Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal re...Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.展开更多
In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signal...In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signals make the receiving ability of the signal receiver worse, the signal processing ability weaker,and the anti-interference ability of the communication system lower. Aiming at the above problems, to save communication resources and improve communication efficiency, and considering the irregularity of interference signals, the underdetermined blind separation technology can effectively deal with the problem of interference sensing and signal reconstruction in this scenario. In order to improve the stability of source signal separation and the security of information transmission, a greedy optimization algorithm can be executed. At the same time, to improve network information transmission efficiency and prevent algorithms from getting trapped in local optima, delete low-energy points during each iteration process. Ultimately, simulation experiments validate that the algorithm presented in this paper enhances both the transmission efficiency of the network transmission system and the security of the communication system, achieving the process of interference sensing and signal reconstruction in the LEO satellite communication system.展开更多
A newalgorithm, called Magnitude Cut, to recover a signal from its phase in the transform domain, is proposed.First, the recovery problem is converted to an equivalent convex optimization problem, and then it is solve...A newalgorithm, called Magnitude Cut, to recover a signal from its phase in the transform domain, is proposed.First, the recovery problem is converted to an equivalent convex optimization problem, and then it is solved by the block coordinate descent( BCD) algorithm and the interior point algorithm. Finally, the one-dimensional and twodimensional signal reconstructions are implemented and the reconstruction results under the Fourier transform with a Gaussian random mask( FTGM), the Cauchy wavelets transform( CWT), the Fourier transform with a binary random mask( FTBM) and the Gaussian random transform( GRT) are also comparatively analyzed. The analysis results reveal that the M agnitude Cut method can reconstruct the original signal with the phase information of different transforms; and it needs less phase information to recover the signal from the phase of the FTGM or GRT than that of FTBM or CWT under the same reconstruction error.展开更多
The signal processing problem has become increasingly complex and demand high acquisition system,this paper proposes a new method to reconstruct the structure phased array structural health monitoring signal.The metho...The signal processing problem has become increasingly complex and demand high acquisition system,this paper proposes a new method to reconstruct the structure phased array structural health monitoring signal.The method is derived from the compressive sensing theory and the signal is reconstructed by using the basis pursuit algorithm to process the ultrasonic phased array signals.According to the principles of the compressive sensing and signal processing method,non-sparse ultrasonic signals are converted to sparse signals by using sparse transform.The sparse coefficients are obtained by sparse decomposition of the original signal,and then the observation matrix is constructed according to the corresponding sparse coefficients.Finally,the original signal is reconstructed by using basis pursuit algorithm,and error analysis is carried on.Experimental research analysis shows that the signal reconstruction method can reduce the signal complexity and required the space efficiently.展开更多
For solving the issues of the signal reconstruction of nonlinear non-Gaussian signals in wireless sensor networks (WSNs), a new signal reconstruction algorithm based on a cubature Kalman particle filter (CKPF) is ...For solving the issues of the signal reconstruction of nonlinear non-Gaussian signals in wireless sensor networks (WSNs), a new signal reconstruction algorithm based on a cubature Kalman particle filter (CKPF) is proposed in this paper. We model the reconstruction signal first and then use the CKPF to estimate the signal. The CKPF uses a cubature Kalman filter (CKF) to generate the importance proposal distribution of the particle filter and integrates the latest observation, which can approximate the true posterior distribution better. It can improve the estimation accuracy. CKPF uses fewer cubature points than the unscented Kalman particle filter (UKPF) and has less computational overheads. Meanwhile, CKPF uses the square root of the error covariance for iterating and is more stable and accurate than the UKPF counterpart. Simulation results show that the algorithm can reconstruct the observed signals quickly and effectively, at the same time consuming less computational time and with more accuracy than the method based on UKPF.展开更多
The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 H...The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 Hz often exhibit upward warping in data,making geophysical inversion and interpretation challenging.The cumulative error of the crystal oscillator in signal transmission and acquisition contributes to an upturned apparent resistivity curve.To address this,a high-frequency information extraction method is proposed based on time-domain signal reconstruction,which helps to record a complete current data sequence;moreover,it helps estimate the crystal oscillator error for the transmitted signal.Considering the recorded error,a received signal was corrected using a set of reconstruction algorithms.After processing,the high-frequency component of the wide-field electromagnetic data was not upturned,while accurate high-frequency information was extracted from the signal.Therefore,the proposed method helped effectively extract high-frequency components of all wide-field electromagnetic data.展开更多
