期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Sandwich structures with tapered tubes as core:A quasi-static investigation
1
作者 Xinmei Xiang Dehua Shao +5 位作者 Xin Zhang Umer Sharif Ngoc San Ha Li Xiang Jing Zhang Jiang Yi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期447-462,共16页
In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to c... In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10. 展开更多
关键词 sandwich structure Corrugated tube Tapered tube QUASI-STATIC Energy absorption
下载PDF
Lignin‐derived carbon with pyridine N‐B doping and a nanosandwich structure for high and stable lithium storage
2
作者 Dichao Wu Jiayuan Li +5 位作者 Yuying Zhao Ao Wang Gaoyue Zhang Jianchun Jiang Mengmeng Fan Kang Sun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期232-247,共16页
Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this ... Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this research,we propose a“self‐assembly‐template”method to prepare B,N codoped porous carbon(BN‐C)with a nanosandwich structure and abundant pyridinic N‐B species.The nanosandwich structure can increase powder density and cycle stability by constructing a stable solid electrolyte interphase film,shortening the Li^(+) diffusion pathway,and accommodating volume expansion during repeated charging/discharging.The abundant pyridinic N‐B species can simultaneously promote the adsorption/desorption of Li^(+)/PF_(6)^(−) and reduce the diffusion barrier.The BN‐C electrode showed a high lithium‐ion storage capacity of above 1140 mAh g^(−1) at 0.05 A g^(−1) and superior stability(96.5% retained after 2000 cycles).Moreover,owing to the synergistic effect of the nanosandwich structure and pyridinic N‐B species,the assembled symmetrical BN‐C//BN‐C full cell shows a high energy density of 234.7Wh kg^(−1),high power density of 39.38 kW kg−1,and excellent cycling stability,superior to most of the other cells reported in the literature.As the density functional theory simulation demonstrated,pyridinic N‐B shows enhanced adsorption activity for Li^(+) and PF_(6)^(−),which promotes an increase in the capacity of the anode and cathode,respectively.Meanwhile,the relatively lower diffusion barrier of pyridinic N‐B promotes Li^(+) migration,resulting in good rate performance.Therefore,this study provides a new approach for the synergistic modulation of a nanostructure and an active site simultaneously to fabricate the carbon electrode material in energy storage devices. 展开更多
关键词 high cycling stability high energy density lithium‐ion batteries pyridinic N‐B species sandwich structure carbon nanosheet
下载PDF
Ballistic performances of the hourglass lattice sandwich structures under high-velocity fragments
3
作者 He-xiang Wu Jia Qu Lin-zhi Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期312-325,共14页
In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to eluc... In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to elucidating the influences of rod cross-section dimensions,structure height,structure layer,and rod inclination angle on the deformation mode,ballistic performances,and ability to change the ballistic direction of fragments.The results show that the ballistic performances of hourglass lattice sandwich structures are mainly affected by their structural parameters.In this respect,structural parameters optimization of the hourglass lattice sandwich structures enable one to effectively improve their ballistic limit velocity and,consequently,ballistic performances. 展开更多
关键词 Hourglass lattice sandwich structures Ballistic performances high-velocity Finite element analysis
下载PDF
Damage in hybrid corrugated core sandwich structures under high velocity hail ice impact:A numerical study
4
作者 Chao Zhang Xin Fang +2 位作者 Jose L.Curiel-Sosa Tinh Quoc Bui Chunjian Mao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期217-236,共20页
Potential damage in composite structures caused by hail ice impact is an essential safety threat to the aircraft in flight.In this study,a nonlinear finite element(FE)model is developed to investigate the dynamic resp... Potential damage in composite structures caused by hail ice impact is an essential safety threat to the aircraft in flight.In this study,a nonlinear finite element(FE)model is developed to investigate the dynamic response and damage behavior of hybrid corrugated sandwich structures subjected to high velocity hail ice impact.The impact and breaking behavior of hail are described using the FE-smoothed particle hydrodynamics(FE-SPH)method.A rate-dependent progressive damage model is employed to capture the intra-laminar damage response;cohesive element and surface-based cohesive contact are implemented to predict the inter-laminar delamination and sheet/core debonding phenomena respectively.The transient processes of sandwich structure under different hail ice impact conditions are analyzed.Comparative analysis is conducted to address the influences of core shape and impact position on the impact performance of sandwich structures and the corresponding energy absorption characteristics are also revealed. 展开更多
