期刊文献+
共找到424篇文章
< 1 2 22 >
每页显示 20 50 100
A Novel Disturbance Observer Based Fixed-Time Sliding Mode Control for Robotic Manipulators With Global Fast Convergence
1
作者 Dan Zhang Jiabin Hu +2 位作者 Jun Cheng Zheng-Guang Wu Huaicheng Yan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期661-672,共12页
This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th... This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance. 展开更多
关键词 Disturbance observer(DO) fixed-time non-singular sliding mode control robotic manipulator trajectory tracking
下载PDF
Adaptive state-constrained/model-free iterative sliding mode control for aerial robot trajectory tracking
2
作者 Chen AN Jiaxi ZHOU Kai WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期603-618,共16页
This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sl... This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies. 展开更多
关键词 aerial robot hierarchical control strategy model-free iterative sliding mode controller(MFISMC) trajectory tracking reinforcement learning
下载PDF
Robust design of sliding mode control for airship trajectory tracking with uncertainty and disturbance estimation
3
作者 WASIM Muhammad ALI Ahsan +2 位作者 CHOUDHRY Mohammad Ahmad SHAIKH Inam Ul Hasan SALEEM Faisal 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期242-258,共17页
The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncer... The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances. 展开更多
关键词 AIRSHIP CHATTERING extended Kalman filter(EKF) model uncertainties estimation sliding mode controller(SMC)
下载PDF
ROBUST ADAPTIVE SLIDING MODE CONTROL FOR NONLINEAR UNCERTAIN NEUTRAL DELAY SYSTEM 被引量:2
4
作者 王岩青 姜长生 陈海通 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第3期259-263,共5页
Robust stabilization for a class of nonlinear uncertain neutral system with time-varying delay is investigated. By applying the Lyapunov stability theorem, an adaptive sliding mode controller (ADSMC) is developed.Ba... Robust stabilization for a class of nonlinear uncertain neutral system with time-varying delay is investigated. By applying the Lyapunov stability theorem, an adaptive sliding mode controller (ADSMC) is developed.Based on the sliding mode control technique, the controller can drive the system into a pre-specified sliding hyperplane to obtain the desired dynamic performance. Once the system dynamics reaches the sliding plane, the control system is insensitive to uncertainty. The adaptive technique can overcome the unknown upper bound of uncertainty so that the reaching condition can be satisfied. Furthermore, the controller does not include any delayed state,so such an ADSMC is memoryless. Finally, a numerical example is given to verify the validity of the developed memoryless ADSMC and the globally asymptotic stability is guaranteed for the control scheme. 展开更多
关键词 neutral delay system robust control ADAPTATION sliding mode control
下载PDF
Dynamic analysis, simulation, and control of a 6-DOF IRB-120 robot manipulator using sliding mode control and boundary layer method 被引量:3
5
作者 Mojtaba HADI BARHAGHTALAB Vahid MEIGOLI +2 位作者 Mohammad Reza GOLBAHAR HAGHIGHI Seyyed Ahmad NAYERI Arash EBRAHIMI 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2219-2244,共26页
Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,... Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator. 展开更多
关键词 robot manipulator control IRB-120 robot sliding mode control sliding mode control with boundary layer inverse dynamic control
下载PDF
Sliding Mode Controller Design for a Class of Nonlinear System
6
作者 达飞鹏 王军 宋文忠 《Journal of Southeast University(English Edition)》 EI CAS 2001年第1期31-34,共4页
A sliding mode control methodology is presented for nonlinear systems represented by input output models, which does not depend on the state variables. There are two parts in the controller design, one is the sliding... A sliding mode control methodology is presented for nonlinear systems represented by input output models, which does not depend on the state variables. There are two parts in the controller design, one is the sliding controller design and the other is the design of linear feedback system. Simulation results demonstrate the validity of the control scheme. 展开更多
关键词 nonlinear system sliding mode control adaptive control
下载PDF
Terminal Sliding Mode Controllers for Hydraulic Turbine Governing System with Bifurcated Penstocks under Input Saturation
7
作者 Ji Liang Zhihuan Chen +2 位作者 Xiaohui Yuan Binqiao Zhang Yanbin Yuan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期603-629,共27页
