with Agaricus bisporus residues and to provide, technologicar sup- ports for processing of Agaricus bisporus residues. [Metho...[Objective] The aim was to explore key technology to cultivate Holotdchia diomphalia larvae with Agaricus bisporus residues and to provide, technologicar sup- ports for processing of Agaricus bisporus residues. [Method] In the research, fodder thickness, population density and residues under different treatments were set to re- search effects on Holotrichia diomphalia larvae. [Result] The optimal thickness of fodder was 25 cm and the optimal feeding density was 44-56 larvae per hectare. The dry residues were more suitable, compared with decomposed residues and corn bran powders, for cultivation of Holotrichia diomphalia larvae. [Conclusion] Cultivation of Holotrichia diomphalia larvae with Agaricus bisporus residues is a new method to make use of Agaricus bisporus residues and of significance for extension of agricul- tural circulation chain, increase of economic benefits and ecological benefits.展开更多
The analysis of pesticide residues in Citrus from Yichang, Danjiangkou, Zigui and Xingshan in Hubei Province was accomplished by UPLC-MS and GC-MS. The results showed that the detection rate of pesticide residues in C...The analysis of pesticide residues in Citrus from Yichang, Danjiangkou, Zigui and Xingshan in Hubei Province was accomplished by UPLC-MS and GC-MS. The results showed that the detection rate of pesticide residues in Citrus reticulate was 91.9%. The detection rate of banned pesticides was 1.6%. The detection rate of restricted pesticides was 9.5%. The detection rate of allowed pesticides was 68.3%. The detection rate of unregistered pesticides was 15.9%. The pesticide used in citrus was relatively common. Because of the banned and restricted pesticides were both in the control degree, on the whole, the quality and security of Citrus reticulata was safe.展开更多
[ Objective] The paper was to explore the residual dynamics and degradation rule of high concentration carbendazim in natural condition. [ Method J The earbendasim solutions with mass fractions of 0.2% ( recommended ...[ Objective] The paper was to explore the residual dynamics and degradation rule of high concentration carbendazim in natural condition. [ Method J The earbendasim solutions with mass fractions of 0.2% ( recommended concentration), 0.4% (2 times of the recommended concentration) and I. 0% (5 times of the recommended concentration) were sprayed on plant leaves, and the residual amount of earbendazim in natural condition was determined. The dynamic models of carbendazim residues Under 3 concentrations were also studied. [ Result~ The degradation of earbcndazim under recommended concentration was accorded with Kinetic model for degradation, but the degradation Kinetic model for samples under 2 times and 5 times concentration appeared dissimilation. The residue of carben- dazim on plant was affected by absorption capacity of plants and weather conditions. The absorption capacity was affected by application concentration and growth condition of plant, higher concentration application and slow growth stage of p]ant were not conducive to the absorption of carbendazim; weather condition was mainly referred to temperature and humidity, higher temperature and dry weather were not conducive to the degradation of earbendazim. [Condusion ] The paper provided theoretical basis for guiding the application of carbendazim under different growth stages of crops and different weather conditions in agricultural production.展开更多
ObjectiveThe aim was to explore the movement of nitrate nitrogen in tall-fescue soils by different kinds of slow release nitrogen fertilizers. MethodBased on infiltration-tanks and test plots, a new and environment fr...ObjectiveThe aim was to explore the movement of nitrate nitrogen in tall-fescue soils by different kinds of slow release nitrogen fertilizers. MethodBased on infiltration-tanks and test plots, a new and environment friendly fertilizer was explored. ResultThe results show that compared with urea treatment, slow-release nitrogen fertilizer treatments could reduce nitrate nitrogen content and leaching amount in soils. Compared with PCU30 and IU treatments, the PCU60 treatment became more efficient in reducing nitrate content and leaching amount in 0-90 cm soil layer. ConclusionIn summary, slow-release nitrogen fertilizer, which can reduce soil nitrate content and leaching losses, is a kind of novel fertilizer with high environmental benefit and promising application.展开更多