关键词 sandwich structure Hail ice impact Damage behavior Energy absorption FE-SPH modeling
下载PDF
Assessment of the ballistic response of honeycomb sandwich structures subjected to offset and normal impact
5
作者 Nikhil Khaire Gaurav Tiwari +1 位作者 Vivek Patel M.A.Iqbal 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期56-73,共18页
In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gu... In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gun.A sharp conical nosed projectile was impacted normally and with some offset distance(20 mm and 40 mm).The deformation,failure mode and energy dissipation characteristics were obtained for both kinds of loading.Moreover,the explicit solver was run in Abaqus to create the finite element model.The numerically obtained test results were compared with the experimental to check the accuracy of the modelling.The numerical result was further employed to obtain strain energy dissipation in each element by externally running user-defined code in Abaqus.Furthermore,the influence of inscribe circle diameter and cell wall and face sheet thickness on the energy dissipation,deformation and failure mode was examined.The result found that ballistic resistance and deformation were higher against offset impact compared to the normal impact loading.Sandwich panel impacted at 40 mm offset distance required 3 m/s and 1.9 m/s more velocity than 0 and 20 mm offset distance.Also,increasing the face sheet and wall thickness had a positive impact on the ballistic resistance in terms of a higher ballistic limit and energy absorption.However,inscribe circle diameter had a negative influence on the ballistic resistance.Also,the geometrical parameters of the sandwich structure had a significant influence on the energy dissipation in the different deformation directions.The energy dissipation in plastic work was highest for circumferential direction,regardless of impact condition followed by tangential,radial and axial directions. 展开更多
关键词 Honeycomb sandwich structure Offset impact Energy dissipation characteristic Deformation and failure mode Geometry effect
下载PDF
Sandwich Structure-like Meshes Fabricated via Electrospinning for Controllable Release of Zoledronic Acid 被引量:3
6
作者 LU Jian LIU Jian-guo +2 位作者 SONG Xiao-feng CHEN Xue-si WU, Xiao-dong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第3期524-527,共4页
Novel sandwich structure-like nanofiber multilayered meshes were fabricated via electrospinning. The purpose of the present work was to control zoledronic acid release via the novel structure of sandwich structure-lik... Novel sandwich structure-like nanofiber multilayered meshes were fabricated via electrospinning. The purpose of the present work was to control zoledronic acid release via the novel structure of sandwich structure-like meshes. The in vitro release experiments reveal that the drug release speed and initial burst release were controllable by adjusting the thicknesses of electrospun barrier mesh and drug-loaded mesh. Compared with those of other drug delivery systems, the main advantages of the sandwich structure-like fiber meshes are facile preparation conditions and the generality for hydrophobic and hydrophilic pharmaceuticals. 展开更多
关键词 sandwich structured nanofiber mesh Zoledronic acid Drug release ELECTROSPINNING
下载PDF
Effects of electric/magnetic impact on the transient fracture of interface crack in piezoelectric-piezomagnetic sandwich structure: anti-plane case 被引量:3
7
作者 Xing ZHAO Zhenghua QIAN +1 位作者 Jinxi LIU Cunfa GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第1期139-156,共18页
Due to the incompatibility of the interlaminar deformations,the interface debonding or cracking usually happens in a layered magnetoelectric(ME)structure under an applied load.In this paper,the transient responses of ... Due to the incompatibility of the interlaminar deformations,the interface debonding or cracking usually happens in a layered magnetoelectric(ME)structure under an applied load.In this paper,the transient responses of the anti-plane interface cracks in piezoelectric(PE)-piezomagnetic(PM)sandwich structures are studied by the standard methods of the integral transform and singular integral equation.Discussion on the numerical examples indicates that the PE-PM-PE structure under electric impact is more likely to fracture than the PM-PE-PM structure under a magnetic impact.The dynamic stress intensity factors(DSIFs)are more sensitive to the variation of the active layer thickness.The effects of the material constants on the DSIFs are dependent on the roles played by PE and PM media during the deformation process. 展开更多
关键词 piezoelectric(PE)-piezomagnetic(PM) sandwich structure interface crack transient response dynamic stress intensity factor(DSIF)
下载PDF
High Velocity Impact Experiment on Ti/CFRP/Ti Sandwich Structure 被引量:2
8
作者 还大军 丁冰 +1 位作者 李勇 肖军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第1期121-127,共7页
