Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration ...Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration of DA as hard segments into the PU molecular chain.The effects of DA content(φ)on the mechanical properties,thermal stability,and hydrophobicity of PU,both before and after the addition of KH550,were thoroughly examined.The results of microscopic mechanism analysis confirmed that KH550 chemically modified the surface of DA,facilitating its incorporation into the polyurethane molecular chain,thereby significantly enhancing the compatibility and dispersion of DA within the PU matrix.When the mass fraction of modified DA(MDA)reached 12%,the mechanical properties,thermal stability,and hydrophobicity of the composites were substantially improved,with the tensile strength reaching 14.9 MPa,and the contact angle measuring 100.6°.展开更多
An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,an...An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,and film-forming mechanism of dodecyltrime-thoxysilane(DTMS)/tetraethoxysilane(TEOS)silane films were comprehensively analyzed using Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).Based on the test results,it can be determined that this film has a superhydrophobic property with a hydrophobicity angle of 152°.This special property can be attributed to the long alkyl chains in the DTMS molecule,the rough morphology,and the low surface energy of the DTMS/TEOS silane film.The surface of sintered NdFeB is coated with a layered three-dimensional network silane film that forms through the condensation of silanol substances.This film provides excellent corrosion resistance to the sintered NdFeB substrate,reducing its corrosion current density to 2.02×10~(-6)A/cm~2.Moreover,the impact of film on the magnetic characteristics of sintered NdFeB was assessed and found to be minimal.展开更多
Incorporation of higher content Si anode material beyond 5 wt% to Li-ion batteries(LIBs)is challenging,owing to large volume change,swelling,and solid electrolyte interphase(SEI)instability issues.Herein,a strategy of...Incorporation of higher content Si anode material beyond 5 wt% to Li-ion batteries(LIBs)is challenging,owing to large volume change,swelling,and solid electrolyte interphase(SEI)instability issues.Herein,a strategy of diacetoxydimethylsilane(DAMS)additive-directed SEI stabilization is proposed for a stable operation of Si-0.33FeSi_(2)(named as Si-Fe)anode without graphite,which provides siloxane inorganics and organics enrichment that compensate insufficient passivation of fluoroethylene carbonate(FEC)additive and reduce a dependence on FEC.Unprecedented stable cycling performance of highly loaded(3.5 mA h cm^(-2))pure Si-Fe anode is achieved with 2 wt%DAMS combined with 9 wt%FEC additives under ambient pressure,yielding high capacity 1270 mA h g^(-1)at 0.5 C and significantly improved capacity retention of 81% after 100 cycles,whereas short circuit and rapid capacity fade occur with FEC only additive.DAMS-directed robust SEI layer dramatically suppresses swelling and particles crossover through separator,and therefore prevents short circuit,demonstrating a possible operation of pure Si or Sidominant anodes in the next-generation high-energy-density and safe LIBs.展开更多
Eco-friendly and biodegradable novel hydrogel were prepared by blending and solution casting method. The designed hydrogel is based on chitosan/ PEG600/Gurgam with carbon nanofiller along silane crosslinked (TEOS) wit...Eco-friendly and biodegradable novel hydrogel were prepared by blending and solution casting method. The designed hydrogel is based on chitosan/ PEG600/Gurgam with carbon nanofiller along silane crosslinked (TEOS) with pH sensitive response to controlled release of drug in biomedical materials and agriculture industry. The various concentration of carbon nanofiller is used to analyze its effect on the fabricated hydrogel characteristics by using FTIR, SEM, TGA, swelling studies (water, buffer and ionic solution). Spectra of FTIR reflected both established and newly developed groups (like hydrogel). COOH group presence is clearly observed in this range in the carbon filler reinforced hydrogel. The SEM micrographs show that CPG0.003 had a collection of polysaccharide chains as thin helices, which is attributed to the increase in the size of porosity. TGA shows to increase concentration of nanofiller enhanced the thermal stability of the designed hydrogels at temperature 25˚C to 550˚C mass loss percentage decrease upto 20% and increase thermal stability. This pH response made these resultant hydrogels as fruitful competitor against the many reported controlled release application.展开更多
A flame retardant containing multiple antiflaming elements usually exhibits high-efficient flame retardancy. Here, a novel P/N/Si-containing ammonium polyphosphate derivative(APTES-APP) is synthesized from ammonium po...A flame retardant containing multiple antiflaming elements usually exhibits high-efficient flame retardancy. Here, a novel P/N/Si-containing ammonium polyphosphate derivative(APTES-APP) is synthesized from ammonium polyphosphate(APP) and silane coupling agent(3-aminopropyl)triethoxysilane(APTES)via cation exchange, which is quite different in the chemical structure from APTES-modified APP for retaining silicon hydroxyls. APTES-APP is highly efficient for the epoxy resin. 8%(mass) APTES-APP imparts excellent flame retardancy to the epoxy resin, with a V-0 rating at the UL-94 test(1.6 mm)and an LOI value of 26%(vol). The peak heat release rate and total smoke production of the flameretardant epoxy resin are decreased by 68.1% and 31.3%, respectively. The synergy of P/N/Si contributes to the well-expanded char residue with a strong and dense surface layer, which is a very good barrier against heat and mass transfer. Besides, there is no significant deterioration in the mechanical properties of flame-retardant epoxy resin thanks to silicon hydroxyls forming hydrogen bonds with epoxy molecules. Meanwhile, other molecules can be grafted onto APTES-APP via these silicon hydroxyls, if needed.Briefly, this work has developed a new strategy for amino silane as flame retardants. In conjunction with a low-cost and simple preparation method, APTES-APP has a promising prospect in the high-performance flame-retardant epoxy.展开更多