Terminal sliding mode controller method is introduced to enhance the regulation performance of the hydraulic turbine governing system(HTGS).For the purpose of describing the characteristics of controlled system and de... Terminal sliding mode controller method is introduced to enhance the regulation performance of the hydraulic turbine governing system(HTGS).For the purpose of describing the characteristics of controlled system and deducing the control rule,a nonlinear mathematic model of hydraulic turbine governing system with bifurcated penstocks(HTGSBF)under control input saturation is established,and the input/output state linearization feedback approach is used to obtain the relationship between turbine speed and controller output.To address the control input saturation problem,an adaptive assistant system is designed to compensate for controller truncation.Numerical simulations have been conducted under fixed point stabilization and periodic orbit tracking conditions to compare the dynamic performances of proposed terminal sliding mode controllers and conventional sliding mode controller.The results indicate that the proposed terminal sliding mode controllers not only have a faster response and accurate tracking results,but also own a stronger robustness to the system parameter variations.Moreover,the comparisons between the proposed terminal sliding mode controllers and current most often used proportional-integral-differential(PID)controller,as well its variant NPID controller,are discussed at the end of this paper,where the superiority of the terminal sliding mode controllers also have been verified. 展开更多
关键词 Hydraulic turbine governing system bifurcated penstock sliding mode controller terminal sliding mode controller saturation compensator
下载PDF
Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design 被引量:30
8
作者 Jingmei Zhang Changyin Sun +1 位作者 Ruimin Zhang Chengshan Qian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期94-101,共8页
Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near... Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near space hypersonic vehicle (NSHV) in the presence of parameter variations and external disturbances. In the attitude angle loop, a robust adaptive virtual control law is designed by using the adaptive method to estimate the unknown upper bound of the compound uncertainties. In the angular velocity loop, an adaptive sliding mode control law is designed to suppress the effect of parameter variations and external disturbances. The main benefit of the sliding mode control is robustness to parameter variations and external disturbances. To further improve the control performance, RBFNNs are introduced to approximate the compound uncertainties in the attitude angle loop and angular velocity loop, respectively. Based on Lyapunov stability theory, the tracking errors are shown to be asymptotically stable. Simulation results show that the proposed control system attains a satisfied control performance and is robust against parameter variations and external disturbances. © 2014 Chinese Association of Automation. 展开更多
关键词 AIRSHIPS Angular velocity Attitude control BACKSTEPPING control theory Design Functions Hypersonic aerodynamics Hypersonic vehicles Navigation Radial basis function networks sliding mode control Uncertainty analysis Vehicles
下载PDF
Integrated guidance and control design for missile with terminal impact angle constraint based on sliding mode control 被引量:21
9
作者 Peng Wu Ming Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期623-628,共6页
Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approac... Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approach for missile with terminal impact angle constraint is proposed.First,a mathematical model of an integrated guidance and control model in pitch plane is established,and then nonlinear transformation is employed to transform the mathematical model into a standard form suitable for sliding mode control method design.A sufficient condition for the existence of linear sliding surface is given in terms of linear matrix inequalities(LMIs),based on which the corresponding reaching motion controller is also developed.To verify the effectiveness of the proposed integrated design scheme,the numerical simulation of missile is made.The simulation results demonstrate that the proposed guidance and control law can guide missile to hit the target with desired impact angle and desired flight attitude angle simultaneously. 展开更多
关键词 GUIDANCE terminal impact angle sliding mode control integrated guidance and control linear matrix inequality(LMI).
下载PDF
FUZZY GLOBAL SLIDING MODE CONTROL BASED ON GENETIC ALGORITHM AND ITS APPLICATION FOR FLIGHT SIMULATOR SERVO SYSTEM 被引量:14
10
作者 LIU Jinkun HE Yuzhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期13-17,共5页
To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditio... To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively. 展开更多
关键词 sliding mode control Chattering free Fuzzy control Genetic algorithm Flight simulator
下载PDF
Semi-active Sliding Mode Control of Vehicle Suspension with Magneto-rheological Damper 被引量:13
11
作者 ZHANG Hailong WANG Enrong +3 位作者 ZHANG Ning MIN Fuhong SUBASH Rakheja SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期63-75,共13页
The vehicle semi-active suspension with magneto-theological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, ... The vehicle semi-active suspension with magneto-theological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control (SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological (MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity (F-v) model and its inverse model of MR damper, as well as the proposed continuous modulation (CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller (SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems. 展开更多
关键词 magneto-rheological damper vehicle suspension multi-objective performance semi-active sliding mode control FILTERING
下载PDF
Sliding Mode Controller Design for Position and Speed Control of Flight Simulator Servo System with Large Friction 被引量:21
12
作者 Liu Jinkun & Er LianjieAutomatic Control Department, Beijing University of Aeronautics and Astronautics, Beijing 100083, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期59-62,共4页
Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in... Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in the flight simulator servo system, especially in a low-speed state. Based on the description of dynamic and static models of a nonlinear Stribeck friction model, this paper puts forward sliding mode controller to overcome the friction, whose stability is 展开更多
关键词 sliding mode control Flight simulator Servo system Friction model.
下载PDF
Adaptive Terminal Sliding Mode Control for Rigid Robotic Manipulators 被引量:18
13
作者 Mezghani Ben Romdhane Neila Damak Tarak 《International Journal of Automation and computing》 EI 2011年第2期215-220,共6页
In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easil... In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot.To resolve this problem in robot control,we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators.By applying this adaptive controller,prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances.Also,the proposed controller can eliminate the chattering effect without losing the robustness property.The stability of the control algorithm can be easily verified by using Lyapunov theory.The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness. 展开更多
关键词 Terminal sliding mode sliding mode control adaptive control of robot robust control Lyapunov method.
下载PDF
Nominal Model-Based Sliding Mode Control with Backstepping for 3-Axis Flight Table 被引量:11
14
作者 刘金琨 孙富春 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第1期65-71,共7页
Based on nominal model, a novel global sliding mode controller (GSMC) with a new control scheme is proposed for a practical uncertain servo system. This control scheme consists of two combined controllers, One is th... Based on nominal model, a novel global sliding mode controller (GSMC) with a new control scheme is proposed for a practical uncertain servo system. This control scheme consists of two combined controllers, One is the global sliding mode controller for practical plant, the other is the integral backstepping controller for nominal model. Modeling error between practical plant and nominal model is used to design GSMC. The steady-state control accuracy can be guaranteed by the integral backstepping control law, and the global robustness can be obtained by GSMC. The stability of the proposed controller is proved according to the Lyapunov approach. The simulation results both of sine signal and step signal tracking for 3-axis flight table are investigated to show good position tracking performance and high robustness with respect to large and parameter changes over all the response time. 展开更多
关键词 nominal model sliding mode control backstepping control robust control 3-axis flight table
下载PDF
A novel dynamic terminal sliding mode control of uncertain nonlinear systems 被引量:17
15
作者 Jinkun LIU Fuchun SUN 《控制理论与应用(英文版)》 EI 2007年第2期189-193,共5页
A new dynamic terminal sliding mode control (DTSMC) technique is proposed for a class of single-input and single-output (SISO) uncertain nonlinear systems. The dynamic terminal sliding mode controller is formulate... A new dynamic terminal sliding mode control (DTSMC) technique is proposed for a class of single-input and single-output (SISO) uncertain nonlinear systems. The dynamic terminal sliding mode controller is formulated based on Lyapunov theory such that the existence of the sliding phase of the closed-loop control system can be guaranteed, chattering phenomenon caused by the switching control action can be eliminated, and high precision performance is realized. Moreover, by designing terminal equation, the output tracking error converges to zero in finite time, the reaching phase of DSMC is eliminated and global robustness is obtained. The simulation results for an inverted pendulum are given to demonstrate the properties of the proposed method. 展开更多
关键词 Terminal sliding mode control Dynamic sliding mode Robust control Inverted pendulum
下载PDF
Modeling and Robust Backstepping Sliding Mode Control with Adaptive RBFNN for a Novel Coaxial Eight-rotor UAV 被引量:12
16
作者 Cheng Peng Yue Bai +3 位作者 Xun Gong Qingjia Gao Changjun Zhao Yantao Tian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期56-64,共9页