文摘The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydrogen is one of the sustainable management strategies for ubiquitous crop residues.Production of green hydrogen from crop residue sources will contribute to deepening access to clean and affordable energy,mitigating climate change,and ensuring environmental sustainability.However,the deployment of conventional thermochemical technologies for the conversion of crop residues to green hydrogen is costly,requires long residence time,produces low-quality products,and therefore needs to be upgraded.The current review examines the conventional,advanced,and integrated thermochemical conversion technologies for crop residues for green hydrogen production.After a brief overview of the conventional thermochemical techniques,the review delves into the broad narration of advanced thermochemical technologies including catalytic pyrolysis,microwave pyrolysis,co-pyrolysis,hyropyrolysis,and autothermal pyrolysis.The study advocates the deployment of integrated pyrolysis,anaerobic digestion,pyrolysis,and gasification technologies will ensure scalability,decomposition of recalcitrant feedstocks,and generation of high grade green hydrogen.The outlook provides suggestions for future research into cost-saving and sustainable integrated technologies for green hydrogen production towards achieving carbon neutrality and a circular bio-economy.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei ProvinceSpecial Project of the Central Government in Guidance of Local Science and Technology Development(226Z5504G)Tangshan Talent Project(A202202005)。
文摘The QuEChERS extraction technique is a pretreatment technique that has been rapidly applied in recent years and is widely used in the field of pesticide residues with many advantages. This technique is based on solid phase extraction (SPE), which uses the interaction between adsorbent and impurities in the matrix to achieve the purpose of purification. The method has easier operation and better purification effect than SPE. In this paper, the research progress of the QuEChERS technique in pesticide residue detection in different fields in recent years and its future development were reviewed, hoping to provide reference for further development and utilization of the QuEChERS technique in pesticide residue detection in the future.
基金Supported by Special Project of the Central Government in Guidance of Local Science and Technology Development (Scientific and Technological Innovation Base Project) (226Z5504G)The Fourth Batch of High-end Talent Project in Hebei Province.
文摘Chinese chive is a kind of medicinal and edible plant,with many diseases,and chemical fungicides are usually used for control.In order to find out the risk of pesticide residues in Chinese chives,this paper summarized relevant literatures published in recent years,and sorted out and analyzed the types of pesticides used and detection techniques of common diseases in Chinese chives.
文摘In this study,our goal is to identify the land surface that has been polluted/degraded by petroleum products or other identified causes through laboratory analysis,to assess the depth of current contamination and to identify the specific causes of contamination.The level of contamination will be assessed by analyzing a total of 90 soil samples,both within the first 30 cm depth and within the 30-60 cm interval.The potential impact of the petroleum activities and their effects on the environment and agricultural development in the area will be evaluated by studying the distribution of the chemical elements analyzed,particularly total petroleum hydrocarbons(TPH).In addition,a thematic map was created using MapSys 10.0 software based on their distribution,indicating the polluted areas using color codes and values.This analysis and mapping revealed that 7,473 square meters of the site were severely contaminated at 30 cm,representing approximately 25% of the site.
文摘Soybean production systems that return plant residues to the soil surface are gaining in popularity. As these practices become more widespread, more crop and weed residues are being introduced into the upper soil profile. Greenhouse studies were conducted to determine the effects of varying concentrations of Palmer amaranth and pitted morningglory plant residues (aboveground portion of the plant) on soybean production. The study was arranged in a completely randomized experimental design with five treatments and five replications. Palmer amaranth and pitted morningglory residues were incorporated into soil at 20,000, 40,000, 80,000 and 160,000 ppm. Inert plastic residue at the same residue levels was included as a check. Soybean dry weight, leaf area and leaf tissue nutrient content were recorded during the study. A decrease in soybean dry weight and leaf area was observed as Palmer amaranth residue in the soil increased. Palmer amaranth residues of 160,000 ppm and 80,000 ppm in the soil significantly reduced soybean dry weight by 69% and 59%, respectively, and soybean leaf area by 60% and 57%, respectively. In contrast, pitted morningglory and inert plastic residues had no observable effect on soybean growth and development. This study demonstrated Palmer amaranth residues in the soil impacted early season soybean growth and development.