The purpose of this study is to investigate the effect of the concentration of silane coupling solution on the tensile strength of basalt fiber and the interfacial properties of basalt fiber reinforced polymer composi...The purpose of this study is to investigate the effect of the concentration of silane coupling solution on the tensile strength of basalt fiber and the interfacial properties of basalt fiber reinforced polymer composites.The surface treatment of basalt fibers was carried out using an aqueous alcohol solution method.Basalt fibers were subjected to surface treatment with 3-Methacryloxypropyl trimethoxy silane at 0.5 wt.%,1 wt.%,2 wt.%,4 wt.%and 10 wt.%.The basalt monofilament tensile tests were carried out to investigate the variation in strength with the concentration of the silane coupling agent.The microdroplet test was performed to examine the effect of the concentration of the silane coupling agent on interfacial strength of basalt reinforced polymer composites.The film was formed on the surface of the basalt fiber treated silane coupling agent solution.The tensile strength of basalt fiber increased because the damaged fiber surface was repaired by the firm of silane coupling agent.The firm was effective in not only the surface protection of basalt fiber but also the improvement on the interfacial strength of fiber-matrix interface.However,the surface treatment using the high concentration silane coupling agent solution has an adverse effect on the mechanical properties of the composite materials,because of causing the degradation of the interfacial strength of the composite materials.展开更多
Silane terminated prepolymers for adhesives, sealants and coatings are of </span></span><span><span><span style="font-family:"">great <span>industrial importance. The...Silane terminated prepolymers for adhesives, sealants and coatings are of </span></span><span><span><span style="font-family:"">great <span>industrial importance. They are very important because of their low toxicity</span><span> over polyurethanes, silicones, and solvent-based products. Hence</span>, many pieces of literature which deal with the synthesis, properties and applications of this Si<span>lane terminated polymers hybrid system exist. Silylated polyether (MS polymers) </span>and Silylated Polyurethane Polymers (SPUR) are the bases for nu<span>merous sealants, adhesives and coatings used worldwide. A hybrid system mixed with </span><span>organic-polyurethane proportion and inorganic-alkoxysilane proportion</span> <span>com</span>bines the benefits of conventional polyurethane and silicone-based products.<span> This article reviews the chemistry of MS polymers and SPUR and their</span> <span>ad</span><span>vantages and disadvantages in silyl terminated prepolymer-based adhesives</span>, sea<span>lants and coatings as well as provides information on different end applications.展开更多
Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonat...Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonate coupled with silane grafted polypropylene (PP-g-Si) were made, their mechanical properties and thermal properties were investigated, respectively. Results As compared with the non-coupled composites, the mechanical properties of PP/Ta/PP-g-Si composites were improved to some extent, though the values of tensile modulus and the strain at peak were decreased. But for PP/BaSO4 and PP/CaCO3 composites, the values of their mechanical properties varied slightly or even decreased with increasing PP-g-Si content within the experimental component. Meanwhile, PP-g-Si also affected the melting and crystallization behavior of PP in the composites. Conclusion PP-g-Si offers compatibilization in PP/Ta composites, but offers no-compatibilization in PP/BaSO4 and PP/CaCO3 composites within the extent of the present range of PP-g-Si, which shows that PP-g-Si can be used as the macromolecular coupling agent of PP and Ta composite.展开更多
An acrylate emulsion was modified by adding vinyltriisopropoxy silane (trade name C-1706). By adding the multiple emulsifier which consists of an anionic emulsifier, sodium dodecyl benzene sulfonate (SDBS) and non...An acrylate emulsion was modified by adding vinyltriisopropoxy silane (trade name C-1706). By adding the multiple emulsifier which consists of an anionic emulsifier, sodium dodecyl benzene sulfonate (SDBS) and nonionic emulsifier, octyl phenolic divinyl oxide (OP-10), the acrylosilane microemulsion was synthesized by seeded emulsion polymerization. The influential factors including the kind and the adding amount of emulsifiers and the monomer variety of alkoxy silane and the added methods which influence on the properties of the microemulsion were investigated. It is found that SDBS and OP-10 as multiple emulsifiers with mass ratio of 1:1 and the adding amount of 2.5%-3.5% can act on co-effect for emulsion polymerization. The C-1706 possesses bulky isopropoxy substituent that can reduce hydrolysis reactivity during the polymerization process, so as to not only make the process smoothly but also advance the store stability of the emulsion. Moreover, the latter-addition mode of C-1706 can restrain its hydrolysis activity and polycondensation reaction during the polymerization process of the emulsion. The structure, the film cross section, the particle size and its distribution of the microemulsion were analyzed by the Fourier Transform Infrared Ray Spectrum (FTIR), Scanning Electron Microscopy (SEM) and a particle size analyzer, respectively. The results show that the particle diameter of the modified microemulsion can be controlled between 50 and 70 nm and its film hardness is 7.3. Only adding 1.5% of C-1706 into the system of emulsion polymerization can apparently improve the weathering resistance of the microemulsion, which undergo degradation with chromatism(△E) is 1.6 after 3 600 hours of QUV-aging.展开更多