Signal reconstruction is a significantly important theoretical issue for compressed sensing.Considering the situation of signal reconstruction with unknown sparsity,the conventional signal reconstruction algorithms us...Signal reconstruction is a significantly important theoretical issue for compressed sensing.Considering the situation of signal reconstruction with unknown sparsity,the conventional signal reconstruction algorithms usually perform low accuracy.In this work,a sparsity adaptive signal reconstruction algorithm using sensing dictionary is proposed to achieve a lower reconstruction error.The sparsity estimation method is combined with the construction of the support set based on sensing dictionary.Using the adaptive sparsity method,an iterative signal reconstruction algorithm is proposed.The sufficient conditions for the exact signal reconstruction of the algorithm also is proved by theory.According to a series of simulations,the results show that the proposed method has higher precision compared with other state-of-the-art signal reconstruction algorithms especially in a high compression ratio scenarios.展开更多
Finite rate of innovation sampling is a novel sub-Nyquist sampling method that can reconstruct a signal from sparse sampling data.The application of this method in ultrasonic testing greatly reduces the signal samplin...Finite rate of innovation sampling is a novel sub-Nyquist sampling method that can reconstruct a signal from sparse sampling data.The application of this method in ultrasonic testing greatly reduces the signal sampling rate and the quantity of sampling data.However,the pulse number of the signal must be known beforehand for the signal reconstruction procedure.The accuracy of this prior information directly affects the accuracy of the estimated parameters of the signal and influences the assessment of flaws,leading to a lower defect detection ratio.Although the pulse number can be pre-given by theoretical analysis,the process is still unable to assess actual complex random orientation defects.Therefore,this paper proposes a new method that uses singular value decomposition(SVD) for estimating the pulse number from sparse sampling data and avoids the shortcoming of providing the pulse number in advance for signal reconstruction.When the sparse sampling data have been acquired from the ultrasonic signal,these data are transformed to discrete Fourier coefficients.A Hankel matrix is then constructed from these coefficients,and SVD is performed on the matrix.The decomposition coefficients reserve the information of the pulse number.When the decomposition coefficients generated by noise according to noise level are removed,the number of the remaining decomposition coefficients is the signal pulse number.The feasibility of the proposed method was verified through simulation experiments.The applicability was tested in ultrasonic experiments by using sample flawed pipelines.Results from simulations and real experiments demonstrated the efficiency of this method.展开更多
Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small...Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small(LSS)target detection,a novel frequency domain block joint equalization algorithm is presented in this article.From the DTMB signal frame structure and channel multipath transmission characteristics,this article adopts a unconventional approach where the delay and frame structure of each DTMB signal frame are reconfigured to create a circular convolution block,facilitating concurrent fast Fourier transform(FFT)calculations.Following equalization,an inverse fast Fourier transform(IFFT)-based joint output and subsequent data reordering are executed to finalize the equalization process for the DTMB signal.Simulation and measured data confirm that this algorithm outperforms conventional techniques by reducing signal errors rate and enhancing real-time processing.In passive radar LSS detection,it effectively suppresses multipath and noise through frequency domain equalization,reducing false alarms and improving the capabilities of weak target detection.展开更多
This paper deals with the problem of clutter suppression in spaceborne distributed synthetic aperture radar (D-SAR) with nonuniform three-dimensional (3D) configuration geometry. In order to make a breakthrough of...This paper deals with the problem of clutter suppression in spaceborne distributed synthetic aperture radar (D-SAR) with nonuniform three-dimensional (3D) configuration geometry. In order to make a breakthrough of the configuration limitation of the traditional space time adaptive processing (STAP) based on uniform array and improve the inhomogeneous clutter suppres- sion performance, this paper considers signal reconstrtiction technique using array interpolation to process the D-SAR signal. An array interpolation signal reconstruction method based on pitching-partition is derived then a signal reconstruction 3D-STAP clutter suppression method applied to nonuniform 3D configuration is proposed. In particular, the proposed method is compared with conventional methods and the performance analysis is carried out based on simulations. The improvement factor (IF) for clutter suppression is imported and reported as a benchmark on the clutter suppression effect.展开更多