文摘Novel substrates consisted of different fresh agro-industrial residues,their corresponding and commercial spent mushroom substrates(i.e.SMS deriving from laboratory-scale experiments and SMS deriving from industrial-scale experiments by Green Zin S.A.-SMS GZ)and Pleurotus waste(PW;stipes/mishappen mushrooms)were used in blends for a new cultivation cycle of Pleurotus ostreatus and P.eryngii mushrooms in bags.Their impact on the biochemical properties(intra-cellular polysaccharides-IPSs,protein,lipid,total phenolic compounds-TPCs,individual carbohydrates composition of the IPSs)in the first-and second-flush whole mushrooms,pilei and stipes,as well as the fatty acids composition,the antioxidant activity(in the first-flush mushroom parts)and glucan content of stipes were examined.Both species produced satisfactory IPSs quantities in all substrates(28.69-46.38%,w/w)and significant protein amounts(18.37-26.80%,w/w).The further SMS addition(80%,w/w instead of 40%,w/w)in the cultivation substrates affected positively the mushroom IPSs values,whereas the highest protein content was detected in mushroom’s parts cultivated on substrates consisted of fresh agro-industrial residues.Mushroom’s lipid content was affected differently by the various substrate combinations,with SMS presence resulting in mushrooms with a lower fat content than those produced in substrates with PW addition.Fresh substrates with PW and those with coffee residue were the most favorable for TPCs production.Regarding production flushes,the nutritional value of mushrooms was comparable between them,only a slight increase in TPCs of second-flush carposomes was detected.Glucose was the predominant monosaccharide of the produced IPSs,combined with a significant production of total and β-glucans.SMSs and PW addition had a positive impact on antioxidant activity,too.A higher quantity of lipids,TPCs and significant antioxidant activity were detected in all Pleurotus pilei than stipes,whereas the latter were richer in IPSs.Both pilei and stipes had a significant protein amount.Hence,the data obtained by this study support the positive effect of different types of SMS and mushroom waste on P.ostreatus and P.eryngii nutritional value.
文摘Global crises, notably climate shocks, degraded ecosystems, and growing energy demand, enforce sustainable production and consumption pathways. A circular bioeconomy offers the opportunities to actualize resource and eco-efficiency enhancement, valorization of waste streams, reduction of fossil energy and greenhouse gas (GHG) emissions. Albeit biomass resources are a potential feedstock for bio-hydrogen (bio-H2) production, Ghana’s agricultural residues are not fully utilized. This paper examines the economic and environmental impact of bio-H2 electricity generation using agricultural residues in Ghana. The bio-H2 potential was determined based on biogas steam reforming (BSR). The research highlights that BSR could generate 2617 kt of bio-H2, corresponding to 2.78% of the global hydrogen demand. Yam and maize residues contribute 50.47% of the bio-H2 produced, while millet residues have the most negligible share. A tonne of residues could produce 16.59 kg of bio-H2 and 29.83 kWh of electricity. A total of 4,705.89 GWh of electricity produced could replace the consumption of 21.92% of Ghana’s electricity. The economic viability reveals that electricity cost is $0.174/kWh and has a positive net present value of $2135550609.45 with a benefit-to-cost ratio of 1.26. The fossil diesel displaced is 1421.09 ML, and 3862.55 kt CO2eq of carbon emissions decreased corresponding to an annual reduction potential of 386.26 kt CO2eq. This accounts for reducing 10.26% of Ghana’s GHG emissions. The study demonstrates that hydrogen-based electricity production as an energy transition is a strategic innovation pillar to advance the circular bioeconomy and achieve sustainable development goals.