The present work aimed at using rare earth lanthanum salt and trimethoxy(viny)silance as chromate substitutes for galvanized steel passivation, in contrast to zinc coating samples treated with chromate.The corrosion...The present work aimed at using rare earth lanthanum salt and trimethoxy(viny)silance as chromate substitutes for galvanized steel passivation, in contrast to zinc coating samples treated with chromate.The corrosion resistance was assessed by electrochemical impedance spectroscopy(EIS) and neutral salt spray tests(NSS).Scanning electron microscopy(SEM) was used to characterize the sample surfaces.The organic coating adhesion on the panel was also investigated via varnishes-cross cut tests.The results indicated that rare earth and silane two-step treatment gave more effective anticorrosion performance than Cr, which also provided good paint adhesion.The coating formation mechanism was also discussed.展开更多
Bis-3-(triethoxysilyl)propyltetrasulfide(BTESPT) silane-rare earth cerium composite coatings on aluminum-tube were prepared at 60 °C by immersion method.The performance of composite coatings to protect the alumin...Bis-3-(triethoxysilyl)propyltetrasulfide(BTESPT) silane-rare earth cerium composite coatings on aluminum-tube were prepared at 60 °C by immersion method.The performance of composite coatings to protect the aluminum-tube against corrosion was investigated with potentiodynamic polarization curves,electrochemical impedance spectroscopy(EIS),and salt spray test(SST).The results of potentiodynamic polarization curves and EIS indicated that the self-corrosion current decreased by two orders of magnitude and the i...展开更多
A complex film on hot-dip galvanized steel sheet(HDG) was prepared by immersing the sheet in 0.1wt.% Ce(NO3)3 solution and 5vol.% silane solution in turn.The corrosion protection of the complex film was evaluated ...A complex film on hot-dip galvanized steel sheet(HDG) was prepared by immersing the sheet in 0.1wt.% Ce(NO3)3 solution and 5vol.% silane solution in turn.The corrosion protection of the complex film was evaluated by potentiodynamic linear polarization(LPR), electrochemical impendence spectra(EIS) and natural salt spray(NSS) tests and compared with that of single cerium film and silane film.The results showed that, the presence of these films on the zinc coating hindered corrosion reaction by reducing the rate of both anodic and cathodic reaction in the corrosion process, and the corrosion protection of the complex film was much better than that of single cerium film or silane film and closed to that of chromate film, because the polarization resistance Rp and electrochemical impendence were increased markedly.Microstructure and chemical composition of these pretreated films were also investigated by scanning electron microscopy(SEM) and AES.展开更多
A novel waterborne epoxy curing agent was prepared using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a termination agent of adduct, which was synthesized by triethylene tetramine (TETA) and liquid epoxy resin (...A novel waterborne epoxy curing agent was prepared using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a termination agent of adduct, which was synthesized by triethylene tetramine (TETA) and liquid epoxy resin (E-51). The effects of the reaction temperature and time on the synthesis process were investigated experimentally. The particle size and the distribution of water dispersion of the curing agent were measured by dynamic light scattering(DLS). The structure of the products was characterized by Fourier transform infrared spec-trometer (FTIR) and ^1H-nuclear magnetic resonance (^1H NMR). The properties of the synthesized curing agent and the epoxy resin film cured by it were also measured. The results showed that the appropriate temperature for the synthesis of adduct was at 65-75℃ and the reaction time was 4-5h, and that the suitable reaction temperature of curing agent synthesis was 75-85℃ and the reaction time was 3-4h. When the mass ratios of GPTMS and acetic acid were 3%-5% and 5%-10% respectively, the hardness, water resistance and adhesion of the cured film were improved significantly.展开更多
The dynamics of the Cl+SiH4 reaction has been studied using the universal crossed molecular beam method. Angular resolved time-of-flight spectra have been measured for the channel SiH3Cl+H. Product angular distribut...The dynamics of the Cl+SiH4 reaction has been studied using the universal crossed molecular beam method. Angular resolved time-of-flight spectra have been measured for the channel SiH3Cl+H. Product angular distributions as well as energy distributions in the center-ofmass frame were determined for the channel. Experimental results show that the SiH3Cl product is mainly backward scattered relative to the Cl atom beam direction, suggesting that the channel takes place via a typical SN2 type reaction mechanism.展开更多
