In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending ...In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending tester.We prepared two single-crystal samples,oriented along the<1120>and<1010>directions,to assess the mechanisms of deformation when the initial basal slip was suppressed.In the<1120>sample,the primary{1012}twin(T1)was confirmed along the<1120>direction of the sample on the compression side with an increase in bending stress.In the<1010>sample,T1 and the secondary twin(T2)were confirmed to be along the<1120>direction,with an orientation of±60°with respect to the bending stress direction,and their direction matched with(0001)in T1 and T2.This result implies that crystallographically,the basal slip occurs readily.In addition,the<1010>sample showed the double twin in T1 on the compression side and the tertiary twin along the<1010>direction on the tension side.These results demonstrated that the maximum bending stress and displacement changed significantly under the bend loading because the deformation mechanisms were different for these single crystals.Therefore,the correlation between bending behavior and twin orientation was determined,which would be helpful for optimizing the bending properties of Mg-based materials.展开更多
High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current puri...High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current purification process is mainly based on the zone/electrolytic refining or anion exchange, however, which excessively relies on specific integrated equipment with ultra-high vacuum or chemical solution environment, and is also bothered by external contaminants and energy consumption. Here we report a simple approach to purify the Cu foils from 99.9%(3N) to 99.99%(4N) by a temperature-gradient thermal annealing technique, accompanied by the kinetic evolution of single crystallization of Cu.The success of purification mainly relies on(i) the segregation of elements with low effective distribution coefficient driven by grain-boundary movements and(ii) the high-temperature evaporation of elements with high saturated vapor pressure.The purified Cu foils display higher flexibility(elongation of 70%) and electrical conductivity(104% IACS) than that of the original commercial rolled Cu foils(elongation of 10%, electrical conductivity of ~ 100% IACS). Our results provide an effective strategy to optimize the as-produced metal medium, and therefore will facilitate the potential applications of Cu foils in precision electronic products and high-frequency printed circuit boards.展开更多
We report the growth of high-quality single crystals of RhP_(2),and systematically study its structure and physical properties by transport,magnetism,and heat capacity measurements.Single-crystal x-ray diffraction rev...We report the growth of high-quality single crystals of RhP_(2),and systematically study its structure and physical properties by transport,magnetism,and heat capacity measurements.Single-crystal x-ray diffraction reveals that RhP_(2) adopts a monoclinic structure with the cell parameters a=5.7347(10)A,b=5.7804(11)A,and c=5.8222(11)A,space group P2_(1)/c(No.14).The electrical resistivityρ(T)measurements indicate that RhP_(2) exhibits narrow-bandgap behavior with the activation energies of 223.1 meV and 27.4 meV for two distinct regions,respectively.The temperaturedependent Hall effect measurements show electron domain transport behavior with a low charge carrier concentration.We find that RhP_(2) has a high mobilityμ_(e)~210 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_(e)~3.3×10^(18)cm^(3) at 300 K with a narrow-bandgap feature.The high mobilityμ_(e) reaches the maximum of approximately 340 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_^(e)~2×10^(18)cm^(-3)at 100 K.No magnetic phase transitions are observed from the susceptibilityχ(T)and specific heat C_(p)(T)measurements of RhP_(2).Our results not only provide effective potential as a material platform for studying exotic physical properties and electron band structures but also motivate further exploration of their potential photovoltaic and optoelectronic applications.展开更多
Kagome magnets were predicted to be a good platform to investigate correlated topology band structure,Chern quantum phase,and geometrical frustration due to their unique lattice geometry.Here we reported single crysta...Kagome magnets were predicted to be a good platform to investigate correlated topology band structure,Chern quantum phase,and geometrical frustration due to their unique lattice geometry.Here we reported single crystal growth of 166-type kagome magnetic materials,including HfMn_(6)Sn_(6),ZrMn_(6)Sn_(6),GdMn_(6)Sn_(6)and GdV_(6)Sn_(6),by using the flux method with Sn as the flux.Among them,HfMn_(6)Sn_(6)and ZrMn_(6)Sn_(6)single crystals were grown for the first time.X-ray diffraction measurements reveal that all four samples crystallize in HfFe6Ge6-type hexagonal structure with space group P6/mmm.All samples show metallic behavior from temperature dependence of resistivity measurements,and the dominant carrier is hole,except for GdV6Sn6 which is electron dominated.All samples have magnetic order with different transition temperatures,HfMn_(6)Sn_(6),ZrMn_(6)Sn_(6)and GdV_(6)Sn_(6)are antiferromagnetic with TN of 541 K,466 K and 4 K respectively,while GdMn_(6)Sn_(6)is ferrimagnetic with the critical temperature of about 470 K.This study will enrich the research platform of magnetic kagome materials and help explore the novel quantum phenomena in these interesting materials.The dataset of specific crystal structure parameters for HfMn_(6)Sn_(6)are available in Science Data Bank,with the link.展开更多
We report the magnetotransport and thermal properties of RuAs_(2) single crystal.RuAs_(2) exhibits semiconductor behavior and localization effect.The crossover from normal state to diffusive transport in the weak loca...We report the magnetotransport and thermal properties of RuAs_(2) single crystal.RuAs_(2) exhibits semiconductor behavior and localization effect.The crossover from normal state to diffusive transport in the weak localization(WL)state and then to variable range hopping(VRH)transport in the strong localization state has been observed.The transitions can be reflected in the measurement of resistivity and Seebeck coefficient.Negative magnetoresistance(NMR)emerges with the appearance of localization effect and is gradually suppressed in high magnetic field.The temperature dependent phase coherence length extracted from the fittings of NMR also indicates the transition from WL to VRH.The measurement of Hall effect reveals an anomaly of temperature dependent carrier concentration caused by localization effect.Our findings show that RuAs_(2) is a suitable platform to study the localized state.展开更多