基金financially supported by the National Natural Science Foundation of China(No.52274348)the Major projects for the“Revealed Top”Science and Technology of Liaoning Province,China(No.2022JH1/10400024)the National Key Research and Development Program of China(No.2018YFC1902002).
文摘The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed.Results revealed that high pH value,high cyanide concentration,and high pyrite dosage promoted the interaction of cyanide with pyrite.The cyanidation of pyrite was pseudo-second-order with respect to cyanide.The decyanation of pyrite cyanide residue by Na_(2)SO_(3)/air oxidation was performed.The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2,SO_(3)^(2-) dosage of 22 mg·g^(-1),and air flow rate of 1.46 L·min^(-1).X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(Ⅲ)and FeSO_(4) during the cyanidation process.The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide(CN^(-))and ferrocyanide(Fe(CN)_(6)^(4-)),which were effectively removed by Na_(2)SO_(3)/air oxidation.During the decyanation process,air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface.This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues.
基金financially supported by the National Natural Science Foundation of China (22075308, 22209197)Natural Science Foundation of Shanxi Province (20210302 1224439, 202203021211002)Shanxi Province Science Foundation for Youths (No: SQ2019001)。
文摘The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with traditional supercapacitors and lithium-ion batteries,respectively.However,the ion kinetics mismatch between cathode and anode leads to unsatisfied cycling lifetime and anode degradation.Tremendous efforts have been devoted to solving the abovementioned issue.One promising strategy is altering high conductive hard carbon anode with excellent structural stability to match with activated carbon cathode,assembling dual-carbon LIC.In this contribution,one-pot in-situ expansion and heteroatom doping strategy was adopted to prepare sheet-like hard carbon,while activated carbon was obtained involving activation.Ammonium persulfate was used as expanding and doping agent simultaneously.While furfural residues (FR) were served as carbon precursor.The resulting hard carbon (FRNS-HC) and activated carbon (FRNS-AC)show excellent electrochemical performance as negative and positive electrodes in a lithium-ion battery (LIB).To be specific,374.2 m Ah g^(-1)and 123.1 m Ah g^(-1)can be achieved at 0.1 A g^(-1)and 5 A g^(-1)when FRNS-HC was tested as anode.When combined with a highly porous carbon cathode (S_(BET)=2961 m^(2)g^(-1)) synthesized from the same precursor,the LIC showed high specific energy of147.67 Wh kg^(-1)at approximately 199.93 W kg^(-1),and outstanding cycling life with negligible capacitance fading over 1000 cycles.This study could lead the way for the development of heteroatom-doped porous carbon nanomaterials applied to Li-based energy storage applications.
基金The National Natural Science Foundation of China(22276153,51974262)funded this work。
文摘To address the hazardous by-product of zinc smelting and resource utilization of jarosite residue,this study applies an electric field-assisted hot acid treatment to completely recycle iron(Fe).This innovative approach aims to enhance the leaching efficiency of Fe from jarosite residue.The introduction of an electric field changes the charge distribution on the surface of the particles to enhance ions and electrons exchange and promotes the collision between particles to strengthen reaction kinetics.Based on the above,the leaching efficiency of Fe in jarosite under sulfuric acid attack has improved observably.The result shows that Fe leaching efficiency reaches 98.83%,which is increased by 28%under the optimal experimental conditions:current density of 30 mA·cm^(-2),H_(2)SO_(4) concentration of 1.5 mol·L^(-1),solid-liquid ratio of 70 g·L^(-1),temperature of 80℃ and time of 12 h.Leaching kinetics calculations show that the apparent activation energy is 16.97 kJ·mol^(-1) and the leaching of jarosite residue is controlled by a mixture of chemical reaction and diffusion,as well as the temperature and concentration of the leaching solution have an influence on leaching.This work provides a feasible idea for the efficient leaching of Fe from jarosite residue.