The properties of styrene-butadiene rubber (SBR) reinforced by modified silica was investigated according to national standards. Silica was modified by silane coupling agents KH-570, KH-590, and KH-792. The optimized ...The properties of styrene-butadiene rubber (SBR) reinforced by modified silica was investigated according to national standards. Silica was modified by silane coupling agents KH-570, KH-590, and KH-792. The optimized geome-tries of molecular modified silica reinforced SBR were obtained by using B3LYP calculation of density functional theory with the 6-31+G basis sets. The natural bond orbital analyses were carried out. The Si—O bond length of silica modified by KH-792 was the shortest and the electronegative of O was the highest. It indicated that the connection between silica and KH-792 was the tightest. Higher tensile strength and elongation of reinforced SBR was obtained by silica modified with the KH-792. It was caused by large delocalization of lone pair electrons of the two N atoms in KH-792. The S—C bond length in silica modified by KH-590 was longer than the ordinary S—C bond length. Then the sulfur free radical (·S·) was produced more easily in vulcanization. The degree of crosslink was increased by the cross-linkage of the rubber molecule and the sulfur free radical. That was why the highest stress and tear strength of reinforced SBR was produced when silane coupling agent KH-590 was used. The calculation results was in accord with experimental data.展开更多
The corrosion behavior of hot dip galvanized steel pretrvated with bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) modified with alumina particles was studied. The corrosion resistance of the passiving films was ev...The corrosion behavior of hot dip galvanized steel pretrvated with bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) modified with alumina particles was studied. The corrosion resistance of the passiving films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy. The films formed on the galvanized steel substrate were characterized by Fourier transform infrared spectroscopy and energy dispersive X-ray spectrometry. The surface morphology of the treated hot dip galvanized steel samples was observed by Field Emission Scanning Electron Microscope. The results show that the pretrvatments on the basis of silane films modified with nanoalumina particles have reduced both anodic and cathodic current densities, and increased total impedance in the measured frequency, consequently, improving corrosion protection for hot dip galvanized steel during immersion in NaCl solutions compared to chromate films and silane films.展开更多
An environmentally-friendly hybrid coating on AZ31 magnesium alloy substrates was reported.The synergic effect was studied on Mg−Al-layered double hydroxide Mg−Al LDH/Mg(OH)2-coated AZ31 magnesium alloy via an in-situ...An environmentally-friendly hybrid coating on AZ31 magnesium alloy substrates was reported.The synergic effect was studied on Mg−Al-layered double hydroxide Mg−Al LDH/Mg(OH)2-coated AZ31 magnesium alloy via an in-situ steam coating process and a subsequent combined surface modification of bis-[triethoxysilylpropyl]tetrasulfide(BTESPT)silane and Ce(NO3)3.The microstructure and composition characteristics of the hybrid coatings were investigated by means of X-ray diffraction(XRD),scanning electronic microscopy(SEM),Fourier transform infrared spectrophotometry(FT-IR)and X-ray photoelectron spectroscopy(XPS).The corrosion resistance of the coated samples was evaluated by potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution rate during immersion in 3.5 wt.%NaCl solution.The results show an improved corrosion resistance of the alloy in the presence of BTESPT silane and Ce(NO3)3.This is most likely due to the synergistic effect of steam coating and silane coating to enhance the barrier properties of hybrid coating.In addition,the formation mechanism and anti-corrosion mechanism of coatings were discussed.展开更多
The reaction of ZnO nanoparticles grafted with KH570 silane coupling agent was carried out in water-alcohol mixed solvent. Several characterization methods were applied to analyzing the results of surface modification...The reaction of ZnO nanoparticles grafted with KH570 silane coupling agent was carried out in water-alcohol mixed solvent. Several characterization methods were applied to analyzing the results of surface modification such as Soxhlet extraction, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), thermogravimetry (TG), differential scanning calorimetry (DSC) and zeta potential (ζ). The results of FT-IR and TG-DSC show that the desired reaction chains have been covalently bonded on the surface of ZnO nanoparticles. Zetasizer results reveal that the maximal absolute value of ζ of the modified ZnO particles in acetone medium was 67.0 mV, which was much higher than that of the unmodified ZnO particles. So the surface of nanosized ZnO changed from hydrophilicity to hydrophobicity and the dispersity of ZnO nanoparticles were improved simultaneously. Finally, the mechanism of graft modification was discussed.展开更多
The surface treatment of silca fume with silane coupling agent prior w incorporation in a cement mortar resulted in composites exhibiting increuses in loss tangent by 5%-200% and storage modulus by 10%-20% , relative...The surface treatment of silca fume with silane coupling agent prior w incorporation in a cement mortar resulted in composites exhibiting increuses in loss tangent by 5%-200% and storage modulus by 10%-20% , relative to the value obtained by using as-received silica fume. The scanning electron microscopy (SEM) images iindicate that there is a morphological difference in the cement paste with treated and as-received silica fume, The, X-ray diffraction (XRD), infrared (IR) spectrum analyses and mercury intrusion porosimetry ( MIP ) have provided evidence to understand the reaction mechanism between treated silica .fume and the hydrate product of cement. This has led to the establishment of an initial microscopic model describing the damping behavior of cement matrix.展开更多