Aircraft laminated composite components often suffer a variety of high velocity impacts with large quantity of energy,which usually affects aircraft behavior and would incur component damages,even disastrous consequen... Aircraft laminated composite components often suffer a variety of high velocity impacts with large quantity of energy,which usually affects aircraft behavior and would incur component damages,even disastrous consequences.Therefore,one investigates the impact resistance of a new type of composite material,Ti/CFRP/Ti sandwich structure,and launches impact tests by using an air gun test system.Then one acquires the critical breakthrough rate of the structure and analyzes the damages.The results show that the main failure mode of the front titanium sheet is shear plugging and brittle fracture of adhesive layer with fiber breakage,while the back titanium sheet is severely ripped.The rear damage is worse than the front one.Compared with traditional CFRP laminates,the critical breakthrough rate of Ti/CFRP/Ti sandwich structure is improved by 69.9% when suffered the impact of a bearing ball with 2mm radius. 展开更多
关键词 Ti/CFRP/Ti sandwich structure high velocity impact critical velocity damage mode
下载PDF
Short beam shear properties and failure modes of the wood-based X-type lattice sandwich structure 被引量:1
9
作者 Tengteng Zheng Liuxiao Zou Yingcheng Hu 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第2期877-887,共11页
A wood-based X-type lattice sandwich structure was manufactured by insertion-glue method.The birch was used as core,and Oriented Strand Board was used as panel of the sandwich structure.The short beam shear properties... A wood-based X-type lattice sandwich structure was manufactured by insertion-glue method.The birch was used as core,and Oriented Strand Board was used as panel of the sandwich structure.The short beam shear properties and the failure modes of the wood-based X-type lattice sandwich structure with different core direction(vertical and parallel),unit specification(120 mm×60 mm and 60 mm×60 mm),core size(50 mm and 60 mm),and drilling depth(9 mm and 12 mm)were investigated by a short beam shear test and the establishment of a theoretical model to study the equivalent shear modulus and deflection response of the X-type lattice sandwich structure.Results from the short beam shear test and the theoretical model showed that the failure modes of the wood-based X-type lattice sandwich structure were mainly the wrinkling and crushing of the panels under three-point bending load.The experimental values of deflection response of various type specimens were higher than the theoretical values of them.For the core direction of parallel,the smaller the unit specification is,the shorter the core size is,and the deeper the drilling depth is,the greater the short beam shear properties of the wood-based X-type lattice sandwich structure is. 展开更多
关键词 X-type Lattice sandwich structure Failure modes Short beam shear properties Theoretical model
下载PDF
Prediction of Compressive and Shear Moduli of X-cor Sandwich Structures for Aeronautic Engineering 被引量:1
10
作者 张向阳 李勇 +3 位作者 李俊斐 范琳 谭永刚 肖军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第6期646-653,共8页
The so-called″X-cor sandwich structure″is a highly promising novel material as an alternative to honeycomb used in aircraft.Although much work has been conducted on the performance of the X-cor sandwich structure,th... The so-called″X-cor sandwich structure″is a highly promising novel material as an alternative to honeycomb used in aircraft.Although much work has been conducted on the performance of the X-cor sandwich structure,the gap is still hardly bridged between experimental results and theoretical analyses.Therefore,a method has been innovated to establish semi-empirical formula for the prediction of compressive and shear moduli of X-cor sandwich structure composites,by combining theoretical analyses and experimental data.In addition,aprediction software was first developed based on the proposed method,of which the accuracy was verified through confirmatory experiments.This software can offer a direct reference or guide for engineers in structural designing. 展开更多
关键词 X-cor sandwich structure moduli prediction COMPRESSIVE SHEAR
下载PDF
A Mini Review on Testing Methods for Mechanical Properties of Natural Fibre Honeycomb Sandwich Structure and Fractography Analysis 被引量:1
11
作者 Nahiyan Al-Azad Nur Hafidah Binti Dedifitrianto Mohd. Kamal Mohd. Shah 《Journal of Materials Science and Chemical Engineering》 2021年第5期29-38,共10页