The second generation single crystal superalloy DD6 with 0.10%Hf and 0.34%Hf (in mass fraction) was subjected to high-cycle fatigue (HCF) loading at temperatures of 700 ℃ in ambient atmosphere. SEM was used to de...The second generation single crystal superalloy DD6 with 0.10%Hf and 0.34%Hf (in mass fraction) was subjected to high-cycle fatigue (HCF) loading at temperatures of 700 ℃ in ambient atmosphere. SEM was used to determine the initiation site and the failure mechanism. Evolution of the microstructure was investigated by TEM observation. The results show that fatigue limit of DD6 alloy with 0.34%Hf is a little smaller than that of the alloy with 0.10%Hf. The fatigue cracks initiated on the surface or near the surface of the specimens. The crack would propagate along { 111 } octahedral slip planes, rather than perpendicular to the loading axis of specimen. Typical fatigue striation formed in steady propagation of fatigue crack. The fracture mechanisms of the high cycle fatigue of DD6 alloys with 0.10%Hf and 0.34%Hf are quasi-cleavage fracture. Different types of dislocation structures were developed during high cycle fatigue deformation.展开更多
In order to reveal the temperature dependence of anisotropic stress?rupture behavior of SRR99 single crystal superalloys under conditions of temperature ranging from 650 to 1 040 °C and typical stresses,fracture...In order to reveal the temperature dependence of anisotropic stress?rupture behavior of SRR99 single crystal superalloys under conditions of temperature ranging from 650 to 1 040 °C and typical stresses,fracture morphologies and microstructure evolution were investigated by SEM and TEM.From the Larson-Miller curves,it is found that single crystal with [001] orientation has the optimum stress rupture property in comparison with [011] and [111] orientations at lower and intermediate temperature.With increasing temperature to 1 040 °C,stress-rupture properties of single crystals with three principal orientations tend to be equivalent.Based on the fracture surface and microstructural observations,superior stress?rupture behavior of single crystal with [001] orientation was rationalized and the effect of misorientation of single crystal on stress rupture property was also discussed.展开更多
As-cast single crystal (SC) superalloy samples were shot peened and then annealed at different temperatures to investigate the effect of annealing temperature on the surface recrystallization behavior of the SC supe...As-cast single crystal (SC) superalloy samples were shot peened and then annealed at different temperatures to investigate the effect of annealing temperature on the surface recrystallization behavior of the SC superalloy. The results show that the depth of recrystallized layers increases with the increase of annealing temperature. Below 1200 °C, the recrystallization depth climbs slowly with temperature rising. Above 1200 °C, the recrystallization depth increases sharply with the rise of temperature. The morphology of recrystallized grains is significantly affected by annealing temperature. Below the γ′ solvus, cellular recrystallization may be observed. Above the γ′ solvus, recrystallization occurs through the growth of well developed recrystallized grains. In addition, the microstructure evolution of recrystallized grains at the homogenization annealing temperature was studied. It is found that recrystallized grains first nucleate in the dendritic core areas on the shot-peened surface and then grow inwards along the dendritic core areas. With the dissolution of the coarse γ′ precipitates and γ/γ′ eutectics in the interdendritic areas, the recrystallized grain boundaries move through the interdendritic areas. Finally, the fully developed grains nearly have a uniform depth. The dissolution of primary γ′ precipitates is a critical factor influencing the recrystallization behavior of SC superalloys.展开更多
Tensile properties of a Re-containing single crystal superalloy were determined within the temperature range from 20 to 1 100 ℃with a constant strain rate of 1.67 ×10^-4 s^-1.From room temperature to 600 ℃,the ...Tensile properties of a Re-containing single crystal superalloy were determined within the temperature range from 20 to 1 100 ℃with a constant strain rate of 1.67 ×10^-4 s^-1.From room temperature to 600 ℃,the yield strength increases slightly with increasing temperature.The yield strength decreases to aminimum at 760 ℃,while a maximum is reached dramatically at 800 ℃.The elongation and area reduction decrease gradually from room temperature to 800 ℃.Above 800 ℃,the yield strength decreases significantly with increasing temperature.The γ' phase is sheared by antiphase boundary (APB) below 600 ℃while elongated SSF (superlattice stacking fault) is left in γ' as debris.At 760 ℃the γ' phase is sheared by a/3 112 superpartial dislocation,which causes decrease of yield strength due to low energy of SSF.Above 800 ℃dislocations overcome γ' through by-passing mechanism.展开更多
The effect of Ru on γ' precipitation behavior and evolution in single crystal superalloys with different Ru contents were investigated by scanning electron microscopy with energy dispersive spectroscopy,3D atomic pr...The effect of Ru on γ' precipitation behavior and evolution in single crystal superalloys with different Ru contents were investigated by scanning electron microscopy with energy dispersive spectroscopy,3D atomic probing,differential scanning calorimetry.The results show that the solvus of the γ' phase decreases gradually with increasing Ru content in the alloys by casting or by the same solution and aging treatments,the alloy with a larger Ru content yields a smaller γ' phase.The addition of Ru increases the growth rate and coarsening rate of the γ' phase.Ru mainly distributes in the γ phase,which causes more Re and Mo partition into the γ' phase,increasing the absolute value of mismatch and the rafting rate of the γ' phase.展开更多