The fixing of a silane coupling agent to Zn-Ni-silica(SiO_(2))composite coatings was studied for the purpose of developing a coating process as an alternative to chromating.The corrosion resistance of Zn-Ni-silica com...The fixing of a silane coupling agent to Zn-Ni-silica(SiO_(2))composite coatings was studied for the purpose of developing a coating process as an alternative to chromating.The corrosion resistance of Zn-Ni-silica composite coatings was rem arkably improved by the silica nanoparticles in the composite,which were disper sed in the surface of this film.The silane coupling agent formed chemical bonds with the inorganic silica particles during the silane coupling treatment on the se composite coatings.The treatment suppressed the formation of white corrosion products to the same extent as chromating,as measured in salt spray tests.It is concluded that treating Zn-Ni-silica composite coatings with silane coupling agents is a viable alternative technique to chromating.展开更多
基金Funded by the National Key Research and Development Project(No.2019YFC1908204)the Guiding Projects in Fujian Province(No.2023H0023)the Fuzhou Science and Technology Plan Project(No.2022-P-012)。
文摘Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration of DA as hard segments into the PU molecular chain.The effects of DA content(φ)on the mechanical properties,thermal stability,and hydrophobicity of PU,both before and after the addition of KH550,were thoroughly examined.The results of microscopic mechanism analysis confirmed that KH550 chemically modified the surface of DA,facilitating its incorporation into the polyurethane molecular chain,thereby significantly enhancing the compatibility and dispersion of DA within the PU matrix.When the mass fraction of modified DA(MDA)reached 12%,the mechanical properties,thermal stability,and hydrophobicity of the composites were substantially improved,with the tensile strength reaching 14.9 MPa,and the contact angle measuring 100.6°.
基金financial support from the Public Welfare Projects of Zhejiang Province,China(No.LGG22E010002)the National Natural Science Foundation of China(Nos.52001300,52171083)。
文摘An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,and film-forming mechanism of dodecyltrime-thoxysilane(DTMS)/tetraethoxysilane(TEOS)silane films were comprehensively analyzed using Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).Based on the test results,it can be determined that this film has a superhydrophobic property with a hydrophobicity angle of 152°.This special property can be attributed to the long alkyl chains in the DTMS molecule,the rough morphology,and the low surface energy of the DTMS/TEOS silane film.The surface of sintered NdFeB is coated with a layered three-dimensional network silane film that forms through the condensation of silanol substances.This film provides excellent corrosion resistance to the sintered NdFeB substrate,reducing its corrosion current density to 2.02×10~(-6)A/cm~2.Moreover,the impact of film on the magnetic characteristics of sintered NdFeB was assessed and found to be minimal.
基金supported by the National Research Foundation grants funded by the Ministry of Science and ICT of Korea(2021M3H4A3A02086211 and RS-2023-00217581).
文摘Incorporation of higher content Si anode material beyond 5 wt% to Li-ion batteries(LIBs)is challenging,owing to large volume change,swelling,and solid electrolyte interphase(SEI)instability issues.Herein,a strategy of diacetoxydimethylsilane(DAMS)additive-directed SEI stabilization is proposed for a stable operation of Si-0.33FeSi_(2)(named as Si-Fe)anode without graphite,which provides siloxane inorganics and organics enrichment that compensate insufficient passivation of fluoroethylene carbonate(FEC)additive and reduce a dependence on FEC.Unprecedented stable cycling performance of highly loaded(3.5 mA h cm^(-2))pure Si-Fe anode is achieved with 2 wt%DAMS combined with 9 wt%FEC additives under ambient pressure,yielding high capacity 1270 mA h g^(-1)at 0.5 C and significantly improved capacity retention of 81% after 100 cycles,whereas short circuit and rapid capacity fade occur with FEC only additive.DAMS-directed robust SEI layer dramatically suppresses swelling and particles crossover through separator,and therefore prevents short circuit,demonstrating a possible operation of pure Si or Sidominant anodes in the next-generation high-energy-density and safe LIBs.
文摘Eco-friendly and biodegradable novel hydrogel were prepared by blending and solution casting method. The designed hydrogel is based on chitosan/ PEG600/Gurgam with carbon nanofiller along silane crosslinked (TEOS) with pH sensitive response to controlled release of drug in biomedical materials and agriculture industry. The various concentration of carbon nanofiller is used to analyze its effect on the fabricated hydrogel characteristics by using FTIR, SEM, TGA, swelling studies (water, buffer and ionic solution). Spectra of FTIR reflected both established and newly developed groups (like hydrogel). COOH group presence is clearly observed in this range in the carbon filler reinforced hydrogel. The SEM micrographs show that CPG0.003 had a collection of polysaccharide chains as thin helices, which is attributed to the increase in the size of porosity. TGA shows to increase concentration of nanofiller enhanced the thermal stability of the designed hydrogels at temperature 25˚C to 550˚C mass loss percentage decrease upto 20% and increase thermal stability. This pH response made these resultant hydrogels as fruitful competitor against the many reported controlled release application.