Least squares support vector machines (LS-SVMs) are modified support vector machines (SVMs) that involve equality constraints and work with a least squares cost function, which simplifies the optimization procedure. I...Least squares support vector machines (LS-SVMs) are modified support vector machines (SVMs) that involve equality constraints and work with a least squares cost function, which simplifies the optimization procedure. In this paper, a novel training algorithm based on total least squares (TLS) for an LS-SVM is presented and applied to multifunctional sensor signal reconstruction. For three different nonlinearities of a multifunctional sensor model, the reconstruction accuracies of input signals are 0.001 36%, 0.031 84% and 0.504 80%, respectively. The experimental results demonstrate the higher reliability and accuracy of the proposed method for multifunctional sensor signal reconstruction than the original LS-SVM training algorithm, and verify the feasibility and stability of the proposed method.展开更多
For the direction of arrival(DOA) estimation,traditional sparse reconstruction methods for wideband signals usually need many iteration times.For this problem,a new method for two-dimensional wideband signals based ...For the direction of arrival(DOA) estimation,traditional sparse reconstruction methods for wideband signals usually need many iteration times.For this problem,a new method for two-dimensional wideband signals based on block sparse reconstruction is proposed.First,a prolate spheroidal wave function(PSWF) is used to fit the wideband signals,then the block sparse reconstruction technology is employed for DOA estimation.The proposed method uses orthogonalization to choose the matching atoms,ensuring that the residual components correspond to the minimum absolute value.Meanwhile,the vectors obtained by iteration are back-disposed according to the corresponding atomic matching rules,so the extra atoms are abandoned in the course of iteration,and the residual components of current iteration are reduced.Thus the original sparse signals are reconstructed.The proposed method reduces iteration times comparing with the traditional reconstruction methods,and the estimation precision is better than the classical two-sided correlation transformation(TCT)algorithm when the snapshot is small or the signal-to-noise ratio(SNR) is low.展开更多
Conventional Synthetic Aperture Radar (SAR) systems cannot obtain high-resolution and wide-swath illumination area due to the well-known minimum antenna area constraint. Single Phase Center MultiBeam (SPCMB) technique...Conventional Synthetic Aperture Radar (SAR) systems cannot obtain high-resolution and wide-swath illumination area due to the well-known minimum antenna area constraint. Single Phase Center MultiBeam (SPCMB) technique can overcome this limitation by adding spatial sampling through multiple receivers in azimuth direction. Unfortunately, this approach will lead to an increase of azimuth ambiguities (interbeam ambiguities), because each receive beam’s mainlobe overlaps with the other ones’ sidelobes. This paper proves that the front part of SPCMB SAR systems can be considered to be a hybrid filterbank. Therefore, the azimuth signal can be reconstructed and the interbeam am- biguities can be effectively suppressed by a well-designed hybrid filterbank.展开更多
To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-t...To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-the-art greedy algorithms, the proposed algorithm incorporates the restricted isometry property and variable step-size, which is utilized for sparsity estimation and reduces the reconstruction time, respectively. Based on the sparsity estimation, the initial value including sparsity level and support set is computed at the beginning of the reconstruction, which provides preliminary sparsity information for signal reconstruction. Then, the residual and correlation are calculated according to the initial value and the support set is refined at the next iteration associated with variable step-size and backtracking. Finally, the correct support set is obtained when the halting condition is reached and the original signal is reconstructed accurately. The simulation results demonstrate that the proposed algorithm improves the recovery performance and considerably outperforms the existing algorithm in terms of the running time in sparse signal reconstruction.展开更多
Sampling is a bridge between continuous-time and discrete-time signals,which is import-ant to digital signal processing.The fractional Fourier transform(FrFT)that serves as a generaliz-ation of the FT can characterize...Sampling is a bridge between continuous-time and discrete-time signals,which is import-ant to digital signal processing.The fractional Fourier transform(FrFT)that serves as a generaliz-ation of the FT can characterize signals in multiple fractional Fourier domains,and therefore can provide new perspectives for signal sampling and reconstruction.In this paper,we review recent de-velopments of the sampling theorem associated with the FrFT,including signal reconstruction and fractional spectral analysis of uniform sampling,nonuniform samplings due to various factors,and sub-Nyquist sampling,where bandlimited signals in the fractional Fourier domain are mainly taken into consideration.Moreover,we provide several future research topics of the sampling theorem as-sociated with the FrFT.展开更多
A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomne...A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs.展开更多
基金supported by the National Key R&D Program of China(No.2022YFA1602201)the international partnership program of the Chinese Academy of Sciences(No.211134KYSB20200057).
