In this paper an investigation of the ground vortex,the significant aerodynamic phenomenon in rotor aerodynamics on nap-of-the- earth,is carried out.Based on the analysis of the rotor wake near the ground,a theoretica...In this paper an investigation of the ground vortex,the significant aerodynamic phenomenon in rotor aerodynamics on nap-of-the- earth,is carried out.Based on the analysis of the rotor wake near the ground,a theoretical method has been established which can be used for calculating the ground vortex—its longitudinal position and strength.The computational results are compared with avaUable experimental data and found in good agreement.展开更多
Rotor wake analysis,a fundamental research of helicopter technology,has been widely applied for rotor aerodynamic analysis. This paper summarizes the research of different rotor wake models at home and abroad and revi...Rotor wake analysis,a fundamental research of helicopter technology,has been widely applied for rotor aerodynamic analysis. This paper summarizes the research of different rotor wake models at home and abroad and reviews the development process of rotor wake methods as well as the research achievement obtained in each stage.Then,the new progress of helicopter rotor wake methods is described in detail. It includes constant circulation contours modeling method of rotor wake,pseudo-implicit relaxation iteration and time-accurate solution method,research on aerodynamic interaction characteristics of helicopter rotor/fuselage by wake method,research on the rotor blade-vortex interaction noise and interaction of coaxial rigid rotor aerodynamics by viscous vortex particle method,and application of free wake method to helicopter flight dynamics modeling. In the end,some prospects for the research of helicopter rotor wake method are put forward,which clarifies the ideas for the future development of rotor wake method.展开更多
A high-order upwind scheme has been developed to capture the vortex wake of a helicopter rotor in the hover based on chimera grids. In this paper, an improved fifth-order weighted essentially non-oscillatory (WENO) ...A high-order upwind scheme has been developed to capture the vortex wake of a helicopter rotor in the hover based on chimera grids. In this paper, an improved fifth-order weighted essentially non-oscillatory (WENO) scheme is adopted to interpolate the higher-order left and right states across a cell interface with the Roe Riemann solver updating inviscid flux, and is compared with the monotone upwind scheme for scalar conservation laws (MUSCL). For profitably capturing the wake and enforcing the period boundary condition, the computation regions of flows are discretized by using the struc- tured chimera grids composed of a fine rotor grid and a cylindrical background grid. In the background grid, the mesh cells located in the wake regions are refined after the so- lution reaches the approximate convergence. Considering the interpolation characteristic of the WENO scheme, three layers of the hole boundary and the interpolation boundary are searched. The performance of the schemes is investigated in a transonic flow and a subsonic flow around the hovering rotor. The results reveal that the present approach has great capabilities in capturing the vortex wake with high resolution, and the WENO scheme has much lower numerical dissipation in comparison with the MUSCL scheme.展开更多
The interaction effect of rotor wake on fuselage of helicopter was investigated with experimental method. The results from experiment have proved that for the drag of fuselage the effect of rotor airflow is closely in...The interaction effect of rotor wake on fuselage of helicopter was investigated with experimental method. The results from experiment have proved that for the drag of fuselage the effect of rotor airflow is closely in connection with both the flight speed and the collective pitch of blades, while for the thrust and pitch moment of fuselage the collective pitch angle of blades plays more important role. A simple and effective computing method about aerodynamic interaction can be derived from the measured data. In order to implement the experiment, a fuselage model, a special sensor, the measurement and data acquisition and processing system were designed and manufactured according to the special requirements of this research project, thereby a good base was built up for carrying out experiments successfully with high quality.展开更多
The wake generated by the rotor of a helicopter can exert a strong interference effect on the fuselage and the horizontal/vertical tail.The occurrence of icing on the rotor can obviously make this interplay more compl...The wake generated by the rotor of a helicopter can exert a strong interference effect on the fuselage and the horizontal/vertical tail.The occurrence of icing on the rotor can obviously make this interplay more complex.In the present study,numerical simulation is used to analyze the rotor wake in icing conditions.In order to validate the overall mathematical/numerical method,the results are compared with similar data relating to other tests;then,different simulations are conducted considering helicopter forward flight velocities of 0,10,20,50,and 80 knots and various conditions in terms of air temperature(atmospheric temperature degrading from−12°C to−20°C or from−20°C to−26°C).The results indicate that the rotor aerodynamic performance(i.e.,the lift-to-drag ratio distribution of the rotor disc)drops significantly once the rotor undergoes ice accretion.More importantly,the icing exerts a different influence of the wake dynamics depending on the atmospheric conditions.Interestingly,the rime-ice firstly occurs on the inner portion of rotor blades and then diffuses outward along the blade radial direction with the decrease in atmospheric temperature.展开更多
A tilt-rotor unsteady flow analytical method has been developed based upon viscous vortex-particle method.In this method,the vorticity field is divided into small assembled vortex particles.Vortex motion and diffusion...A tilt-rotor unsteady flow analytical method has been developed based upon viscous vortex-particle method.In this method,the vorticity field is divided into small assembled vortex particles.Vortex motion and diffusion are obtained by solving the velocity-vorticity-formed incompressible Navier-Stokes equations using agrid-free Lagrangian simulation method.Generation of the newly vortex particles is calculated by using the Weissinger-L lifting surface model.Furthermore,in order to significantly improve computational efficiency,a fast multiple method(FMM)is introduced into the calculation of induced velocity and its gradient.Finally,the joint vertical experimental(JVX)tilt-rotor is taken as numerical examples to analyze.The wake geometry and downwash are investigated for both hover and airplane modes.The proposed method for tilt-rotor flow analysis is verified by comparing its results with those available measured data.Comparison indicates that the current method can accurately capture the complicated tilt-rotor wake variation and be suitable for aerodynamic interaction simulation in complex environments.Additionally,the aerodynamic interactional characteristics of dual-rotor wake are discussed in different rotor distance.Results show that there are significant differences on interactional characteristics between hover mode and airplane mode.展开更多
Helicopter rotor flapping angles from hover to low speed forward flight are calculated and compared with the measured data in this paper. The analytical method is based on a second order lifting line/full span free...Helicopter rotor flapping angles from hover to low speed forward flight are calculated and compared with the measured data in this paper. The analytical method is based on a second order lifting line/full span free wake model as well as a fully coupled rotor trim model. It is shown that, in order to accurately predict the lateral flapping angle at low advance ratio, it is necessary to use free wake analysis to account for the highly non uniform inflow induced by the distorted wake geometry at rotor disc plane.展开更多
Two-dimensional (2D) unsteady numerical simulation has been applied to studythe effect of the variation in relative circumferential positions of rotors on the performance of alow speed compressor. The result shows tha...Two-dimensional (2D) unsteady numerical simulation has been applied to studythe effect of the variation in relative circumferential positions of rotors on the performance of alow speed compressor. The result shows that the variation will change the relative position ofupstream rotor wake to the downstream rotor as well as the periodic and turbulent velocityfluctuations on the airfoils. When the upstream rotor wake impinges upon the leading edge of thedownstream rotor, the corresponding stage efficiency will be higher; when the upstream wake istransferred into the mid-passage of the downstream rotor, the corresponding stage efficiency will belower. The proper configuration of the relative position of rotors will cause obvious reduction inthe unsteady aerodynamic effect on the second rotor airfoils and improve the aerodynamic performanceof blades.展开更多
Contra-rotating small-sized fans are used as cooling fans for electric equipment. The internal flow condition between the front and rear rotors of the contra-rotating small-sized fan is not known well especially at th...Contra-rotating small-sized fans are used as cooling fans for electric equipment. The internal flow condition between the front and rear rotors of the contra-rotating small-sized fan is not known well especially at the low flow rate. Furthermore, the blade row distance between the front and rear rotors is an important parameter for the contra-rotating small-sized fan and its influence on the internal flow condition is not clarified at the low flow rate. Therefore, the internal flow condition of the contra-rotating small-sized fan at the low flow rate is investigated by the numerical analysis in this research. The numerical analysis results are validated by comparing the fan static pressure curves of the numerical results to the experimental results. The internal flow condition at the low flow rate is clarified using the numerical models of the different blade row distance L = 10 mm and 30 mm. In the present paper, pressure fluctuations phase locked each front and rear rotor’s rotation are shown and the influences of the wake and the potential interference are discussed by the unsteady numerical analysis results at the low flow rate.展开更多
文摘In this paper an investigation of the ground vortex,the significant aerodynamic phenomenon in rotor aerodynamics on nap-of-the- earth,is carried out.Based on the analysis of the rotor wake near the ground,a theoretical method has been established which can be used for calculating the ground vortex—its longitudinal position and strength.The computational results are compared with avaUable experimental data and found in good agreement.
文摘Rotor wake analysis,a fundamental research of helicopter technology,has been widely applied for rotor aerodynamic analysis. This paper summarizes the research of different rotor wake models at home and abroad and reviews the development process of rotor wake methods as well as the research achievement obtained in each stage.Then,the new progress of helicopter rotor wake methods is described in detail. It includes constant circulation contours modeling method of rotor wake,pseudo-implicit relaxation iteration and time-accurate solution method,research on aerodynamic interaction characteristics of helicopter rotor/fuselage by wake method,research on the rotor blade-vortex interaction noise and interaction of coaxial rigid rotor aerodynamics by viscous vortex particle method,and application of free wake method to helicopter flight dynamics modeling. In the end,some prospects for the research of helicopter rotor wake method are put forward,which clarifies the ideas for the future development of rotor wake method.
基金supported by the National Natural Science Foundation of China(No.10802046)
文摘A high-order upwind scheme has been developed to capture the vortex wake of a helicopter rotor in the hover based on chimera grids. In this paper, an improved fifth-order weighted essentially non-oscillatory (WENO) scheme is adopted to interpolate the higher-order left and right states across a cell interface with the Roe Riemann solver updating inviscid flux, and is compared with the monotone upwind scheme for scalar conservation laws (MUSCL). For profitably capturing the wake and enforcing the period boundary condition, the computation regions of flows are discretized by using the struc- tured chimera grids composed of a fine rotor grid and a cylindrical background grid. In the background grid, the mesh cells located in the wake regions are refined after the so- lution reaches the approximate convergence. Considering the interpolation characteristic of the WENO scheme, three layers of the hole boundary and the interpolation boundary are searched. The performance of the schemes is investigated in a transonic flow and a subsonic flow around the hovering rotor. The results reveal that the present approach has great capabilities in capturing the vortex wake with high resolution, and the WENO scheme has much lower numerical dissipation in comparison with the MUSCL scheme.
基金the National Defence Science and Technology in Advancethe National Laboratory of Rotorcraft Aeromechanics
文摘The interaction effect of rotor wake on fuselage of helicopter was investigated with experimental method. The results from experiment have proved that for the drag of fuselage the effect of rotor airflow is closely in connection with both the flight speed and the collective pitch of blades, while for the thrust and pitch moment of fuselage the collective pitch angle of blades plays more important role. A simple and effective computing method about aerodynamic interaction can be derived from the measured data. In order to implement the experiment, a fuselage model, a special sensor, the measurement and data acquisition and processing system were designed and manufactured according to the special requirements of this research project, thereby a good base was built up for carrying out experiments successfully with high quality.