Single crystal superalloys of AM3 with different carbon levels were prepared at withdraw rate of 50μm/s. The effect of carbon addition on the carbide morphology was investigated. It was found that there were four typ...Single crystal superalloys of AM3 with different carbon levels were prepared at withdraw rate of 50μm/s. The effect of carbon addition on the carbide morphology was investigated. It was found that there were four types of MC-type carbides, acicular, nodular, blocky, and Chinese script-type in the crystals. With an increase in carbon level, the volume fraction of carbide increased significantly while the volume fraction of eutectic decreased significantly. Furthermore, the size of carbide in high level carbon alloy became much larger.展开更多
The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic...The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic after creep rupture was studied by SEM and TEM. The results show that the alloy has excellent creep properties. Two different types of creep behavior can be shown in the creep curves. The primary creep is characterized by the high amplitude at test conditions of (760 °C, 600 MPa) and (850 °C, 550 MPa) and the primary creep strain is limited at (980 °C, 250 MPa), (1100 °C, 140 MPa) and (1120 °C, 120 MPa). A little change ofγ′precipitate morphology occurs at (760 °C, 600 MPa). The lateral merging of the γ′ precipitate has already begun at (850 °C, 550 MPa). Theγphase is surrounded by theγ′phase at (980 °C, 250 MPa). Theγphase is no longer continuous tested at (1070 °C, 140 MPa). At (1100 °C, 120 MPa), the thickness ofγphase continues to increase. No TCP phase precipitates in the specimens at (760 °C, 600 MPa), (850 °C, 550 MPa) and (980 °C, 250 MPa). Needle shaped TCP phase precipitates in the specimens tested at (1070 °C, 140 MPa) and (1100 °C, 120 MPa). The dislocation shear mechanism including stacking fault formation is operative at lower temperature and high stress. The dislocation by-passing mechanism occurs to form networks atγ/γ′interface under the condition of high temperature and lower stress.展开更多
Two experimental single crystal superalloys, Ru-free alloy and Ru-containing alloy with [001] orientation, other alloying element contents being basically kept same, were cast in the directionally solidified furnace. ...Two experimental single crystal superalloys, Ru-free alloy and Ru-containing alloy with [001] orientation, other alloying element contents being basically kept same, were cast in the directionally solidified furnace. The effect of Ru on the stress rupture properties of the single crystal superalloy was investigated at (980 ℃, 250 MPa), (1100 ℃, 140 MPa) and (1120 ℃, 140 MPa). The results show that Ru can enhance high temperature stress rupture properties of single crystal superalloy. The improvement effect of Ru addition on stress rupture properties decreases with increasing test temperature. The γ′ coarsening and rafting directionally are observed in Ru-free alloy and Ru-containing alloy after stress rupture test. Needle shaped TCP phases precipitated in both of alloys after stress rupture test at (1100 ℃, 140 MPa) and (1120 ℃, 140 MPa) and no TCP phase was observed in both of alloys after stress rupture test (980 ℃, 250 MPa). The precipitate volume fraction of TCP phases is significantly decreased by the addition of Ru. At last, the relationship between the microstructure change with Ru addition and improvement of stress rupture properties was discussed.展开更多
The isothermal oxidation behavior of the second generation single crystal superalloy DD6 was studied at 1050 ℃ and 1100 ℃ in ambient atmosphere.Morphology of oxides was examined by SEM and their composition was anal...The isothermal oxidation behavior of the second generation single crystal superalloy DD6 was studied at 1050 ℃ and 1100 ℃ in ambient atmosphere.Morphology of oxides was examined by SEM and their composition was analyzed by XRD and EDS.The experimental results show that DD6 alloy obeys subparabolic rate law during oxidation of 100 h at 1050 ℃ and 1100 ℃.The oxide scale exposed at 1050 ℃ is made up of an outer NiO layer with a small amount of Al2O3 and an inner Al2O3 layer.The oxide scale exposed at 1100 ℃ is made up of an outer Al2O3 layer with a small amount of NiO,an intermediate layer,mainly composed of Cr2O3 and TaO2,and an inner Al2O3 layer.The γ'-free layer was formed under the oxide scale at two temperatures.展开更多
To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of...To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of alloy, significant improvements in casting techniques have been achieved by introducing the directionally solidified (DS) casting process followed by single crystal (SX) technique. The deviation of preferred orientation of single crystal superalloys is one of the most important defects in casting. In directional solidification equipment with high temperature gradient, single crystal specimens of DZ417G alloy were prepared successfully by the modified Bridgeman method with spiral grain selector. The orientation was investigated by means of X-ray diffraction (XRD) and electron backscattered diffraction (EBSD).The results show that the crystal selector with a smaller angle can effectively reduce the deviation of preferred orientation.展开更多
Two experimental single crystal superalloys with 2% Cr and 4% Cr (mass fraction) were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Cr content on...Two experimental single crystal superalloys with 2% Cr and 4% Cr (mass fraction) were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Cr content on the microstructure, phase stability, tensile properties at 1100 °C and stress rupture properties at 1070 °C and 160 MPa of the single crystal superalloy were investigated. The results show that the size ofγ′ phase particles become small and uniform, and the cubic shape turns a little regular with the increase of Cr content. Theγ′ directional coarsening and rafting were observed in the 2% Cr and 4% Cr alloys after long term aging (LTA) at 1100 °C. The rafting rate ofγ′ phase increased with increasing Cr content. Needle-shaped topologically close packed (TCP) phases precipitated and grew along fixed direction in both alloys. The precipitating rate and volume fraction of TCP phases significantly increased with the increase of Cr content. The tensile property of the alloy increased and the stress rupture properties of the alloy decreased with the increase of Cr content at high temperature. The increase of Cr content increased the partition ratio of TCP forming elements, Re, W, and Mo, and the saturation degrees of these elements inγ phases increased. Therefore, the high temperature phase stability of the alloy decreased with the increase of Cr content.展开更多