文摘Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.
基金supported by National Natural Science Foundation of China (62171390)Central Universities of Southwest Minzu University (ZYN2022032,2023NYXXS034)the State Scholarship Fund of the China Scholarship Council (NO.202008510081)。
文摘In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signals make the receiving ability of the signal receiver worse, the signal processing ability weaker,and the anti-interference ability of the communication system lower. Aiming at the above problems, to save communication resources and improve communication efficiency, and considering the irregularity of interference signals, the underdetermined blind separation technology can effectively deal with the problem of interference sensing and signal reconstruction in this scenario. In order to improve the stability of source signal separation and the security of information transmission, a greedy optimization algorithm can be executed. At the same time, to improve network information transmission efficiency and prevent algorithms from getting trapped in local optima, delete low-energy points during each iteration process. Ultimately, simulation experiments validate that the algorithm presented in this paper enhances both the transmission efficiency of the network transmission system and the security of the communication system, achieving the process of interference sensing and signal reconstruction in the LEO satellite communication system.
基金The National Natural Science Foundation of China(No.6120134461271312+7 种基金11301074)the Specialized Research Fund for the Doctoral Program of Higher Education(No.2011009211002320120092120036)the Program for Special Talents in Six Fields of Jiangsu Province(No.DZXX-031)the Natural Science Foundation of Jiangsu Province(No.BK2012329BK2012743)the United Creative Foundation of Jiangsu Province(No.BY2014127-11)the"333"Project(No.BRA2015288)
文摘A newalgorithm, called Magnitude Cut, to recover a signal from its phase in the transform domain, is proposed.First, the recovery problem is converted to an equivalent convex optimization problem, and then it is solved by the block coordinate descent( BCD) algorithm and the interior point algorithm. Finally, the one-dimensional and twodimensional signal reconstructions are implemented and the reconstruction results under the Fourier transform with a Gaussian random mask( FTGM), the Cauchy wavelets transform( CWT), the Fourier transform with a binary random mask( FTBM) and the Gaussian random transform( GRT) are also comparatively analyzed. The analysis results reveal that the M agnitude Cut method can reconstruct the original signal with the phase information of different transforms; and it needs less phase information to recover the signal from the phase of the FTGM or GRT than that of FTBM or CWT under the same reconstruction error.
基金This project is supported by the National Natural Science Foundation of China(Grant No.51305211)Natural Science Foundation of Jiangsu(Grant No.BK20160955)Jiangsu Government Scholarship for Overseas Studies,College students practice and innovation training project of Jiangsu province(Grant No.201710300218),and the PAPD。
文摘The signal processing problem has become increasingly complex and demand high acquisition system,this paper proposes a new method to reconstruct the structure phased array structural health monitoring signal.The method is derived from the compressive sensing theory and the signal is reconstructed by using the basis pursuit algorithm to process the ultrasonic phased array signals.According to the principles of the compressive sensing and signal processing method,non-sparse ultrasonic signals are converted to sparse signals by using sparse transform.The sparse coefficients are obtained by sparse decomposition of the original signal,and then the observation matrix is constructed according to the corresponding sparse coefficients.Finally,the original signal is reconstructed by using basis pursuit algorithm,and error analysis is carried on.Experimental research analysis shows that the signal reconstruction method can reduce the signal complexity and required the space efficiently.