基金financially supported by the National Natural Science Foundation of China (22178242)。
文摘A flame retardant containing multiple antiflaming elements usually exhibits high-efficient flame retardancy. Here, a novel P/N/Si-containing ammonium polyphosphate derivative(APTES-APP) is synthesized from ammonium polyphosphate(APP) and silane coupling agent(3-aminopropyl)triethoxysilane(APTES)via cation exchange, which is quite different in the chemical structure from APTES-modified APP for retaining silicon hydroxyls. APTES-APP is highly efficient for the epoxy resin. 8%(mass) APTES-APP imparts excellent flame retardancy to the epoxy resin, with a V-0 rating at the UL-94 test(1.6 mm)and an LOI value of 26%(vol). The peak heat release rate and total smoke production of the flameretardant epoxy resin are decreased by 68.1% and 31.3%, respectively. The synergy of P/N/Si contributes to the well-expanded char residue with a strong and dense surface layer, which is a very good barrier against heat and mass transfer. Besides, there is no significant deterioration in the mechanical properties of flame-retardant epoxy resin thanks to silicon hydroxyls forming hydrogen bonds with epoxy molecules. Meanwhile, other molecules can be grafted onto APTES-APP via these silicon hydroxyls, if needed.Briefly, this work has developed a new strategy for amino silane as flame retardants. In conjunction with a low-cost and simple preparation method, APTES-APP has a promising prospect in the high-performance flame-retardant epoxy.
文摘The purpose of this study is to investigate the effect of the concentration of silane coupling solution on the tensile strength of basalt fiber and the interfacial properties of basalt fiber reinforced polymer composites.The surface treatment of basalt fibers was carried out using an aqueous alcohol solution method.Basalt fibers were subjected to surface treatment with 3-Methacryloxypropyl trimethoxy silane at 0.5 wt.%,1 wt.%,2 wt.%,4 wt.%and 10 wt.%.The basalt monofilament tensile tests were carried out to investigate the variation in strength with the concentration of the silane coupling agent.The microdroplet test was performed to examine the effect of the concentration of the silane coupling agent on interfacial strength of basalt reinforced polymer composites.The film was formed on the surface of the basalt fiber treated silane coupling agent solution.The tensile strength of basalt fiber increased because the damaged fiber surface was repaired by the firm of silane coupling agent.The firm was effective in not only the surface protection of basalt fiber but also the improvement on the interfacial strength of fiber-matrix interface.However,the surface treatment using the high concentration silane coupling agent solution has an adverse effect on the mechanical properties of the composite materials,because of causing the degradation of the interfacial strength of the composite materials.
文摘Silane terminated prepolymers for adhesives, sealants and coatings are of </span></span><span><span><span style="font-family:"">great <span>industrial importance. They are very important because of their low toxicity</span><span> over polyurethanes, silicones, and solvent-based products. Hence</span>, many pieces of literature which deal with the synthesis, properties and applications of this Si<span>lane terminated polymers hybrid system exist. Silylated polyether (MS polymers) </span>and Silylated Polyurethane Polymers (SPUR) are the bases for nu<span>merous sealants, adhesives and coatings used worldwide. A hybrid system mixed with </span><span>organic-polyurethane proportion and inorganic-alkoxysilane proportion</span> <span>com</span>bines the benefits of conventional polyurethane and silicone-based products.<span> This article reviews the chemistry of MS polymers and SPUR and their</span> <span>ad</span><span>vantages and disadvantages in silyl terminated prepolymer-based adhesives</span>, sea<span>lants and coatings as well as provides information on different end applications.
文摘Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonate coupled with silane grafted polypropylene (PP-g-Si) were made, their mechanical properties and thermal properties were investigated, respectively. Results As compared with the non-coupled composites, the mechanical properties of PP/Ta/PP-g-Si composites were improved to some extent, though the values of tensile modulus and the strain at peak were decreased. But for PP/BaSO4 and PP/CaCO3 composites, the values of their mechanical properties varied slightly or even decreased with increasing PP-g-Si content within the experimental component. Meanwhile, PP-g-Si also affected the melting and crystallization behavior of PP in the composites. Conclusion PP-g-Si offers compatibilization in PP/Ta composites, but offers no-compatibilization in PP/BaSO4 and PP/CaCO3 composites within the extent of the present range of PP-g-Si, which shows that PP-g-Si can be used as the macromolecular coupling agent of PP and Ta composite.