This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles (UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV.... This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles (UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV. The dynamical and kinematical model for the coaxial eight-rotor UAV is developed, which has never been proposed before. A robust backstepping sliding mode controller (BSMC) with adaptive radial basis function neural network (RBFNN) is proposed to control the attitude of the eightrotor UAV in the presence of model uncertainties and external disturbances. The combinative method of backstepping control and sliding mode control has improved robustness and simplified design procedure benefiting from the advantages of both controllers. The adaptive RBFNN as the uncertainty observer can effectively estimate the lumped uncertainties without the knowledge of their bounds for the eight-rotor UAV. Additionally, the adaptive learning algorithm, which can learn the parameters of RBFNN online and compensate the approximation error, is derived using Lyapunov stability theorem. And then the uniformly ultimate stability of the eight-rotor system is proved. Finally, simulation results demonstrate the validity of the proposed robust control method adopted in the novel coaxial eight-rotor UAV in the case of model uncertainties and external disturbances. © 2014 Chinese Association of Automation. 展开更多
关键词 Adaptive control systems Aircraft control Approximation algorithms Attitude control BACKSTEPPING controllers Functions Learning algorithms Radial basis function networks Robust control Robustness (control systems) sliding mode control Uncertainty analysis
下载PDF
Disturbance observer based time-varying sliding mode control for uncertain mechanical system 被引量:12
17
作者 Binglong Cong Xiangdong Liu Zhen Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期108-118,共11页
It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical... It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical system in the presence of the parametric uncertainty and external disturbance is addressed in the TVSMC framework. Firstly, an exponential TVSMC algorithm is designed and the main features are analyzed. Especially, the control parameter is obtained by solving an optimal problem. Subsequently, the global chattering problem in TVSMC is considered. To reduce the static error resulting from the continuous TVSMC algorithm, a disturbance observer based time-varying sliding mode control (DOTVSMC) algorithm is presented. The detailed design principle and the stability of the closed-loop system under the composite controller are provided. Simulation results verify the effectiveness of the proposed algorithm. 展开更多
关键词 mechanical system time-varying sliding mode control (TVSMC) global sliding phase global chattering disturbance observer.
下载PDF
Fuzzy Sliding Mode Control for the Vehicle Height and Leveling Adjustment System of an Electronic Air Suspension 被引量:8
18
作者 Xiao-Qiang Sun Ying-Feng Cai +2 位作者 Chao-Chun Yuan Shao-Hua Wang Long Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期238-250,共13页
The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper propo... The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper proposes a new adaptive controller to control the vehicle height and to adjust the roll and pitch angles of the vehicle body(leveling control) during the vehicle height adjustment procedures by an EAS system. A nonlinear mechanism model of the full?car vehicle height adjustment system is established to reflect the system dynamic behaviors and to derive the system optimal control law. To deal with the nonlinear characters in the vehicle height and leveling adjustment processes, the nonlinear system model is globally linearized through the state feedback method. On this basis, a fuzzy sliding mode controller(FSMC) is designed to improve the control accuracy of the vehicle height adjustment and to reduce the peak values of the roll and pitch angles of the vehicle body. To verify the effectiveness of the proposed control method more accurately, the full?car EAS system model programmed using AMESim is also given. Then, the co?simulation study of the FSMC performance can be conducted. Finally, actual vehicle tests are performed with a city bus, and the test results illustrate that the vehicle height adjustment performance is effectively guaranteed by the FSMC, and the peak values of the roll and pitch angles of the vehicle body during the vehicle height adjustment procedures are also reduced significantly. This research proposes an effective control methodology for the vehicle height and leveling adjustment system of an EAS, which provides a favorable control performance for the system. 展开更多
关键词 Electronic air suspension Height adjustment Leveling control Fuzzy sliding mode control Vehicle tests
下载PDF
Backstepping sliding mode control for uncertain strict-feedback nonlinear systems using neural-network-based adaptive gain scheduling 被引量:12
19
作者 YANG Yueneng YAN Ye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期580-586,共7页
A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain st... A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC. 展开更多
关键词 backstepping control sliding mode control(SMC) neural network(NN) strict-feedback system chattering decrease
下载PDF
Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer 被引量:9
20
作者 陈强 南余荣 +1 位作者 郑恒火 任雪梅 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期157-162,共6页
A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic ... A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method. 展开更多
关键词 permanent magnet synchronous motor chaotic system sliding mode control fuzzy extended stateobserver
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部