基金supported by the National Natural Science Foundation of China(Grant No.60872123)the Joint Fund of the National Natural Science Foundation andthe Guangdong Provincial Natural Science Foundation,China(Grant No.U0835001)+2 种基金the Fundamental Research Funds for the Central Universities of Ministryof Education of China(Grant No.2012ZM0025)the South China University of Technology,Chinathe Fund for Higher-level Talent in GuangdongProvince,China(Grant No.N9101070)
文摘For solving the issues of the signal reconstruction of nonlinear non-Gaussian signals in wireless sensor networks (WSNs), a new signal reconstruction algorithm based on a cubature Kalman particle filter (CKPF) is proposed in this paper. We model the reconstruction signal first and then use the CKPF to estimate the signal. The CKPF uses a cubature Kalman filter (CKF) to generate the importance proposal distribution of the particle filter and integrates the latest observation, which can approximate the true posterior distribution better. It can improve the estimation accuracy. CKPF uses fewer cubature points than the unscented Kalman particle filter (UKPF) and has less computational overheads. Meanwhile, CKPF uses the square root of the error covariance for iterating and is more stable and accurate than the UKPF counterpart. Simulation results show that the algorithm can reconstruct the observed signals quickly and effectively, at the same time consuming less computational time and with more accuracy than the method based on UKPF.
基金Project(42004056)supported by the National Natural Science Foundation of ChinaProject(ZR2020QD052)supported by the Natural Science Foundation of Shandong Province,ChinaProject(2019YFC0604902)supported by the National Key Research and Development Program of China。
文摘The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 Hz often exhibit upward warping in data,making geophysical inversion and interpretation challenging.The cumulative error of the crystal oscillator in signal transmission and acquisition contributes to an upturned apparent resistivity curve.To address this,a high-frequency information extraction method is proposed based on time-domain signal reconstruction,which helps to record a complete current data sequence;moreover,it helps estimate the crystal oscillator error for the transmitted signal.Considering the recorded error,a received signal was corrected using a set of reconstruction algorithms.After processing,the high-frequency component of the wide-field electromagnetic data was not upturned,while accurate high-frequency information was extracted from the signal.Therefore,the proposed method helped effectively extract high-frequency components of all wide-field electromagnetic data.
基金supported by the National Natural Science Foundation of China(61773202,71874081)the Special Financial Grant from China Postdoctoral Science Foundation(2017T100366)+2 种基金the Key Laboratory of Avionics System Integrated Technology for National Defense Science and Technology,China Institute of Avionics Radio Electronics(6142505180407)the Open Fund of CAAC Key laboratory of General Aviation Operation,Civil Aviation Management Institute of China(CAMICKFJJ-2019-04)the Innovation Project of the Civil Aviation Administration of China(EAB19001)。
文摘Signal reconstruction is a significantly important theoretical issue for compressed sensing.Considering the situation of signal reconstruction with unknown sparsity,the conventional signal reconstruction algorithms usually perform low accuracy.In this work,a sparsity adaptive signal reconstruction algorithm using sensing dictionary is proposed to achieve a lower reconstruction error.The sparsity estimation method is combined with the construction of the support set based on sensing dictionary.Using the adaptive sparsity method,an iterative signal reconstruction algorithm is proposed.The sufficient conditions for the exact signal reconstruction of the algorithm also is proved by theory.According to a series of simulations,the results show that the proposed method has higher precision compared with other state-of-the-art signal reconstruction algorithms especially in a high compression ratio scenarios.