基金supported by the National Natural Science Foundation of China(No.32192434)the National Key Research and Development Program of China(No.2022YFF1303003).
文摘Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowledge on how SOC and its fractions(POC:particulate organic carbon;MAOC:mineral-associated organic carbon)respond to different harvest residue managements is limited.Methods In this study,a randomized block experiment containing SOH and WTH was conducted in a Chinese fir(Cunninghamia lanceolata)plantation.The effect of harvest residue management on SOC and its fractions in topsoil(0–10cm)and subsoil(20–40cm)was determined.Plant inputs(harvest residue retaining mass and fine root biomass)and microbial and mineral properties were also measured.Results The responses of SOC and its fractions to different harvest residue managements varied with soil depth.Specifically,SOH enhanced the content of SOC and POC in topsoil with increases of 15.9%and 29.8%,respectively,compared with WTH.However,SOH had no significant effects on MAOC in topsoil and SOC and its fractions in subsoil.These results indicated that the increase in POC induced by the retention of harvest residue was the primary contributor to SOC accumulation,especially in topsoil.The harvest residue managements affected SOC and its fractions through different pathways in topsoil and subsoil.The plant inputs(the increase in fine root biomass induced by SOH)exerted a principal role in the SOC accumulation in topsoil,whereas mineral and microbial properties played a more important role in regulating SOC dynamics than plants inputs in subsoil.Conclusion The retention of harvest residues can promote SOC accumulation by increasing POC,and is thus suggested as an effective technology to enhance the soil carbon sink for mitigating climate change in plantation management.
基金Supported by Agricultural Science and Technology Innovation Fund Project of Hunan Province(2023CX98)Hunan Vegetable Industry Technology System(HARS-04)Fund for Innovation and Entrepreneurship of Technological Enterprises in Yueyang City(2023081700020)。
文摘Spodoptera litura is the most threatening pest in lotus production,seriously affecting the lotus yield and quality.Emamectin benzoate and chlorantraniliprole,the main insecticides for controlling S.litura on vegetables,are widely used by farmers to control S.litura on lotus plants.To determine the application concentrations,control effects,and safety of the two insecticides in lotus fields,indoor experiments were conducted to determine the control effects of 200 g/L chlorantraniliprole(SC)and 5%emamectin benzoate(WDG),and the residues of the two insecticides in the water,lotus leaves,and lotus seeds after field application were determined by HPLC-MS/MS.The indoor experiment results showed that chlorantraniliprole and emamectin benzoate both had good control effects on S.litura,with the median lethal concentrations(LC50)of 17.700 and 1.694 mg/L,respectively.After unmanned aerial vehicle spraying of emamectin benzoate at 20 g/667m^(2),there was no residue of emamectin benzoate in the water or lotus leaves after 5 d.After spraying of chlorantraniliprole at 20 mL/667m^(2),the residual amounts in the water and lotus leaves after 9 d were 0.005 and 0.007 mg/L,respectively.No residue of the two insecticides was detected in lotus seeds(dry and fresh)2 h after spraying.Therefore,it was recommended that chlorantraniliprole and emamectin benzoate can be used to control S.litura in lotus fields during the growth period,while attention should be paid to the application interval for safety.Considering the safe harvesting of lotus seeds and leaves,it was recommended that the preharvest intervals of chlorantraniliprole and 5%emamectin benzoate should be 9 d.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei Province.
文摘[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by gas chromatography-mass spectrometry(GC-MS)in selective ion scanning mode(SIM).[Results]The organophosphorus pesticide standard solutions showed good linearity in the mass concentration range of 0.1-10.0μg/ml with correlation coefficients(r)not lower than 0.999,and the detection limits(S=3 N)ranged from 0.01 to 0.05 mg/kg.The average recovery values were in the range of 80.2%-99.7%,with relative standard deviations(RSDs,n=3)in the range of 1.8%-6.3%,at the addition levels of 0.5,1.0 and 2.0 mg/kg.[Conclusions]The method is simple,sensitive and accurate,and can be used for the determination of organophosphorus pesticide residues in mutton.