This paper is a review of the past research of mechanical testing methods for natural fibre honeycomb sandwich structure as well as failure modes analysis at a microscopic level by using Scanning Electron Microscope (... This paper is a review of the past research of mechanical testing methods for natural fibre honeycomb sandwich structure as well as failure modes analysis at a microscopic level by using Scanning Electron Microscope (SEM). As the world is garnering attention towards renewable resources for environmental purposes, studies of natural fibre have been increasing as well as the application of natural fibre throughout various industries such as aerospace, automobiles, and construction sectors. This paper is started with brief information regarding the honeycomb sandwich structure, introduction to natural fibre, its applications as well as the factors affecting the performances of the structure. Next, the mechanical testing methods are listed out as well as the expected outcomes obtained from the respective testing. The mechanical properties are also identified by conducting lab tests according to the ASTM standard for sandwich and core structures. The microstructure of the deformed samples is then examined under Scanning Electron Microscope (SEM) by using different magnifications to study the failure mechanisms of the samples. The images obtained from the SEM test are analyzed by using fractography which will show the failure modes of the samples. This article is based on past research conducted by professional on the related topic. 展开更多
关键词 Natural Fibre Honeycomb sandwich structure Testing Methods ASTM Standard SEM Test
下载PDF
Sandwich structure for enhancing the interface reaction of hexanitrohexaazaisowurtzitane and nanoporous carbon scaffolds film to improve the thermal decomposition performance
12
作者 Shuai-da Zhu Zi-chen Hu +4 位作者 Yu-qi Cao Xiao-xia Li Yu-qi Feng Xiong Cao Peng Deng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第10期1886-1894,共9页
Improving the thermal decomposition performance of hexanitrohexaazaisowurtzitane(CL-20)by appropriate methods is helpful to promote the combustion performance of CL-20-based solid propellants.In this study,we synthesi... Improving the thermal decomposition performance of hexanitrohexaazaisowurtzitane(CL-20)by appropriate methods is helpful to promote the combustion performance of CL-20-based solid propellants.In this study,we synthesized a sandwich structure of CL-20 and nanoporous carbon scaffolds film(NCS)and emphatically studied the thermal decomposition performance of the composite structure.Thermogravimetric analysis and differential scanning calorimetry were used to measure the thermal decomposition process of the composite structure.The kinetic parameters of thermal decomposition were calculated by the thermal dynamic analysis software AKTS.These results showed that the thermal decomposition performance of the sandwich structure of CL-20 and NCS was better than CL-20.Among the tested samples,NCS with a pore size of 15 nm had the best catalytic activity for the thermal decomposition of CL-20.Moreover,the thermal decomposition curve of the composite structure at the heating rate of 1 K/min was deconvoluted by mathematical method to study the thermal decomposition process.And a possible catalytic mechanism was proposed.The excellent thermal decomposition performance is due to the sandwich structure enhances the interface reaction of CL-20 and NCS.This work may promote the extensive use of CL-20 in the field of solid rocket propellant. 展开更多
关键词 CL-20 NCS CATALYSIS Thermal decomposition sandwich structure
下载PDF
Multi-objective optimization design of radar absorbing sandwich structure
13
作者 陈明继 裴永茂 方岱宁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第3期339-348,共10页
By introducing a dimensionless parameter to couple the two objectives, weight and radar absorbing performance, into a single objective function, a multi-objective optimization procedure for the radar absorbing sandwic... By introducing a dimensionless parameter to couple the two objectives, weight and radar absorbing performance, into a single objective function, a multi-objective optimization procedure for the radar absorbing sandwich structure (RASS) with a cellular core is proposed. The optimization models considered are one-side clamped sandwich panels with four kinds of cores subject to uniformly distributed loads. The average specular reflectivity calculated with the transfer matrix method and the periodic moment method is utilized to characterize the radar absorbing performance, while the mechanical constraints include the facesheet yielding, core shearing, and facesheet wrinkling. The optimization analysis indicates that the sandwich structure with a two-dimensional (2D) composite lattice core filled with ultra-lightweight sponge may be a better candidate of lightweight RASS than those with cellular foam or hexagonal honeycomb cores. The 2D Kagome lattice is found to outperform the square lattice with respect to radar absorbing. 展开更多
关键词 sandwich structure multi-objective optimization LIGHTWEIGHT radar absorbing failure mode
下载PDF
An Optimum Analysis Method of Sandwich Structures Made from Elastic-viscoelastic Materials
14
作者 陈应波 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期76-78,共3页