Floating zone method with optical radiation heating was applied to growing a class of R2PdSi3(R=Pr,Tb and Gd) single crystals due to its containerless melting and high stability of the floating zone.One serious prob...Floating zone method with optical radiation heating was applied to growing a class of R2PdSi3(R=Pr,Tb and Gd) single crystals due to its containerless melting and high stability of the floating zone.One serious problem during the single crystal growth,precipitates of secondary phases,was discussed from the following four parts:precipitates from the raw materials and preparation process,precipitates formed during the growing process,precipitates in the melts and precipitates in the grown crystals.Annealing treatment and composition shift can effectively reduce the precipitates which are not formed during the crystallization but precipitated on post-solidification cooling from the as-grown crystal matrix because of the retrograde solubility of Si.展开更多
The stress aging behavior of Al-Cu alloy under various applied stresses, i.e., elastic stress, yield stress and plasticdeformation stress, was investigated using single crystals. The resulting microstructures and the ...The stress aging behavior of Al-Cu alloy under various applied stresses, i.e., elastic stress, yield stress and plasticdeformation stress, was investigated using single crystals. The resulting microstructures and the yield strength were examined bytransmission electron microscopy (TEM) and compression tests, respectively. The results indicate that an elastic stress of 15 MPa ishigh enough to influence the precipitation distribution of θ′ during aging at 180℃. The applied stress loading along [116]Aldirection results in increased number density of θ′ on (001)Al habit planes. This result becomes more significant with increasingapplied stress and leads to lower yield strength of Al-Cu single crystals during aging. Moreover, the generation of the preferentialorientation of θ′ was discussed by the effect of the dislocation induced by applied stress as well as the role of the misfit between theθ′-precipitate and Al matrix. The results are in agreement with the effect of the latter one.展开更多
By means of microstructure observation and measurement of creep properties,the high temperature creep behaviors of a single crystal nickel-based superalloy containing Re were investigated.Results show that the single ...By means of microstructure observation and measurement of creep properties,the high temperature creep behaviors of a single crystal nickel-based superalloy containing Re were investigated.Results show that the single crystal nickel-based superalloy containing 4.2% Re possesses a better creep resistance at high temperature.After being crept up to fracture,the various morphologies are displayed in the different areas of the sample,and the γ' phase is transformed into the rafted structure along the direction vertical to the applied stress axis in the regions far from the fracture.But the coarsening and twisting extents of the rafted γ' phase increase in the regions near the fracture,which is attributed to the occurrence of the larger plastic deformation.In the later stage of creep,the deformation mechanism of the alloy is that the dislocations with [01^-1]and [011] trace features shear into the rafted γ' phase.The main/secondary slipping dislocations are alternately activated to twist the rafted γ' phase up to the occurrence of creep fracture,which is thought to be the fracture mechanism of the alloy during creep.展开更多
Structure and polarity of the Si C single crystal have been analyzed with the four- circle X- ray diffraction method by a double- crystal diffractom eter.The hexagonal{ 10 15 } pole figure shows that this Si C sam pl...Structure and polarity of the Si C single crystal have been analyzed with the four- circle X- ray diffraction method by a double- crystal diffractom eter.The hexagonal{ 10 15 } pole figure shows that this Si C sam ple has a6 H modification.The difference between the integrated intensities m easured byω scan in the triple- axis diffraction set- up finds some convincing evidence that the surface is either a Si- terminated face or C- terminated face.The experi- mental ratios of| F( 0 0 0 L) | 2 / | F( 0 0 0 L) | 2 are in good agreem entwith the calculated ones after the dispersion cor- rections to the atomic scattering factors( L=6 ,12 and18,respectively) .Thus,this m easurem ent technique is con- venient for the application of the materials with remarkable surface polarity.展开更多
基金supported by The AMADA FOUNDATION[grant number AF-2022030-B3]JSPS KAKENHI[grant numbers JP16K05961 and JP19K04065]。
文摘In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending tester.We prepared two single-crystal samples,oriented along the<1120>and<1010>directions,to assess the mechanisms of deformation when the initial basal slip was suppressed.In the<1120>sample,the primary{1012}twin(T1)was confirmed along the<1120>direction of the sample on the compression side with an increase in bending stress.In the<1010>sample,T1 and the secondary twin(T2)were confirmed to be along the<1120>direction,with an orientation of±60°with respect to the bending stress direction,and their direction matched with(0001)in T1 and T2.This result implies that crystallographically,the basal slip occurs readily.In addition,the<1010>sample showed the double twin in T1 on the compression side and the tertiary twin along the<1010>direction on the tension side.These results demonstrated that the maximum bending stress and displacement changed significantly under the bend loading because the deformation mechanisms were different for these single crystals.Therefore,the correlation between bending behavior and twin orientation was determined,which would be helpful for optimizing the bending properties of Mg-based materials.