基金Supported by the Special Funds for Supervision on the Quality and Safety of Agricultural Products(GJFP201601503)~~
文摘[Objective] This study was conducted to develop a system for simultaneous determination of imidacloprid, diflubenzuron, thiabendazole and carbendazim in fruit juice by HPLC. [Method] Using acetonitrile as the extraction solvent, the pesticides in fruit juice were purified through a NH2 solid phase extraction (SPE) cartridge, then detected by HPLC. [Result] There was a good linear relationship between the peak area and the concentrations of imidacloprid, diflubenzuron, thiabendazole and carbendazim in a range of 0.05-5.0 μg/ml, and the linear correlation coefficient varied in a range of 0.999 0-0.999 8; the limit of detection for imidacloprid, diflubenzuron, thiabendazole and carbendazim was 0.003, 0.005, 0.003 and 0.007 mg/kg, respectively. The recovery rate of imidacloprid, diflubenzuron, thiabendazole and carbendazim standards added at three levels (0.1, 0.5 and 1.0 mg/kg) ranged from 82% to 107%, with RSD less than 4.5%. [Conclusion] The sensitivity, accuracy and precision of this method were able to meet the requirements for pesticide residue analysis.
文摘With a view to improving rabbit production performance, a trial on the chemical composition of pineapple press residue (Ananas comosus) and the effect of its incorporation in the ration on rabbit growth performance (Oryctolagus cuniculus) was carried out at the KUATE Cunicole Farm in Bandjoun, in Western Cameroon. To do this, 36 rabbits of the local breed, aged 53 days with an average weight of 1337 ± 119 g were distributed and randomly assigned to 3 experimental rations corresponding respectively to treatments or batches T0, T1 and T2. The animals in treatment T0 received a ration containing no pineapple press residue, while those in treatments T1 and T2 received a ration containing 20% and 40% pineapple press residue, respectively. These residues were dried and ground for chemical composition analysis. The feed served as well as refusals from the previous day were weighed each morning to assess feed intake. The animals were weighed every 7 days to assess weight performance. At the end of the trial which lasted 7 weeks, the animals were fasted for 24 hours, then sacrificed to evaluate carcass characteristics and the relative weights of some digestive organs. The results of this study showed that pineapple press residues had a high crude fiber content (19.2%) and energy (2500 Kcal/kg DM). Their incorporation had no significant effect on feed intake and feed conversion ratio. The average live weight, weight gain and average daily weight gain of the animals receiving the ration with 20% inclusion of pineapple press residue were comparable to those of the control group and significantly higher than those of animals fed with 40% inclusion of pineapple residue. The highest carcass yields were obtained with rabbits fed 20% pineapple press residue in their ration. The cost of feed for the production of a kilogram live weight of rabbit tends to decrease with the ration incorporated with 20% pineapple press residue. Pineapple press residues constitute a by-product that can be recycled and their incorporation at 20% can increase rabbit growth performance and reduce production costs.
文摘[Objective] A method was developed for the determination of 10 pyrethroids pesticide residues in rice by GC-MS-MS. [Method] Pyrethroids were extracted with acetonitrile, followed by a salting-out step with anhydrous magnesium sulfate and sodium chloride, cleaned up by florisil solid phase extraction (SPE) cartridge, and determined by multiple reaction monitoring mode. [Result] The method showed good linearity over the range of 0.010-0.500 mg/L for 10 pyrethroid pesticide with correlation coefficients over 0.99. The detection limits were 0.005 -0.010 mg/kg. The method was validated by analyzing samples spiked with 0.05, 0.10, 0.20 mg/kg of 10 pyrethroid pesticides, respectively. The average recoveries in rice ranged from 75.0-115.5%, and the relative standard deviations (RSD) were between 3.9%-6.9%. [Conclusion] The method is easy, accurate and reliable, which can meet the requirement for the simultaneous determination and confirmation of pyrethroid pesticide residues in rice.