Due to a viscoelastic damping middle layer,sandwich structures have the capacity of energy consumption.In this paper,we describe the frequency-dependent property of viscoelastic materials using complex modulus model,a... Due to a viscoelastic damping middle layer,sandwich structures have the capacity of energy consumption.In this paper,we describe the frequency-dependent property of viscoelastic materials using complex modulus model,and iterative modal strain energy method and iterative complex eigenvalue method are presented to obtain frequency and loss factor of sandwich structures.The two methods are effective and exact for the large-scale complex composite sandwich structures.Then an optimum analysis method is suggested to apply to sandwich structures.Finally,as an example,an optimum analysis of a clamped-clamped sandwich beams is conducted,theoretical closed-form solution and numerical predictions are studied comparatively,and the results agree well. 展开更多
关键词 optimum analysis viscoelastic materials sandwich structures complex modulus model loss factor
下载PDF
Superplastic Forming and Diffusion Bonding for Sandwich Structure of Ti-6Al-4V Alloy
15
作者 Wenbo HAN, Kaifeng ZHANG, Guofeng WANG and Xiaojun ZHANGSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, ChinaProf., Ph.D., 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第1期60-62,共3页
Superplastic forming and diffusion bonding (SPF/DB) is a well-established process for the manufacture of components almost exclusively from Ti-6AI-4V sheet material. The sandwich structure of Ti-6AI-4V alloy is invest... Superplastic forming and diffusion bonding (SPF/DB) is a well-established process for the manufacture of components almost exclusively from Ti-6AI-4V sheet material. The sandwich structure of Ti-6AI-4V alloy is investigated. The effects of the microstructure on the SPF/DB process were discussed. The microstructure at the interfaces and the distribution of thickness were researched. 展开更多
关键词 Superplastic forming Diffusion bonding sandwich structure TI-6A1-4V alloy
下载PDF
Preparation and Characterization of Sandwich Structured Materials with Interesting Insulation and Fire Resistance
16
作者 Haizhu Wu Jinxing Li +5 位作者 Shouhu Bao Fuxian Yang Jun Zhang Hisham Essawy Guanben Du Xiaojian Zhou 《Journal of Renewable Materials》 SCIE EI 2022年第8期2029-2039,共11页
A cellular material in the form of 3-layered sandwich structure material was prepared via sole use of mechanical stirring without any use of a foaming agent,while Tween-80 was employed as a foam stabilizer via a devel... A cellular material in the form of 3-layered sandwich structure material was prepared via sole use of mechanical stirring without any use of a foaming agent,while Tween-80 was employed as a foam stabilizer via a developed in-situ mold casting.The resulting structure displayed a good appearance with no visual defects.The 3-layered composition of the sandwish structure,“nonporous resin layer-porous foam layer-nonporous resin layer”,was examined in terms of the microstructure,density&density distribution,pulverization ratio,mechanical strength,insulation and flame retardant performance.It was indicated from the results that the bonding between the resin layer and foam layer was tight,while the tensile rupture always occurred in the porous layer.Also,the density of the sandwich structure material was symmetrical with“saddle”distribution,and a uniform density for any given layer.The increase in the density at the interface layer provided a good interpretation for the tensile rupture never occurred at the interface.The brittleness resistance of the developed material was significantly improved,and the pulverization ratio was sharply decreased from 9.93%to 0.31%.The material acquired a thermal conductivity and limiting oxygen index(LOI)of 0.0241 W/m⋅K and 29.92%,respectively,indicating potential use of such materials broadly in fields of insulation and flame retardancy. 展开更多
关键词 Building materials tannin resin sandwich structure INSULATION fire resistance
下载PDF
Delamination Testing of AlSi10Mg Sandwich Structures with Pyramidal Lattice Truss Core made by Laser Powder Bed Fusion
17
作者 M.Nuño J.Bühring +1 位作者 M.N.Rao K.-U.Schröder 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期51-62,共12页
Sandwich structures possess a high bending stiffness compared to monolithic structures with a similar weight.This makes them very suitable for lightweight applications,where high stiffness to weight ratios are needed.... Sandwich structures possess a high bending stiffness compared to monolithic structures with a similar weight.This makes them very suitable for lightweight applications,where high stiffness to weight ratios are needed.Most common manufacturing methods of sandwich structures involve adhesive bonding of the core material with the sheets.However,adhesive bonding is prone to delamination,a failure mode that is often difficult to detect.This paper presents the results of delamination testing of fully additive manufactured(AM)AlSi10Mg sandwich structures with pyramidal lattice truss core using Laser Powder Bed Fusion(LPBF).The faces and struts are 0.5 mm thick,while the core is 2 mm thick.The inclination of the struts is 45°.To characterise the bonding strength,climbing drum peel tests and out-of-plane tensile tests are performed.Analytical formulas are derived to predict the expected failure loads and modes.The analytics and tests are supported by finite element(FE)calculations.From the analytic approach,design guidelines to avoid delamination in AM sandwich structures are derived.The study presents a critical face sheet thickness to strut diameter ratio for which the structure can delaminate.This ratio is mainly influenced by the inclination of the struts.The peel tests resulted in face yielding,which can also be inferred from the analytics and numerics.The out-of-plane tensile tests didn’t damage the structure. 展开更多
关键词 Additive Manufacturing sandwich structures Pyramidal Lattice Core
下载PDF
Electromagnetic analysis of GMI effect in sandwich structured films
18
作者 黄灿星 刘龙平 +1 位作者 赵振杰 马学鸣 《Journal of Shanghai University(English Edition)》 CAS 2006年第4期357-361,共5页
A model of giant magneto-impedance (GMI) effect in sandwich-structured film has been proposed based on the superposition principle of electromagnetic field. The expression of impedance is derived in the frames of el... A model of giant magneto-impedance (GMI) effect in sandwich-structured film has been proposed based on the superposition principle of electromagnetic field. The expression of impedance is derived in the frames of electrodynamics and ferromagnetism. Electromagnetic interaction between the inner layer and outer layer is discussed. Numerical simulation is conducted and the results show that the conductivity of the inner layer is much larger than that of the outer ferromagnetic layer. The skin effect and the maximum GMI effect of the sandwich film may appear at a much lower frequency compared to that of monofilm. The computational results agree with experimental data. 展开更多
关键词 GMI effect electromagnetic interaction sandwich structured film.
下载PDF
High Temperature Effect on Absorption Coefficient of M-MPPs and Sandwich Structures Coupled with MPPs
19
作者 Daliwa Joseph Bainamndi Emmanuel Siryabe +1 位作者 Serge Yamigno Doka Guy Edgar Ntamack 《Open Journal of Acoustics》 2020年第1期1-18,共18页
This paper addresses the effect of high temperature on absorption performance of sandwich material coupled with microperforated panels (MPPs) in multiple configurations using a finite element model (FEM) over a freque... This paper addresses the effect of high temperature on absorption performance of sandwich material coupled with microperforated panels (MPPs) in multiple configurations using a finite element model (FEM) over a frequency range from 10 to 3000 Hz. The structure is backed with a rigid wall which can either be Aluminium or Al-Alloy used in aeronautic or automobile. The wave propagation in porous media is addressed using Johnson Champoux Allard model (JCA). The FEM model developed using COMSOL Multiphysics software makes it possible to predict the acoustic absorption coefficient in multilayer microperforated panels (M-MPPs) and sandwich structure. It is shown that, when structures made by MPPs or sandwich materials are submitted to high temperature, the absorption performance of the structure is strongly modified in terms of amplitude and width of the bandgap. For application in sever environment (noise reduction in engines aircrafts), Temperature is one of the parameters that will most influence the absorption performance of the structure. However, for application in the temperature domain smaller than 50?C (automotive applications for example), the effect of temperature is not significant on absorption performance of the structure. 展开更多
关键词 Absorption Coefficient Finite Element Model Microperforated Plates Poroelastic Core sandwich structures
下载PDF
Stress Concentration around the Embedding of the Honeycomb Sandwich Structure
20
作者 SHI Xiao-fei XI Ping +1 位作者 SONG Yu-wang SHI Xiao-juan 《Computer Aided Drafting,Design and Manufacturing》 2015年第3期60-65,共6页
Honeycomb structures and other sandwich materials are being used as designs which have demanded high-stiffness and lightweight structures. The embedding design can further decrease the total weight of the products. Em... Honeycomb structures and other sandwich materials are being used as designs which have demanded high-stiffness and lightweight structures. The embedding design can further decrease the total weight of the products. Embedding will inevitably generate defect of the honeycomb and cause stress concentration. This study mainly discusses the tensile stress distribution near the defect in a quantitative way with the finite element and analytical method. The prediction function of the stress distribution is proposed. X and y directional stress distribution properties are found. These results are proved to be validate through a representative defect case. The bending stress distribution is investigated through material mechanics method and the prediction equation of the maximum bending stress is given. 展开更多
关键词 honeycomb sandwich structure stress concentration DEFECT finite element method
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部