文摘The wake generated by the rotor of a helicopter can exert a strong interference effect on the fuselage and the horizontal/vertical tail.The occurrence of icing on the rotor can obviously make this interplay more complex.In the present study,numerical simulation is used to analyze the rotor wake in icing conditions.In order to validate the overall mathematical/numerical method,the results are compared with similar data relating to other tests;then,different simulations are conducted considering helicopter forward flight velocities of 0,10,20,50,and 80 knots and various conditions in terms of air temperature(atmospheric temperature degrading from−12°C to−20°C or from−20°C to−26°C).The results indicate that the rotor aerodynamic performance(i.e.,the lift-to-drag ratio distribution of the rotor disc)drops significantly once the rotor undergoes ice accretion.More importantly,the icing exerts a different influence of the wake dynamics depending on the atmospheric conditions.Interestingly,the rime-ice firstly occurs on the inner portion of rotor blades and then diffuses outward along the blade radial direction with the decrease in atmospheric temperature.
基金Supported by the National Natural Science Foundation of China(11302103)
文摘A tilt-rotor unsteady flow analytical method has been developed based upon viscous vortex-particle method.In this method,the vorticity field is divided into small assembled vortex particles.Vortex motion and diffusion are obtained by solving the velocity-vorticity-formed incompressible Navier-Stokes equations using agrid-free Lagrangian simulation method.Generation of the newly vortex particles is calculated by using the Weissinger-L lifting surface model.Furthermore,in order to significantly improve computational efficiency,a fast multiple method(FMM)is introduced into the calculation of induced velocity and its gradient.Finally,the joint vertical experimental(JVX)tilt-rotor is taken as numerical examples to analyze.The wake geometry and downwash are investigated for both hover and airplane modes.The proposed method for tilt-rotor flow analysis is verified by comparing its results with those available measured data.Comparison indicates that the current method can accurately capture the complicated tilt-rotor wake variation and be suitable for aerodynamic interaction simulation in complex environments.Additionally,the aerodynamic interactional characteristics of dual-rotor wake are discussed in different rotor distance.Results show that there are significant differences on interactional characteristics between hover mode and airplane mode.
文摘Helicopter rotor flapping angles from hover to low speed forward flight are calculated and compared with the measured data in this paper. The analytical method is based on a second order lifting line/full span free wake model as well as a fully coupled rotor trim model. It is shown that, in order to accurately predict the lateral flapping angle at low advance ratio, it is necessary to use free wake analysis to account for the highly non uniform inflow induced by the distorted wake geometry at rotor disc plane.
基金Natural Science Foundation of China( 5 0 10 60 0 2 ) 973 Project( G19990 2 2 3 0 7)
文摘Two-dimensional (2D) unsteady numerical simulation has been applied to studythe effect of the variation in relative circumferential positions of rotors on the performance of alow speed compressor. The result shows that the variation will change the relative position ofupstream rotor wake to the downstream rotor as well as the periodic and turbulent velocityfluctuations on the airfoils. When the upstream rotor wake impinges upon the leading edge of thedownstream rotor, the corresponding stage efficiency will be higher; when the upstream wake istransferred into the mid-passage of the downstream rotor, the corresponding stage efficiency will belower. The proper configuration of the relative position of rotors will cause obvious reduction inthe unsteady aerodynamic effect on the second rotor airfoils and improve the aerodynamic performanceof blades.
文摘Contra-rotating small-sized fans are used as cooling fans for electric equipment. The internal flow condition between the front and rear rotors of the contra-rotating small-sized fan is not known well especially at the low flow rate. Furthermore, the blade row distance between the front and rear rotors is an important parameter for the contra-rotating small-sized fan and its influence on the internal flow condition is not clarified at the low flow rate. Therefore, the internal flow condition of the contra-rotating small-sized fan at the low flow rate is investigated by the numerical analysis in this research. The numerical analysis results are validated by comparing the fan static pressure curves of the numerical results to the experimental results. The internal flow condition at the low flow rate is clarified using the numerical models of the different blade row distance L = 10 mm and 30 mm. In the present paper, pressure fluctuations phase locked each front and rear rotor’s rotation are shown and the influences of the wake and the potential interference are discussed by the unsteady numerical analysis results at the low flow rate.