基金Supported by the National Key Technology R&D Program (2007BAD89B09-10)National Public Service Project (200803033-A0903)~~
文摘[Objective] The aim was to explore key technology to cultivate Holotdchia diomphalia larvae with Agaricus bisporus residues and to provide, technologicar sup- ports for processing of Agaricus bisporus residues. [Method] In the research, fodder thickness, population density and residues under different treatments were set to re- search effects on Holotrichia diomphalia larvae. [Result] The optimal thickness of fodder was 25 cm and the optimal feeding density was 44-56 larvae per hectare. The dry residues were more suitable, compared with decomposed residues and corn bran powders, for cultivation of Holotrichia diomphalia larvae. [Conclusion] Cultivation of Holotrichia diomphalia larvae with Agaricus bisporus residues is a new method to make use of Agaricus bisporus residues and of significance for extension of agricul- tural circulation chain, increase of economic benefits and ecological benefits.
基金Supported by Special Funds of National Agricultural product Quality and Safety Risk Assessment(GJFP201600402)Youth Foundation of Hubei Academy of Agricultural Sciences(2015NKYJJ36)~~
文摘The analysis of pesticide residues in Citrus from Yichang, Danjiangkou, Zigui and Xingshan in Hubei Province was accomplished by UPLC-MS and GC-MS. The results showed that the detection rate of pesticide residues in Citrus reticulate was 91.9%. The detection rate of banned pesticides was 1.6%. The detection rate of restricted pesticides was 9.5%. The detection rate of allowed pesticides was 68.3%. The detection rate of unregistered pesticides was 15.9%. The pesticide used in citrus was relatively common. Because of the banned and restricted pesticides were both in the control degree, on the whole, the quality and security of Citrus reticulata was safe.
基金Supported by International Science and Technology Cooperation Project of Changzhou City ( CZ20100028)~~
文摘[ Objective] The paper was to explore the residual dynamics and degradation rule of high concentration carbendazim in natural condition. [ Method J The earbendasim solutions with mass fractions of 0.2% ( recommended concentration), 0.4% (2 times of the recommended concentration) and I. 0% (5 times of the recommended concentration) were sprayed on plant leaves, and the residual amount of earbendazim in natural condition was determined. The dynamic models of carbendazim residues Under 3 concentrations were also studied. [ Result~ The degradation of earbcndazim under recommended concentration was accorded with Kinetic model for degradation, but the degradation Kinetic model for samples under 2 times and 5 times concentration appeared dissimilation. The residue of carben- dazim on plant was affected by absorption capacity of plants and weather conditions. The absorption capacity was affected by application concentration and growth condition of plant, higher concentration application and slow growth stage of p]ant were not conducive to the absorption of carbendazim; weather condition was mainly referred to temperature and humidity, higher temperature and dry weather were not conducive to the degradation of earbendazim. [Condusion ] The paper provided theoretical basis for guiding the application of carbendazim under different growth stages of crops and different weather conditions in agricultural production.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201003014)Youth Foundation of Beijing Academy of Agricultural and Forestry Sciences(QNJJ201311)~~
文摘ObjectiveThe aim was to explore the movement of nitrate nitrogen in tall-fescue soils by different kinds of slow release nitrogen fertilizers. MethodBased on infiltration-tanks and test plots, a new and environment friendly fertilizer was explored. ResultThe results show that compared with urea treatment, slow-release nitrogen fertilizer treatments could reduce nitrate nitrogen content and leaching amount in soils. Compared with PCU30 and IU treatments, the PCU60 treatment became more efficient in reducing nitrate content and leaching amount in 0-90 cm soil layer. ConclusionIn summary, slow-release nitrogen fertilizer, which can reduce soil nitrate content and leaching losses, is a kind of novel fertilizer with high environmental benefit and promising application.