基金the Science & Technology Office and Development &Innovation Committee of Guangzhou Province(No.2003B 10506)
文摘An acrylate emulsion was modified by adding vinyltriisopropoxy silane (trade name C-1706). By adding the multiple emulsifier which consists of an anionic emulsifier, sodium dodecyl benzene sulfonate (SDBS) and nonionic emulsifier, octyl phenolic divinyl oxide (OP-10), the acrylosilane microemulsion was synthesized by seeded emulsion polymerization. The influential factors including the kind and the adding amount of emulsifiers and the monomer variety of alkoxy silane and the added methods which influence on the properties of the microemulsion were investigated. It is found that SDBS and OP-10 as multiple emulsifiers with mass ratio of 1:1 and the adding amount of 2.5%-3.5% can act on co-effect for emulsion polymerization. The C-1706 possesses bulky isopropoxy substituent that can reduce hydrolysis reactivity during the polymerization process, so as to not only make the process smoothly but also advance the store stability of the emulsion. Moreover, the latter-addition mode of C-1706 can restrain its hydrolysis activity and polycondensation reaction during the polymerization process of the emulsion. The structure, the film cross section, the particle size and its distribution of the microemulsion were analyzed by the Fourier Transform Infrared Ray Spectrum (FTIR), Scanning Electron Microscopy (SEM) and a particle size analyzer, respectively. The results show that the particle diameter of the modified microemulsion can be controlled between 50 and 70 nm and its film hardness is 7.3. Only adding 1.5% of C-1706 into the system of emulsion polymerization can apparently improve the weathering resistance of the microemulsion, which undergo degradation with chromatism(△E) is 1.6 after 3 600 hours of QUV-aging.
文摘The present work aimed at using rare earth lanthanum salt and trimethoxy(viny)silance as chromate substitutes for galvanized steel passivation, in contrast to zinc coating samples treated with chromate.The corrosion resistance was assessed by electrochemical impedance spectroscopy(EIS) and neutral salt spray tests(NSS).Scanning electron microscopy(SEM) was used to characterize the sample surfaces.The organic coating adhesion on the panel was also investigated via varnishes-cross cut tests.The results indicated that rare earth and silane two-step treatment gave more effective anticorrosion performance than Cr, which also provided good paint adhesion.The coating formation mechanism was also discussed.
基金supported by the Provincial Natural Science Foundation of Hunan Province (04JJ30817)
文摘Bis-3-(triethoxysilyl)propyltetrasulfide(BTESPT) silane-rare earth cerium composite coatings on aluminum-tube were prepared at 60 °C by immersion method.The performance of composite coatings to protect the aluminum-tube against corrosion was investigated with potentiodynamic polarization curves,electrochemical impedance spectroscopy(EIS),and salt spray test(SST).The results of potentiodynamic polarization curves and EIS indicated that the self-corrosion current decreased by two orders of magnitude and the i...
基金supported by the United Nations Common Fund for Commodities (CFC/LZSG/12)
文摘A complex film on hot-dip galvanized steel sheet(HDG) was prepared by immersing the sheet in 0.1wt.% Ce(NO3)3 solution and 5vol.% silane solution in turn.The corrosion protection of the complex film was evaluated by potentiodynamic linear polarization(LPR), electrochemical impendence spectra(EIS) and natural salt spray(NSS) tests and compared with that of single cerium film and silane film.The results showed that, the presence of these films on the zinc coating hindered corrosion reaction by reducing the rate of both anodic and cathodic reaction in the corrosion process, and the corrosion protection of the complex film was much better than that of single cerium film or silane film and closed to that of chromate film, because the polarization resistance Rp and electrochemical impendence were increased markedly.Microstructure and chemical composition of these pretreated films were also investigated by scanning electron microscopy(SEM) and AES.
文摘A novel waterborne epoxy curing agent was prepared using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a termination agent of adduct, which was synthesized by triethylene tetramine (TETA) and liquid epoxy resin (E-51). The effects of the reaction temperature and time on the synthesis process were investigated experimentally. The particle size and the distribution of water dispersion of the curing agent were measured by dynamic light scattering(DLS). The structure of the products was characterized by Fourier transform infrared spec-trometer (FTIR) and ^1H-nuclear magnetic resonance (^1H NMR). The properties of the synthesized curing agent and the epoxy resin film cured by it were also measured. The results showed that the appropriate temperature for the synthesis of adduct was at 65-75℃ and the reaction time was 4-5h, and that the suitable reaction temperature of curing agent synthesis was 75-85℃ and the reaction time was 3-4h. When the mass ratios of GPTMS and acetic acid were 3%-5% and 5%-10% respectively, the hardness, water resistance and adhesion of the cured film were improved significantly.
基金This work is supported by the Chinese Academy of Sciences and the National Natural Science Foundation of China and the Ministry of Science and Technology.
文摘The dynamics of the Cl+SiH4 reaction has been studied using the universal crossed molecular beam method. Angular resolved time-of-flight spectra have been measured for the channel SiH3Cl+H. Product angular distributions as well as energy distributions in the center-ofmass frame were determined for the channel. Experimental results show that the SiH3Cl product is mainly backward scattered relative to the Cl atom beam direction, suggesting that the channel takes place via a typical SN2 type reaction mechanism.