基金Project supported by the Basic and Applied Basic Research Foundation of Guangdong Province,China(Grant Nos.2019A1515110302 and 2022A1515140003)the Key Research and Development Program of Guangdong Province,China(Grant Nos.2020B010189001,2021B0301030002,2019B010931001,and 2018B030327001)+5 种基金the National Natural Science Foundation of China(Grant Nos.52172035,52025023,52322205,51991342,52021006,51991344,52100115,11888101,92163206,12104018,and 12274456)the National Key Research and Development Program of China(Grant Nos.2021YFB3200303,2022YFA1405600,2018YFA0703700,2021YFA1400201,and 2021YFA1400502)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000)the Pearl River Talent Recruitment Program of Guangdong Province,China(Grant No.2019ZT08C321)China Postdoctoral Science Foundation(Grant Nos.2020T130022 and 2020M680178)the Science and Technology Plan Project of Liaoning Province,China(Grant No.2021JH2/10100012).
文摘High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current purification process is mainly based on the zone/electrolytic refining or anion exchange, however, which excessively relies on specific integrated equipment with ultra-high vacuum or chemical solution environment, and is also bothered by external contaminants and energy consumption. Here we report a simple approach to purify the Cu foils from 99.9%(3N) to 99.99%(4N) by a temperature-gradient thermal annealing technique, accompanied by the kinetic evolution of single crystallization of Cu.The success of purification mainly relies on(i) the segregation of elements with low effective distribution coefficient driven by grain-boundary movements and(ii) the high-temperature evaporation of elements with high saturated vapor pressure.The purified Cu foils display higher flexibility(elongation of 70%) and electrical conductivity(104% IACS) than that of the original commercial rolled Cu foils(elongation of 10%, electrical conductivity of ~ 100% IACS). Our results provide an effective strategy to optimize the as-produced metal medium, and therefore will facilitate the potential applications of Cu foils in precision electronic products and high-frequency printed circuit boards.
基金supported by the National Key Research and Development Program of China (Grant No.2017YFA0302901)the Strategic Priority Research Program,the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No.XDB33010100)+3 种基金the National Natural Science Foundation of China (Grant Nos.12134018,11921004,and 11634015)the Foundation of Quantum Science Center of Guangdong–Hong Kong–Macao Greater Bay Area,China (Grant No.QD2301005)the Postdoctoral Science Foundation of China (Grant No.2021M693370)the Synergetic Extreme Condition User Facility (SECUF)。
文摘We report the growth of high-quality single crystals of RhP_(2),and systematically study its structure and physical properties by transport,magnetism,and heat capacity measurements.Single-crystal x-ray diffraction reveals that RhP_(2) adopts a monoclinic structure with the cell parameters a=5.7347(10)A,b=5.7804(11)A,and c=5.8222(11)A,space group P2_(1)/c(No.14).The electrical resistivityρ(T)measurements indicate that RhP_(2) exhibits narrow-bandgap behavior with the activation energies of 223.1 meV and 27.4 meV for two distinct regions,respectively.The temperaturedependent Hall effect measurements show electron domain transport behavior with a low charge carrier concentration.We find that RhP_(2) has a high mobilityμ_(e)~210 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_(e)~3.3×10^(18)cm^(3) at 300 K with a narrow-bandgap feature.The high mobilityμ_(e) reaches the maximum of approximately 340 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_^(e)~2×10^(18)cm^(-3)at 100 K.No magnetic phase transitions are observed from the susceptibilityχ(T)and specific heat C_(p)(T)measurements of RhP_(2).Our results not only provide effective potential as a material platform for studying exotic physical properties and electron band structures but also motivate further exploration of their potential photovoltaic and optoelectronic applications.
基金the Beijing Natural Science Founda-tion(Grant No.Z210006)the National Key Research and De-velopment Program of China(Grant Nos.2022YFA1403400 and 2020YFA0308800)the Beijing National Labora-tory for Condensed Matter Physics(Grant No.2023BNL-CMPKF007).
文摘Kagome magnets were predicted to be a good platform to investigate correlated topology band structure,Chern quantum phase,and geometrical frustration due to their unique lattice geometry.Here we reported single crystal growth of 166-type kagome magnetic materials,including HfMn_(6)Sn_(6),ZrMn_(6)Sn_(6),GdMn_(6)Sn_(6)and GdV_(6)Sn_(6),by using the flux method with Sn as the flux.Among them,HfMn_(6)Sn_(6)and ZrMn_(6)Sn_(6)single crystals were grown for the first time.X-ray diffraction measurements reveal that all four samples crystallize in HfFe6Ge6-type hexagonal structure with space group P6/mmm.All samples show metallic behavior from temperature dependence of resistivity measurements,and the dominant carrier is hole,except for GdV6Sn6 which is electron dominated.All samples have magnetic order with different transition temperatures,HfMn_(6)Sn_(6),ZrMn_(6)Sn_(6)and GdV_(6)Sn_(6)are antiferromagnetic with TN of 541 K,466 K and 4 K respectively,while GdMn_(6)Sn_(6)is ferrimagnetic with the critical temperature of about 470 K.This study will enrich the research platform of magnetic kagome materials and help explore the novel quantum phenomena in these interesting materials.The dataset of specific crystal structure parameters for HfMn_(6)Sn_(6)are available in Science Data Bank,with the link.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2023YFA1406500 and 2019YFA0308602)the National Natural Science Foundation of China (Grant Nos.12104011,12274388,12074425,52102333,12104010,12204004,and 11874422)the Natural Science Foundation of Anhui Province (Grant Nos.2108085QA22 and 2108085MA16)。
文摘We report the magnetotransport and thermal properties of RuAs_(2) single crystal.RuAs_(2) exhibits semiconductor behavior and localization effect.The crossover from normal state to diffusive transport in the weak localization(WL)state and then to variable range hopping(VRH)transport in the strong localization state has been observed.The transitions can be reflected in the measurement of resistivity and Seebeck coefficient.Negative magnetoresistance(NMR)emerges with the appearance of localization effect and is gradually suppressed in high magnetic field.The temperature dependent phase coherence length extracted from the fittings of NMR also indicates the transition from WL to VRH.The measurement of Hall effect reveals an anomaly of temperature dependent carrier concentration caused by localization effect.Our findings show that RuAs_(2) is a suitable platform to study the localized state.
文摘The second generation single crystal superalloy DD6 with 0.10%Hf and 0.34%Hf (in mass fraction) was subjected to high-cycle fatigue (HCF) loading at temperatures of 700 ℃ in ambient atmosphere. SEM was used to determine the initiation site and the failure mechanism. Evolution of the microstructure was investigated by TEM observation. The results show that fatigue limit of DD6 alloy with 0.34%Hf is a little smaller than that of the alloy with 0.10%Hf. The fatigue cracks initiated on the surface or near the surface of the specimens. The crack would propagate along { 111 } octahedral slip planes, rather than perpendicular to the loading axis of specimen. Typical fatigue striation formed in steady propagation of fatigue crack. The fracture mechanisms of the high cycle fatigue of DD6 alloys with 0.10%Hf and 0.34%Hf are quasi-cleavage fracture. Different types of dislocation structures were developed during high cycle fatigue deformation.
基金Projects (2010CB631200,2010CB631206) supported by the National Basic Research Program of ChinaProject (50931004) supported by the National Natural Science Foundation of China
文摘In order to reveal the temperature dependence of anisotropic stress?rupture behavior of SRR99 single crystal superalloys under conditions of temperature ranging from 650 to 1 040 °C and typical stresses,fracture morphologies and microstructure evolution were investigated by SEM and TEM.From the Larson-Miller curves,it is found that single crystal with [001] orientation has the optimum stress rupture property in comparison with [011] and [111] orientations at lower and intermediate temperature.With increasing temperature to 1 040 °C,stress-rupture properties of single crystals with three principal orientations tend to be equivalent.Based on the fracture surface and microstructural observations,superior stress?rupture behavior of single crystal with [001] orientation was rationalized and the effect of misorientation of single crystal on stress rupture property was also discussed.
基金Project(2010ZF21007)supported by the Aeronautical Science Foundation of China
文摘As-cast single crystal (SC) superalloy samples were shot peened and then annealed at different temperatures to investigate the effect of annealing temperature on the surface recrystallization behavior of the SC superalloy. The results show that the depth of recrystallized layers increases with the increase of annealing temperature. Below 1200 °C, the recrystallization depth climbs slowly with temperature rising. Above 1200 °C, the recrystallization depth increases sharply with the rise of temperature. The morphology of recrystallized grains is significantly affected by annealing temperature. Below the γ′ solvus, cellular recrystallization may be observed. Above the γ′ solvus, recrystallization occurs through the growth of well developed recrystallized grains. In addition, the microstructure evolution of recrystallized grains at the homogenization annealing temperature was studied. It is found that recrystallized grains first nucleate in the dendritic core areas on the shot-peened surface and then grow inwards along the dendritic core areas. With the dissolution of the coarse γ′ precipitates and γ/γ′ eutectics in the interdendritic areas, the recrystallized grain boundaries move through the interdendritic areas. Finally, the fully developed grains nearly have a uniform depth. The dissolution of primary γ′ precipitates is a critical factor influencing the recrystallization behavior of SC superalloys.
基金Project(2010CB631206) supported by the National Basic Research Program of ChinaProject(50931004) supported by the National Natural Science Foundation of China
文摘Tensile properties of a Re-containing single crystal superalloy were determined within the temperature range from 20 to 1 100 ℃with a constant strain rate of 1.67 ×10^-4 s^-1.From room temperature to 600 ℃,the yield strength increases slightly with increasing temperature.The yield strength decreases to aminimum at 760 ℃,while a maximum is reached dramatically at 800 ℃.The elongation and area reduction decrease gradually from room temperature to 800 ℃.Above 800 ℃,the yield strength decreases significantly with increasing temperature.The γ' phase is sheared by antiphase boundary (APB) below 600 ℃while elongated SSF (superlattice stacking fault) is left in γ' as debris.At 760 ℃the γ' phase is sheared by a/3 112 superpartial dislocation,which causes decrease of yield strength due to low energy of SSF.Above 800 ℃dislocations overcome γ' through by-passing mechanism.
基金Project(U1037601) supported by the National Natural Science Foundation of China
文摘The effect of Ru on γ' precipitation behavior and evolution in single crystal superalloys with different Ru contents were investigated by scanning electron microscopy with energy dispersive spectroscopy,3D atomic probing,differential scanning calorimetry.The results show that the solvus of the γ' phase decreases gradually with increasing Ru content in the alloys by casting or by the same solution and aging treatments,the alloy with a larger Ru content yields a smaller γ' phase.The addition of Ru increases the growth rate and coarsening rate of the γ' phase.Ru mainly distributes in the γ phase,which causes more Re and Mo partition into the γ' phase,increasing the absolute value of mismatch and the rafting rate of the γ' phase.
基金Project(51201130)supported by the National Natural Science Foundation of ChinaProject(2012JQ6005)supported by the Natural Science Basic Research Plan in Shaanxi Province of China+2 种基金Project(SKLSP201226)supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,ChinaProject(11JK0805)supported by Scientific Research Program Funded by Shaanxi Provincial Education Department,ChinaProject(2010CV631201)supported by the National Basic Research Program of China
文摘Single crystal superalloys of AM3 with different carbon levels were prepared at withdraw rate of 50μm/s. The effect of carbon addition on the carbide morphology was investigated. It was found that there were four types of MC-type carbides, acicular, nodular, blocky, and Chinese script-type in the crystals. With an increase in carbon level, the volume fraction of carbide increased significantly while the volume fraction of eutectic decreased significantly. Furthermore, the size of carbide in high level carbon alloy became much larger.
文摘The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic after creep rupture was studied by SEM and TEM. The results show that the alloy has excellent creep properties. Two different types of creep behavior can be shown in the creep curves. The primary creep is characterized by the high amplitude at test conditions of (760 °C, 600 MPa) and (850 °C, 550 MPa) and the primary creep strain is limited at (980 °C, 250 MPa), (1100 °C, 140 MPa) and (1120 °C, 120 MPa). A little change ofγ′precipitate morphology occurs at (760 °C, 600 MPa). The lateral merging of the γ′ precipitate has already begun at (850 °C, 550 MPa). Theγphase is surrounded by theγ′phase at (980 °C, 250 MPa). Theγphase is no longer continuous tested at (1070 °C, 140 MPa). At (1100 °C, 120 MPa), the thickness ofγphase continues to increase. No TCP phase precipitates in the specimens at (760 °C, 600 MPa), (850 °C, 550 MPa) and (980 °C, 250 MPa). Needle shaped TCP phase precipitates in the specimens tested at (1070 °C, 140 MPa) and (1100 °C, 120 MPa). The dislocation shear mechanism including stacking fault formation is operative at lower temperature and high stress. The dislocation by-passing mechanism occurs to form networks atγ/γ′interface under the condition of high temperature and lower stress.
文摘Two experimental single crystal superalloys, Ru-free alloy and Ru-containing alloy with [001] orientation, other alloying element contents being basically kept same, were cast in the directionally solidified furnace. The effect of Ru on the stress rupture properties of the single crystal superalloy was investigated at (980 ℃, 250 MPa), (1100 ℃, 140 MPa) and (1120 ℃, 140 MPa). The results show that Ru can enhance high temperature stress rupture properties of single crystal superalloy. The improvement effect of Ru addition on stress rupture properties decreases with increasing test temperature. The γ′ coarsening and rafting directionally are observed in Ru-free alloy and Ru-containing alloy after stress rupture test. Needle shaped TCP phases precipitated in both of alloys after stress rupture test at (1100 ℃, 140 MPa) and (1120 ℃, 140 MPa) and no TCP phase was observed in both of alloys after stress rupture test (980 ℃, 250 MPa). The precipitate volume fraction of TCP phases is significantly decreased by the addition of Ru. At last, the relationship between the microstructure change with Ru addition and improvement of stress rupture properties was discussed.
文摘The isothermal oxidation behavior of the second generation single crystal superalloy DD6 was studied at 1050 ℃ and 1100 ℃ in ambient atmosphere.Morphology of oxides was examined by SEM and their composition was analyzed by XRD and EDS.The experimental results show that DD6 alloy obeys subparabolic rate law during oxidation of 100 h at 1050 ℃ and 1100 ℃.The oxide scale exposed at 1050 ℃ is made up of an outer NiO layer with a small amount of Al2O3 and an inner Al2O3 layer.The oxide scale exposed at 1100 ℃ is made up of an outer Al2O3 layer with a small amount of NiO,an intermediate layer,mainly composed of Cr2O3 and TaO2,and an inner Al2O3 layer.The γ'-free layer was formed under the oxide scale at two temperatures.