基金Supported by the National Natural Science Foundation of China(Grant No.51375217)
文摘Finite rate of innovation sampling is a novel sub-Nyquist sampling method that can reconstruct a signal from sparse sampling data.The application of this method in ultrasonic testing greatly reduces the signal sampling rate and the quantity of sampling data.However,the pulse number of the signal must be known beforehand for the signal reconstruction procedure.The accuracy of this prior information directly affects the accuracy of the estimated parameters of the signal and influences the assessment of flaws,leading to a lower defect detection ratio.Although the pulse number can be pre-given by theoretical analysis,the process is still unable to assess actual complex random orientation defects.Therefore,this paper proposes a new method that uses singular value decomposition(SVD) for estimating the pulse number from sparse sampling data and avoids the shortcoming of providing the pulse number in advance for signal reconstruction.When the sparse sampling data have been acquired from the ultrasonic signal,these data are transformed to discrete Fourier coefficients.A Hankel matrix is then constructed from these coefficients,and SVD is performed on the matrix.The decomposition coefficients reserve the information of the pulse number.When the decomposition coefficients generated by noise according to noise level are removed,the number of the remaining decomposition coefficients is the signal pulse number.The feasibility of the proposed method was verified through simulation experiments.The applicability was tested in ultrasonic experiments by using sample flawed pipelines.Results from simulations and real experiments demonstrated the efficiency of this method.
文摘Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small(LSS)target detection,a novel frequency domain block joint equalization algorithm is presented in this article.From the DTMB signal frame structure and channel multipath transmission characteristics,this article adopts a unconventional approach where the delay and frame structure of each DTMB signal frame are reconfigured to create a circular convolution block,facilitating concurrent fast Fourier transform(FFT)calculations.Following equalization,an inverse fast Fourier transform(IFFT)-based joint output and subsequent data reordering are executed to finalize the equalization process for the DTMB signal.Simulation and measured data confirm that this algorithm outperforms conventional techniques by reducing signal errors rate and enhancing real-time processing.In passive radar LSS detection,it effectively suppresses multipath and noise through frequency domain equalization,reducing false alarms and improving the capabilities of weak target detection.
基金2011 China Aerospace Science and Technology Corporation Aerospace Science and Technology Innovation Foundation Subsidized Project2011 CASC and HIT Joint Technology Innovation Foundation
文摘This paper deals with the problem of clutter suppression in spaceborne distributed synthetic aperture radar (D-SAR) with nonuniform three-dimensional (3D) configuration geometry. In order to make a breakthrough of the configuration limitation of the traditional space time adaptive processing (STAP) based on uniform array and improve the inhomogeneous clutter suppres- sion performance, this paper considers signal reconstrtiction technique using array interpolation to process the D-SAR signal. An array interpolation signal reconstruction method based on pitching-partition is derived then a signal reconstruction 3D-STAP clutter suppression method applied to nonuniform 3D configuration is proposed. In particular, the proposed method is compared with conventional methods and the performance analysis is carried out based on simulations. The improvement factor (IF) for clutter suppression is imported and reported as a benchmark on the clutter suppression effect.
基金the National Natural Science Foundation of China (Nos. 60772007 and 60672008)China Postdoctoral Sci-ence Foundation (No. 20070410258)
文摘Least squares support vector machines (LS-SVMs) are modified support vector machines (SVMs) that involve equality constraints and work with a least squares cost function, which simplifies the optimization procedure. In this paper, a novel training algorithm based on total least squares (TLS) for an LS-SVM is presented and applied to multifunctional sensor signal reconstruction. For three different nonlinearities of a multifunctional sensor model, the reconstruction accuracies of input signals are 0.001 36%, 0.031 84% and 0.504 80%, respectively. The experimental results demonstrate the higher reliability and accuracy of the proposed method for multifunctional sensor signal reconstruction than the original LS-SVM training algorithm, and verify the feasibility and stability of the proposed method.
