A reduced model is proposed and analyzed for the simulation of vortexinduced vibrations (VIVs) for turbine blades. A rotating blade is modelled as a uniform cantilever beam, while a van der Pol oscillator is used to...A reduced model is proposed and analyzed for the simulation of vortexinduced vibrations (VIVs) for turbine blades. A rotating blade is modelled as a uniform cantilever beam, while a van der Pol oscillator is used to represent the time-varying characteristics of the vortex shedding, which interacts with the equations of motion for the blade to simulate the fluid-structure interaction. The action for the structural motion on the fluid is considered as a linear inertia coupling. The nonlinear characteristics for the dynamic responses are investigated with the multiple scale method, and the modulation equations are derived. The transition set consisting of the bifurcation set and the hystere- sis set is constructed by the singularity theory and the effects of the system parameters, such as the van der Pol damping. The coupling parameter on the equilibrium solutions is analyzed. The frequency-response curves are obtained, and the stabilities are determined by the Routh-Hurwitz criterion. The phenomena including the saddle-node and Hopf bifurcations are found to occur under certain parameter values. A direct numerical method is used to analyze the dynamic characteristics for the original system and verify the va- lidity of the multiple scale method. The results indicate that the new coupled model is useful in explaining the rich dynamic response characteristics such as possible bifurcation phenomena in the VIVs.展开更多
The objective of this paper is to study systematically the dynamics and control strategy of a singular biological economic model that is described by a differential-algebraic equation. It is shown that when the econom...The objective of this paper is to study systematically the dynamics and control strategy of a singular biological economic model that is described by a differential-algebraic equation. It is shown that when the economic profit passes through zero, this model exhibits the transcritical bifurcation, the Hopf bifurcation, and the limit cycle. In particular, the system undergoes the singularity induced bifurcation at the positive equilibrium, which can result in impulse. Then, state feedback controllers closer to the actual control strategies are designed to eliminate the unexpected singularity induced bifurcation and stabilize the positive equilibrium under the positive profit. Finally, numerical simulations verify the results and illustrate the effectiveness of the controllers. Also, the model with positive economic profit is shown numerically to have different dynamics.展开更多
In this article,we investigate a fractional-order singular Leslie-Gower prey-predator bioeconomic model,which describes the interaction bet ween populations of prey and predator,and takes into account the economic int...In this article,we investigate a fractional-order singular Leslie-Gower prey-predator bioeconomic model,which describes the interaction bet ween populations of prey and predator,and takes into account the economic interest.We firstly obtain the solvability condition and the st ability of the model sys tem,and discuss the singularity induced bifurcation phenomenon.Next,we introduce a st ate feedback controller to elimina te the singularity induced bifurcation phenomenon,and discuss the optimal control problems.Finally,numerical solutions and their simulations are considered in order to illustrate the theoretical results and reveal the more complex dynamical behavior.展开更多
The stability of differential-algebraic equations (DAEs) was analyzed using singularity induced bifurcation (SIB) with one parameter. This kind of bifurcation arises in parameter-dependent DAEs having the form x·...The stability of differential-algebraic equations (DAEs) was analyzed using singularity induced bifurcation (SIB) with one parameter. This kind of bifurcation arises in parameter-dependent DAEs having the form x·=f, 0=g. Extended DAE system reduction is introduced as a convenient method to compute the SIB points. Non-degeneracy conditions on the function g are needed. Aften verifying these conditions, the extended DAE system can be solved as an ODE by applying the implicit function theorem near the equilibrium point of the extended DAE system. These equilibrium points in turn include the SIB points of the original DAEs. The study of SIB points enables analysis of power system stability problems.展开更多
基金Project supported by the National Basic Research Program of China(973 Program)(No.2015CB057405)the National Natural Science Foundation of China(No.11372082)the State Scholarship Fund of China Scholarship Council(CSC)(2014)
文摘A reduced model is proposed and analyzed for the simulation of vortexinduced vibrations (VIVs) for turbine blades. A rotating blade is modelled as a uniform cantilever beam, while a van der Pol oscillator is used to represent the time-varying characteristics of the vortex shedding, which interacts with the equations of motion for the blade to simulate the fluid-structure interaction. The action for the structural motion on the fluid is considered as a linear inertia coupling. The nonlinear characteristics for the dynamic responses are investigated with the multiple scale method, and the modulation equations are derived. The transition set consisting of the bifurcation set and the hystere- sis set is constructed by the singularity theory and the effects of the system parameters, such as the van der Pol damping. The coupling parameter on the equilibrium solutions is analyzed. The frequency-response curves are obtained, and the stabilities are determined by the Routh-Hurwitz criterion. The phenomena including the saddle-node and Hopf bifurcations are found to occur under certain parameter values. A direct numerical method is used to analyze the dynamic characteristics for the original system and verify the va- lidity of the multiple scale method. The results indicate that the new coupled model is useful in explaining the rich dynamic response characteristics such as possible bifurcation phenomena in the VIVs.
基金supported by National Natural Science Foundation of China (No.60974004)Science Foundation of Ministry of Housing and Urban-Rural Development (No.2011-K5-31)
文摘The objective of this paper is to study systematically the dynamics and control strategy of a singular biological economic model that is described by a differential-algebraic equation. It is shown that when the economic profit passes through zero, this model exhibits the transcritical bifurcation, the Hopf bifurcation, and the limit cycle. In particular, the system undergoes the singularity induced bifurcation at the positive equilibrium, which can result in impulse. Then, state feedback controllers closer to the actual control strategies are designed to eliminate the unexpected singularity induced bifurcation and stabilize the positive equilibrium under the positive profit. Finally, numerical simulations verify the results and illustrate the effectiveness of the controllers. Also, the model with positive economic profit is shown numerically to have different dynamics.
文摘In this article,we investigate a fractional-order singular Leslie-Gower prey-predator bioeconomic model,which describes the interaction bet ween populations of prey and predator,and takes into account the economic interest.We firstly obtain the solvability condition and the st ability of the model sys tem,and discuss the singularity induced bifurcation phenomenon.Next,we introduce a st ate feedback controller to elimina te the singularity induced bifurcation phenomenon,and discuss the optimal control problems.Finally,numerical solutions and their simulations are considered in order to illustrate the theoretical results and reveal the more complex dynamical behavior.
基金Supported by the National Special Fund for Key BasicResearch of China(No.19980 2 0 30 9)
文摘The stability of differential-algebraic equations (DAEs) was analyzed using singularity induced bifurcation (SIB) with one parameter. This kind of bifurcation arises in parameter-dependent DAEs having the form x·=f, 0=g. Extended DAE system reduction is introduced as a convenient method to compute the SIB points. Non-degeneracy conditions on the function g are needed. Aften verifying these conditions, the extended DAE system can be solved as an ODE by applying the implicit function theorem near the equilibrium point of the extended DAE system. These equilibrium points in turn include the SIB points of the original DAEs. The study of SIB points enables analysis of power system stability problems.