基金Project (51074105) supported by the National Natural Science Foundation of ChinaProjects (08DZ1130100, 10520706400) supported by the Science and Technology Commission of Shanghai Municipality, ChinaProject (2007CB613606) supported by the National Basic Research Program of China
文摘To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of alloy, significant improvements in casting techniques have been achieved by introducing the directionally solidified (DS) casting process followed by single crystal (SX) technique. The deviation of preferred orientation of single crystal superalloys is one of the most important defects in casting. In directional solidification equipment with high temperature gradient, single crystal specimens of DZ417G alloy were prepared successfully by the modified Bridgeman method with spiral grain selector. The orientation was investigated by means of X-ray diffraction (XRD) and electron backscattered diffraction (EBSD).The results show that the crystal selector with a smaller angle can effectively reduce the deviation of preferred orientation.
文摘Two experimental single crystal superalloys with 2% Cr and 4% Cr (mass fraction) were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Cr content on the microstructure, phase stability, tensile properties at 1100 °C and stress rupture properties at 1070 °C and 160 MPa of the single crystal superalloy were investigated. The results show that the size ofγ′ phase particles become small and uniform, and the cubic shape turns a little regular with the increase of Cr content. Theγ′ directional coarsening and rafting were observed in the 2% Cr and 4% Cr alloys after long term aging (LTA) at 1100 °C. The rafting rate ofγ′ phase increased with increasing Cr content. Needle-shaped topologically close packed (TCP) phases precipitated and grew along fixed direction in both alloys. The precipitating rate and volume fraction of TCP phases significantly increased with the increase of Cr content. The tensile property of the alloy increased and the stress rupture properties of the alloy decreased with the increase of Cr content at high temperature. The increase of Cr content increased the partition ratio of TCP forming elements, Re, W, and Mo, and the saturation degrees of these elements inγ phases increased. Therefore, the high temperature phase stability of the alloy decreased with the increase of Cr content.
基金Project (2008629045) supported by the China Scholarship Council (Constructing High-Level University Project)
文摘Floating zone method with optical radiation heating was applied to growing a class of R2PdSi3(R=Pr,Tb and Gd) single crystals due to its containerless melting and high stability of the floating zone.One serious problem during the single crystal growth,precipitates of secondary phases,was discussed from the following four parts:precipitates from the raw materials and preparation process,precipitates formed during the growing process,precipitates in the melts and precipitates in the grown crystals.Annealing treatment and composition shift can effectively reduce the precipitates which are not formed during the crystallization but precipitated on post-solidification cooling from the as-grown crystal matrix because of the retrograde solubility of Si.
基金Project(51375503)supported by the National Natural Science Foundation of China
文摘The stress aging behavior of Al-Cu alloy under various applied stresses, i.e., elastic stress, yield stress and plasticdeformation stress, was investigated using single crystals. The resulting microstructures and the yield strength were examined bytransmission electron microscopy (TEM) and compression tests, respectively. The results indicate that an elastic stress of 15 MPa ishigh enough to influence the precipitation distribution of θ′ during aging at 180℃. The applied stress loading along [116]Aldirection results in increased number density of θ′ on (001)Al habit planes. This result becomes more significant with increasingapplied stress and leads to lower yield strength of Al-Cu single crystals during aging. Moreover, the generation of the preferentialorientation of θ′ was discussed by the effect of the dislocation induced by applied stress as well as the role of the misfit between theθ′-precipitate and Al matrix. The results are in agreement with the effect of the latter one.
基金Project(50571070) supported by the National Natural Science Foundation of China
文摘By means of microstructure observation and measurement of creep properties,the high temperature creep behaviors of a single crystal nickel-based superalloy containing Re were investigated.Results show that the single crystal nickel-based superalloy containing 4.2% Re possesses a better creep resistance at high temperature.After being crept up to fracture,the various morphologies are displayed in the different areas of the sample,and the γ' phase is transformed into the rafted structure along the direction vertical to the applied stress axis in the regions far from the fracture.But the coarsening and twisting extents of the rafted γ' phase increase in the regions near the fracture,which is attributed to the occurrence of the larger plastic deformation.In the later stage of creep,the deformation mechanism of the alloy is that the dislocations with [01^-1]and [011] trace features shear into the rafted γ' phase.The main/secondary slipping dislocations are alternately activated to twist the rafted γ' phase up to the occurrence of creep fracture,which is thought to be the fracture mechanism of the alloy during creep.
文摘Structure and polarity of the Si C single crystal have been analyzed with the four- circle X- ray diffraction method by a double- crystal diffractom eter.The hexagonal{ 10 15 } pole figure shows that this Si C sam ple has a6 H modification.The difference between the integrated intensities m easured byω scan in the triple- axis diffraction set- up finds some convincing evidence that the surface is either a Si- terminated face or C- terminated face.The experi- mental ratios of| F( 0 0 0 L) | 2 / | F( 0 0 0 L) | 2 are in good agreem entwith the calculated ones after the dispersion cor- rections to the atomic scattering factors( L=6 ,12 and18,respectively) .Thus,this m easurem ent technique is con- venient for the application of the materials with remarkable surface polarity.