基金supported by the National Natural Science Foundation of China(6150117661201399)+1 种基金the Education Department of Heilongjiang Province Science and Technology Research Projects(12541638)the Developing Key Laboratory of Sensing Technology and Systems in Cold Region of Heilongjiang Province and Ministry of Education,(Heilongjiang University),P.R.China(P201408)
文摘For the direction of arrival(DOA) estimation,traditional sparse reconstruction methods for wideband signals usually need many iteration times.For this problem,a new method for two-dimensional wideband signals based on block sparse reconstruction is proposed.First,a prolate spheroidal wave function(PSWF) is used to fit the wideband signals,then the block sparse reconstruction technology is employed for DOA estimation.The proposed method uses orthogonalization to choose the matching atoms,ensuring that the residual components correspond to the minimum absolute value.Meanwhile,the vectors obtained by iteration are back-disposed according to the corresponding atomic matching rules,so the extra atoms are abandoned in the course of iteration,and the residual components of current iteration are reduced.Thus the original sparse signals are reconstructed.The proposed method reduces iteration times comparing with the traditional reconstruction methods,and the estimation precision is better than the classical two-sided correlation transformation(TCT)algorithm when the snapshot is small or the signal-to-noise ratio(SNR) is low.
基金supported by the National Natural Science Foundation of China(1127301761401207+2 种基金6147119661501240)the College Graduate Scientific Research Innovation Fund in Jiangsu Province of China(KYLX16_0447)
文摘Conventional Synthetic Aperture Radar (SAR) systems cannot obtain high-resolution and wide-swath illumination area due to the well-known minimum antenna area constraint. Single Phase Center MultiBeam (SPCMB) technique can overcome this limitation by adding spatial sampling through multiple receivers in azimuth direction. Unfortunately, this approach will lead to an increase of azimuth ambiguities (interbeam ambiguities), because each receive beam’s mainlobe overlaps with the other ones’ sidelobes. This paper proves that the front part of SPCMB SAR systems can be considered to be a hybrid filterbank. Therefore, the azimuth signal can be reconstructed and the interbeam am- biguities can be effectively suppressed by a well-designed hybrid filterbank.
基金The National Basic Research Program of China(973Program)(No.2013CB329003)
文摘To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-the-art greedy algorithms, the proposed algorithm incorporates the restricted isometry property and variable step-size, which is utilized for sparsity estimation and reduces the reconstruction time, respectively. Based on the sparsity estimation, the initial value including sparsity level and support set is computed at the beginning of the reconstruction, which provides preliminary sparsity information for signal reconstruction. Then, the residual and correlation are calculated according to the initial value and the support set is refined at the next iteration associated with variable step-size and backtracking. Finally, the correct support set is obtained when the halting condition is reached and the original signal is reconstructed accurately. The simulation results demonstrate that the proposed algorithm improves the recovery performance and considerably outperforms the existing algorithm in terms of the running time in sparse signal reconstruction.
基金supported by the National Natural Science Foundation of China(6107116361071164+5 种基金6147119161501233)the Fundamental Research Funds for the Central Universities(NP2014504)the Aeronautical Science Foundation(20152052026)the Electronic & Information School of Yangtze University Innovation Foundation(2016-DXCX-05)the Priority Academic Program Development of Jiangsu Higher Education Institutions
基金supported in part by the National Natural Foundation of China(NSFC)(Nos.62027801 and U1833203)the Beijing Natural Science Foundation(No.L191004).
文摘Sampling is a bridge between continuous-time and discrete-time signals,which is import-ant to digital signal processing.The fractional Fourier transform(FrFT)that serves as a generaliz-ation of the FT can characterize signals in multiple fractional Fourier domains,and therefore can provide new perspectives for signal sampling and reconstruction.In this paper,we review recent de-velopments of the sampling theorem associated with the FrFT,including signal reconstruction and fractional spectral analysis of uniform sampling,nonuniform samplings due to various factors,and sub-Nyquist sampling,where bandlimited signals in the fractional Fourier domain are mainly taken into consideration.Moreover,we provide several future research topics of the sampling theorem as-sociated with the FrFT.
基金supported by the National Natural Science Foundation of China(61307121)ABRP of Datong(2017127)the Ph.D.’s Initiated Research Projects of Datong University(2013-B-17,2015-B-05)
文摘A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs.