期刊文献+
共找到238篇文章
< 1 2 12 >
每页显示 20 50 100
Optimizing near-carbon-free nuclear energy systems:advances in reactor operation digital twin through hybrid machine learning algorithms for parameter identification and state estimation
1
作者 Li‑Zhan Hong He‑Lin Gong +3 位作者 Hong‑Jun Ji Jia‑Liang Lu Han Li Qing Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期177-203,共27页
Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,... Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices. 展开更多
关键词 Parameter identification state estimation Reactor operation digital twin Reduced order model Inverse problem
下载PDF
State Estimation of Drive-by-Wire Chassis Vehicle Based on Dual Unscented Particle Filter Algorithm
2
作者 Zixu Wang Chaoning Chen +2 位作者 Quan Jiang Hongyu Zheng Chuyo Kaku 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期99-113,共15页
Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles... Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states. 展开更多
关键词 Drive-by-wire chassis vehicle Vehicle state estimation Dual unscented particle filter Tire force estimation Unscented particle filter
下载PDF
Cybersecurity Landscape on Remote State Estimation:A Comprehensive Review
3
作者 Jing Zhou Jun Shang Tongwen Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期851-865,共15页
Cyber-physical systems(CPSs)have emerged as an essential area of research in the last decade,providing a new paradigm for the integration of computational and physical units in modern control systems.Remote state esti... Cyber-physical systems(CPSs)have emerged as an essential area of research in the last decade,providing a new paradigm for the integration of computational and physical units in modern control systems.Remote state estimation(RSE)is an indispensable functional module of CPSs.Recently,it has been demonstrated that malicious agents can manipulate data packets transmitted through unreliable channels of RSE,leading to severe estimation performance degradation.This paper aims to present an overview of recent advances in cyber-attacks and defensive countermeasures,with a specific focus on integrity attacks against RSE.Firstly,two representative frameworks for the synthesis of optimal deception attacks with various performance metrics and stealthiness constraints are discussed,which provide a deeper insight into the vulnerabilities of RSE.Secondly,a detailed review of typical attack detection and resilient estimation algorithms is included,illustrating the latest defensive measures safeguarding RSE from adversaries.Thirdly,some prevalent attacks impairing the confidentiality and data availability of RSE are examined from both attackers'and defenders'perspectives.Finally,several challenges and open problems are presented to inspire further exploration and future research in this field. 展开更多
关键词 Cyber-attacks Kalman filtering remote state estimation unreliable transmission channels
下载PDF
Anomaly-Resistant Decentralized State Estimation Under Minimum Error Entropy With Fiducial Points for Wide-Area Power Systems
4
作者 Bogang Qu Zidong Wang +2 位作者 Bo Shen Hongli Dong Hongjian Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期74-87,共14页
This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines... This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines. Two classes of measurements(i.e., local measurements and edge measurements) are obtained, respectively, from the individual area and the transmission lines. A decentralized state estimator, whose performance is resistant against measurement with anomalies, is designed based on the minimum error entropy with fiducial points(MEEF) criterion. Specifically, 1) An augmented model, which incorporates the local prediction and local measurement, is developed by resorting to the unscented transformation approach and the statistical linearization approach;2) Using the augmented model, an MEEF-based cost function is designed that reflects the local prediction errors of the state and the measurement;and 3) The local estimate is first obtained by minimizing the MEEF-based cost function through a fixed-point iteration and then updated by using the edge measuring information. Finally, simulation experiments with three scenarios are carried out on the IEEE 14-bus system to illustrate the validity of the proposed anomaly-resistant decentralized SE scheme. 展开更多
关键词 Decentralized state estimation(SE) measurements with anomalies minimum error entropy unscented Kalman filter wide-area power systems
下载PDF
Target layer state estimation in multi-layer complex dynamical networks considering nonlinear node dynamics
5
作者 吴亚勇 王欣伟 蒋国平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期245-252,共8页
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ... In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method. 展开更多
关键词 multi-layer complex dynamical network nonlinear node dynamics target state estimation functional state observer
下载PDF
State Estimation Method for GNSS/INS/Visual Multi-sensor Fusion Based on Factor Graph Optimization for Unmanned System
6
作者 ZHU Zekun YANG Zhong +2 位作者 XUE Bayang ZHANG Chi YANG Xin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期43-51,共9页
With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation sa... With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss. 展开更多
关键词 state estimation multi-sensor fusion combined navigation factor graph optimization complex environments
下载PDF
Event-triggered H_(∞) PI state estimation for delayed switched neural networks
7
作者 Yuzhong Wang Changyun Wen Xiaolei Li 《Journal of Automation and Intelligence》 2024年第1期26-33,共8页
On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the est... On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the estimation error cannot be guaranteed to converge to zero.In addition,the state estimator of non-switched neural networks with integral and exponentially convergent terms cannot be used to improve the estimation performance of switched neural networks due to the difficulties caused by the nonsmoothness of the considered Lyapunov function at the switching instants.In this paper,we aim at overcoming such difficulties and filling in the gaps,by proposing a novel adaptive ETS(AETS)to design an event-based H_(∞)switched proportional-integral(PI)state estimator.A triggering-dependent exponential convergence term and an integral term are introduced into the switched PI state estimator.The relationship among the average dwell time,the AETS and the PI state estimator are established by the triggering-dependent exponential convergence term such that estimation error asymptotically converges to zero with H_(∞)performance level.It is shown that the convergence rate of the resultant error system can be adaptively adjusted according to triggering signals.Finally,the validity of the proposed theoretical results is verified through two illustrative examples. 展开更多
关键词 Switched neural networks H_(∞)performance PI state estimation Event-triggered scheme
下载PDF
Encrypted Finite-Horizon Energy-to-Peak State Estimation for Time-Varying Systems Under Eavesdropping Attacks: Tackling Secrecy Capacity 被引量:4
8
作者 Lei Zou Zidong Wang +2 位作者 Bo Shen Hongli Dong Guoping Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期985-996,共12页
This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measu... This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measurement signals transmitted over a communication network might be intercepted by potential eavesdroppers.To avoid information leakage,by resorting to an artificial-noise-assisted method,we develop a novel encryption-decryption scheme to ensure that the transmitted signal is composed of the raw measurement and an artificial-noise term.A special evaluation index named secrecy capacity is employed to assess the information security of signal transmissions under the developed encryption-decryption scheme.The purpose of the addressed problem is to design an encryptiondecryption scheme and a state estimator such that:1)the desired secrecy capacity is ensured;and 2)the required finite-horizon–l_(2)-l_(∞)performance is achieved.Sufficient conditions are established on the existence of the encryption-decryption mechanism and the finite-horizon state estimator.Finally,simulation results are proposed to show the effectiveness of our proposed encryption-decryption-based state estimation scheme. 展开更多
关键词 Artificial-noise-assisted technique EAVESDROPPING encryption-decryption scheme energy-to-peak state estimation finitehorizon state estimation
下载PDF
Distributed Secure State Estimation of Multi-Agent Systems Under Homologous Sensor Attacks
9
作者 Yukun Shi Youqing Wang Jianyong Tuo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期67-77,共11页
This paper addresses the problem of distributed secure state estimation for multi-agent systems under homologous sensor attacks.Two types of secure Luenberger-like distributed observers are proposed to estimate the sy... This paper addresses the problem of distributed secure state estimation for multi-agent systems under homologous sensor attacks.Two types of secure Luenberger-like distributed observers are proposed to estimate the system state and attack signal simultaneously.Specifically,the proposed two observers are applicable to deal with the cases in the presence and absence of time delays during network communication.It is also shown that the proposed observers can ensure the attack estimations from different agents asymptotically converge to the same value.Sufficient conditions for guaranteeing the asymptotic convergence of the estimation errors are derived.Simulation examples are finally provided to demonstrate the effectiveness of the proposed results. 展开更多
关键词 Consensus-based Luenberger-like observer distributed secure state estimation homologous signal
下载PDF
Coupled dynamic model of state estimation for hypersonic glide vehicle 被引量:13
10
作者 ZHANG Kai XIONG Jiajun FU Tingting 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1284-1292,共9页
Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variabl... Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variables and aerodynamics are presented. Firstly, the aerodynamic acceleration acting on the target is analyzed to reveal the essence of the target’s motion.Then three coupled structures for modeling aerodynamic parameters are developed by different ideas: the spiral model with a harmonic oscillator, the bank model with trigonometric functions of the bank angle and the guide model with the changing rule of guidance variables. Meanwhile, the comparison discussion is concluded to show the novelty and advantage of these models.Finally, a performance assessment in different simulation cases is presented and detailed analysis is revealed. The results show that the proposed models perform excellent properties. Moreover, the guide model produces the best tracking performance and the bank model shows the second; however, the spiral model does not outperform the maneuvering reentry vehicle(MaRV) model markedly. 展开更多
关键词 hypersonic glide vehicle state estimation dynamic model aerodynamic parameter guidance variable
下载PDF
Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects 被引量:10
11
作者 Fang Deng Jie Chen Chen Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第4期655-665,共11页
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed... An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method. 展开更多
关键词 parameter estimation state estimation unscented Kalman filter (UKF) strong tracking filter wavelet transform.
下载PDF
A Sensorless State Estimation for A Safety-Oriented Cyber-Physical System in Urban Driving:Deep Learning Approach 被引量:3
12
作者 Mohammad Al-Sharman David Murdoch +4 位作者 Dongpu Cao Chen Lv Yahya Zweiri Derek Rayside William Melek 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期169-178,共10页
In today's modern electric vehicles,enhancing the safety-critical cyber-physical system(CPS)'s performance is necessary for the safe maneuverability of the vehicle.As a typical CPS,the braking system is crucia... In today's modern electric vehicles,enhancing the safety-critical cyber-physical system(CPS)'s performance is necessary for the safe maneuverability of the vehicle.As a typical CPS,the braking system is crucial for the vehicle design and safe control.However,precise state estimation of the brake pressure is desired to perform safe driving with a high degree of autonomy.In this paper,a sensorless state estimation technique of the vehicle's brake pressure is developed using a deep-learning approach.A deep neural network(DNN)is structured and trained using deep-learning training techniques,such as,dropout and rectified units.These techniques are utilized to obtain more accurate model for brake pressure state estimation applications.The proposed model is trained using real experimental training data which were collected via conducting real vehicle testing.The vehicle was attached to a chassis dynamometer while the brake pressure data were collected under random driving cycles.Based on these experimental data,the DNN is trained and the performance of the proposed state estimation approach is validated accordingly.The results demonstrate high-accuracy brake pressure state estimation with RMSE of 0.048 MPa. 展开更多
关键词 Brake pressure state estimation cyber-physical system(CPS) deep learning dropout regularization approach
下载PDF
Improved Square-Root UKF Algorithm for State Estimation of Nonlinear Systems 被引量:4
13
作者 刘济 顾幸生 《Journal of Donghua University(English Edition)》 EI CAS 2010年第1期74-80,共7页
The square-root unscented Kalman filter (SR- UKF) for state estimation probably encounters the problem that Cholesky factor update of the covariance matrices can't be implemented when the zero'th weight of sigm... The square-root unscented Kalman filter (SR- UKF) for state estimation probably encounters the problem that Cholesky factor update of the covariance matrices can't be implemented when the zero'th weight of sigma points is negative or the mnnerical computation error becomes large during the faltering procedure. Consequently the filter becomes invalid. An improved SR-UKF algorithm (ISR- UKF) is presented for state estimation of arbitrary nonlinear systems with linear measurements. It adopts a modified form of predicted covariance matrices, and modifies the Cholesky factor calculation of the updated covariance matrix originating from the square-root covariance filtering method. Discussions have been given on how to avoid the filter invalidation and further error accumulation. The comparison between the ISR-UKF and the SR-UKF by simulation also shows both have the same accuracy for state estimation. Finally the performance of the improved filter is evaluated under the impact of model mismatch. The error behavior shows that the ISR-UKF can overcome the impact of model mismatch to a certain extent and has excellent trace capability. 展开更多
关键词 square-root unscented Kalman filter filter invalidation Cholesky factor update state estimation
下载PDF
State estimation for neural neutral-type networks with mixed time-varying delays and Markovian jumping parameters 被引量:2
14
作者 S.Lakshmanan Ju H.Park +1 位作者 H.Y.Jung P.Balasubramaniam 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期29-37,共9页
This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of mode... This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages. 展开更多
关键词 neural networks state estimation neutral delay Markovian jumping parameters
下载PDF
Application of honey-bee mating optimization on state estimation of a power distribution system including distributed generators 被引量:2
15
作者 Taher NIKNAM 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第12期1753-1764,共12页
We present a new approach based on honey-bee mating optimization to estimate the state variables in distribution networks including distributed generators. The proposed method considers practical models of electrical ... We present a new approach based on honey-bee mating optimization to estimate the state variables in distribution networks including distributed generators. The proposed method considers practical models of electrical equipments such as static var compensators, voltage regulators, and under-load tap changer transformers, which have usually nonlinear and discrete characteristics. The feasibility of the proposed approach is demonstrated by comparison with the methods based on neural networks, ant colony optimization, and genetic algorithms for two test systems, a network with 34-bus radial test feeders and a realistic 80-bus 20 kV network. 展开更多
关键词 Distributed generators (DGs) state estimation Honey-bee mating optimization (HBMO)
下载PDF
Energy flow problem solution based on state estimation approaches and smart meter data 被引量:1
16
作者 Andrew V.Pazderin Ilya D.Polyakov Vladislav O.Samoylenko 《Global Energy Interconnection》 EI CAS CSCD 2022年第5期551-563,共13页
Accurate electric energy(EE)measurements and billing estimations in a power system necessitate the development of an energy flow distribution model.This paper summarizes the results of investigations on a new problem ... Accurate electric energy(EE)measurements and billing estimations in a power system necessitate the development of an energy flow distribution model.This paper summarizes the results of investigations on a new problem related to the determination of EE flow in a power system over time intervals ranging from minutes to years.The problem is referred to as the energy flow problem(EFP).Generally,the grid state and topology may fluctuate over time.An attempt to use instantaneous(not integral)power values obtained from telemetry to solve classical electrical engineering equations leads to significant modeling errors,particularly with topology changes.A promoted EFP model may be suitable in the presence of such topological and state changes.Herein,EE flows are determined using state estimation approaches based on direct EE measurement data in Watt-hours(Volt-ampere reactive-hours)provided by electricity meters.The EFP solution is essential for a broad set of applications,including meter data validation,zero unbalance EE billing,and nontechnical EE loss check. 展开更多
关键词 Automatic meter reading Advanced metering infrastructure Energy flow distribution Electricity losses Energy measurements state estimation.
下载PDF
Super Resolution Perception for Improving Data Completeness in Smart Grid State Estimation 被引量:1
17
作者 Gaoqi Liang Guolong Liu +4 位作者 Junhua Zhao Yanli Liu Jinjin Gu Guangzhong Sun Zhaoyang Dong 《Engineering》 SCIE EI 2020年第7期789-800,共12页
The smart grid is an evolving critical infrastructure,which combines renewable energy and the most advanced information and communication technologies to provide more economic and secure power supply services.To cope ... The smart grid is an evolving critical infrastructure,which combines renewable energy and the most advanced information and communication technologies to provide more economic and secure power supply services.To cope with the intermittency of ever-increasing renewable energy and ensure the security of the smart grid,state estimation,which serves as a basic tool for understanding the true states of a smart grid,should be performed with high frequency.More complete system state data are needed to support high-frequency state estimation.The data completeness problem for smart grid state estimation is therefore studied in this paper.The problem of improving data completeness by recovering highfrequency data from low-frequency data is formulated as a super resolution perception(SRP)problem in this paper.A novel machine-learning-based SRP approach is thereafter proposed.The proposed method,namely the Super Resolution Perception Net for State Estimation(SRPNSE),consists of three steps:feature extraction,information completion,and data reconstruction.Case studies have demonstrated the effectiveness and value of the proposed SRPNSE approach in recovering high-frequency data from low-frequency data for the state estimation. 展开更多
关键词 state estimation Low-frequency data High-frequency data Super resolution perception Data completeness
下载PDF
State estimation in range coordinate using range-only measurements 被引量:1
18
作者 LI Keyi GUO Zhengkun ZHOU Gongjian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期497-510,共14页
In some tracking applications,due to the sensor characteristic,only range measurements are available.If this is the case,due to the lack of full position measurements,the observability of Cartesian states(e.g.,positio... In some tracking applications,due to the sensor characteristic,only range measurements are available.If this is the case,due to the lack of full position measurements,the observability of Cartesian states(e.g.,position and velocity)are limited to particular cases.For general cases,the range measurements can be utilized by developing a state estimation algorithm in range-Doppler(R-D)plane to obtain accurate range and Doppler estimates.In this paper,a state estimation method based on the proper dynamic model in the R-D plane is proposed.The unscented Kalman filter is employed to handle the strong nonlinearity in the dynamic model.Two filtering initialization methods are derived to extract the initial state estimate and the initial covariance in the R-D plane from the first several range measurements.One is derived based on the well-known two-point differencing method.The other incorporates the correct dynamic model information and uses the unscented transformation method to obtain the initial state estimates and covariance,resulting in a model-based method,which capitalizes the model information to yield better performance.Monte Carlo simulation results are provided to illustrate the effectiveness and superior performance of the proposed state estimation and filter initialization methods. 展开更多
关键词 range-only measurement state estimation filter initialization target tracking unscented Kalman filter(UKF)
下载PDF
Nonsynchronized state estimation of uncertain discrete-time piecewise affine systems 被引量:1
19
作者 Jianbin QIU Gang FENG Huijun GAO 《控制理论与应用(英文版)》 EI 2010年第3期286-292,共7页
This paper investigates the problem of robust H-infinity state estimation for a class of uncertain discretetime piecewise affine systems where state space instead of measurable output space partitions are assumed so t... This paper investigates the problem of robust H-infinity state estimation for a class of uncertain discretetime piecewise affine systems where state space instead of measurable output space partitions are assumed so that the filter implementation may not be synchronized with plant state trajectory transitions. Based on a piecewise quadratic Lyapunov function combined with S-procedure and some matrix inequality convexifying techniques, two different approaches are developed to the robust filtering design for the underlying piecewise affine systems. It is shown that the filter gains can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, a simulation example is provided to illustrate the effectiveness of the proposed approaches. 展开更多
关键词 Piecewise affine systems state estimation Linear fractional uncertainties Linear matrix inequality
下载PDF
Applications of state estimation in multi-sensor information fusion for the monitoring of open pit mine slope deformation 被引量:1
20
作者 付华 刘银平 肖健 《Journal of Coal Science & Engineering(China)》 2008年第2期317-320,共4页
The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monito... The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monitoring point,and that is to say it can only handle one-dimensional time series.Given this shortage in the monitoring, the multi-sensor information fusion in the state estimation techniques would be intro- duced to the slope deformation monitoring system,and by the dynamic characteristics of deformation slope,the open pit slope would be regarded as a dynamic goal,the condi- tion monitoring of which would be regarded as a dynamic target tracking.Distributed In- formation fusion technology with feedback was used to process the monitoring data and on this basis Klman filtering algorithms was introduced,and the simulation examples was used to prove its effectivenes. 展开更多
关键词 multi-sensor information fusion the side slope distortion the state estimation Klman filter algorithm
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部