文摘The properties of styrene-butadiene rubber (SBR) reinforced by modified silica was investigated according to national standards. Silica was modified by silane coupling agents KH-570, KH-590, and KH-792. The optimized geome-tries of molecular modified silica reinforced SBR were obtained by using B3LYP calculation of density functional theory with the 6-31+G basis sets. The natural bond orbital analyses were carried out. The Si—O bond length of silica modified by KH-792 was the shortest and the electronegative of O was the highest. It indicated that the connection between silica and KH-792 was the tightest. Higher tensile strength and elongation of reinforced SBR was obtained by silica modified with the KH-792. It was caused by large delocalization of lone pair electrons of the two N atoms in KH-792. The S—C bond length in silica modified by KH-590 was longer than the ordinary S—C bond length. Then the sulfur free radical (·S·) was produced more easily in vulcanization. The degree of crosslink was increased by the cross-linkage of the rubber molecule and the sulfur free radical. That was why the highest stress and tear strength of reinforced SBR was produced when silane coupling agent KH-590 was used. The calculation results was in accord with experimental data.
基金the National Natural Science Foundation of China(No.50674022).
文摘The corrosion behavior of hot dip galvanized steel pretrvated with bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) modified with alumina particles was studied. The corrosion resistance of the passiving films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy. The films formed on the galvanized steel substrate were characterized by Fourier transform infrared spectroscopy and energy dispersive X-ray spectrometry. The surface morphology of the treated hot dip galvanized steel samples was observed by Field Emission Scanning Electron Microscope. The results show that the pretrvatments on the basis of silane films modified with nanoalumina particles have reduced both anodic and cathodic current densities, and increased total impedance in the measured frequency, consequently, improving corrosion protection for hot dip galvanized steel during immersion in NaCl solutions compared to chromate films and silane films.
基金Projects(51601108,21676285,51571134)supported by the National Natural Science Foundation of ChinaProject(2017RCJJ015)supported by Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents,ChinaProject(2014TDJH104)supported by the Shandong University of Science and Technology Research Fund,China。
文摘An environmentally-friendly hybrid coating on AZ31 magnesium alloy substrates was reported.The synergic effect was studied on Mg−Al-layered double hydroxide Mg−Al LDH/Mg(OH)2-coated AZ31 magnesium alloy via an in-situ steam coating process and a subsequent combined surface modification of bis-[triethoxysilylpropyl]tetrasulfide(BTESPT)silane and Ce(NO3)3.The microstructure and composition characteristics of the hybrid coatings were investigated by means of X-ray diffraction(XRD),scanning electronic microscopy(SEM),Fourier transform infrared spectrophotometry(FT-IR)and X-ray photoelectron spectroscopy(XPS).The corrosion resistance of the coated samples was evaluated by potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution rate during immersion in 3.5 wt.%NaCl solution.The results show an improved corrosion resistance of the alloy in the presence of BTESPT silane and Ce(NO3)3.This is most likely due to the synergistic effect of steam coating and silane coating to enhance the barrier properties of hybrid coating.In addition,the formation mechanism and anti-corrosion mechanism of coatings were discussed.
基金the Foundation of National Key Technologies R&D Program-Shanghai World Exposition Special Project (Grant No.04DZ05803)the Special Project of Shanghai Nano-technology (Grant No.05nm05011)
文摘The reaction of ZnO nanoparticles grafted with KH570 silane coupling agent was carried out in water-alcohol mixed solvent. Several characterization methods were applied to analyzing the results of surface modification such as Soxhlet extraction, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), thermogravimetry (TG), differential scanning calorimetry (DSC) and zeta potential (ζ). The results of FT-IR and TG-DSC show that the desired reaction chains have been covalently bonded on the surface of ZnO nanoparticles. Zetasizer results reveal that the maximal absolute value of ζ of the modified ZnO particles in acetone medium was 67.0 mV, which was much higher than that of the unmodified ZnO particles. So the surface of nanosized ZnO changed from hydrophilicity to hydrophobicity and the dispersity of ZnO nanoparticles were improved simultaneously. Finally, the mechanism of graft modification was discussed.
文摘The surface treatment of silca fume with silane coupling agent prior w incorporation in a cement mortar resulted in composites exhibiting increuses in loss tangent by 5%-200% and storage modulus by 10%-20% , relative to the value obtained by using as-received silica fume. The scanning electron microscopy (SEM) images iindicate that there is a morphological difference in the cement paste with treated and as-received silica fume, The, X-ray diffraction (XRD), infrared (IR) spectrum analyses and mercury intrusion porosimetry ( MIP ) have provided evidence to understand the reaction mechanism between treated silica .fume and the hydrate product of cement. This has led to the establishment of an initial microscopic model describing the damping behavior of cement matrix.
文摘The fixing of a silane coupling agent to Zn-Ni-silica(SiO_(2))composite coatings was studied for the purpose of developing a coating process as an alternative to chromating.The corrosion resistance of Zn-Ni-silica composite coatings was rem arkably improved by the silica nanoparticles in the composite,which were disper sed in the surface of this film.The silane coupling agent formed chemical bonds with the inorganic silica particles during the silane coupling treatment on the se composite coatings.The treatment suppressed the formation of white corrosion products to the same extent as chromating,as measured in salt spray tests.It is concluded that treating Zn-Ni-silica composite coatings with silane coupling agents is a viable alternative technique to chromating.