期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Nano-Ni-Induced Electronic Modulation of MoS_(2) Nanosheets Enables Energy-Saving H_(2) Production and Sulfide Degradation
1
作者 Fan Liu Xinghong Cai +6 位作者 Yang Tang Wenqian Liu Qianwei Chen Peixin Dong Maowen Xu Yangyang Tan Shujuan Bao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期228-235,共8页
Electrocatalytic hydrogen evolution and sulfion(S^(2-))recycling are promising strategies for boosting H_(2)production and removing environmental pollutants.Here,a nano-Ni-functionalized molybdenum disulfide(MoS_(2))n... Electrocatalytic hydrogen evolution and sulfion(S^(2-))recycling are promising strategies for boosting H_(2)production and removing environmental pollutants.Here,a nano-Ni-functionalized molybdenum disulfide(MoS_(2))nanosheet was assembled on steel mesh(Ni-MoS_(2)/SM)for use in sulfide oxidation reaction-assisted,energy-saving H_(2)production.Experimental and theoretical calculation results revealed that anchoring nano-Ni on high-surface-area slack MoS_(2)nanosheets not only optimized catalyst adsorption of polysulfides but also played an important role in promoting hydrogen evolution reaction kinetics by absorbing OH_(ad),thereby greatly enhancing the catalytic performance toward sulfide oxidation reaction and hydrogen evolution reaction.Meanwhile,the Ni/MoS^(2-)based hydrogen evolution reaction+sulfide oxidation reaction system achieved nearly 100%hydrogen production efficiency and only consumed 61%less power per kWh than the oxygen evolution reaction+hydrogen evolution reaction system,which suggested our proposed Ni-MoS_(2)and novel hydrogen production system are promising for sustainable energy production. 展开更多
关键词 hydrogen evolution reaction low energy consumption molybdenum disulfide sulfide oxidation reaction
下载PDF
Theoretical Study on the Dehydrogenation Reaction of H_2S by VS^+ (~3Σ^-) 被引量:1
2
作者 GAO Shu-Lin LIU Zheng-Mei XIE Xiao-Guang 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2005年第10期1111-1116,共6页
The dehydrogenation reaction of H2S by the ^3Σ^- ground state of VS^+: VS^+ + H2S → VS2^+ + H2 has been studied by using Density Functional Theory (DPT) at the B3LYP/DZVP level. It is found that the reaction... The dehydrogenation reaction of H2S by the ^3Σ^- ground state of VS^+: VS^+ + H2S → VS2^+ + H2 has been studied by using Density Functional Theory (DPT) at the B3LYP/DZVP level. It is found that the reaction proceeds along two possible pathways (A and B) yielding two isomer dehydrogenation products VS2^+-1 (^3B2) and VS2^+-2 (^3A1), respectively. For both pathways, the reaction has a two-step-reaction mechanism that involves the migration of two hydrogen atoms from S2 to V^+, respectively. The migration of the second hydrogen via TS3 and that of the first via TS4 are the rate-determining steps for pathways A and B, respectively. The activation energy is 17.4 kcal/mol for pathway A and 22.8 kcal/mol for pathway B relative to the reactants. The calculated reaction heat of 9.9 kcal/mol indicates the endothermicity of pathway A and that of -11.9 kcal/mol suggests the exothermicity of pathway B. 展开更多
关键词 density functional theory cationic transition metal sulfide dehydrogenation reaction reaction mechanism
下载PDF
Synthesis and Crystal Structure of a New Quaternary Sulfide FeSm6Si2S14 被引量:1
3
作者 孙岳玲 迟洋 郭胜平 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第9期1369-1375,共7页
One new quaternary rare-earth sulfide, FeSm6Si2S(14), has been synthesized by a facile solid-state route with boron as the reducing reagent. It crystallizes in the noncentrosymmetric hexagonal space group P63, belon... One new quaternary rare-earth sulfide, FeSm6Si2S(14), has been synthesized by a facile solid-state route with boron as the reducing reagent. It crystallizes in the noncentrosymmetric hexagonal space group P63, belonging to the Ce6Al(3.33)S(14) structure-type, and the AxRE3MQ7 family. Its crystal structure features a 3-D framework constructed by SmS 8 bicapped trigonal prisms, where Fe and Si atoms occupy the octahedral(2a) and tetrahedral(2c) voids, respectively. The FeS 6 octahedra are connected with each other to form a chain along the b direction. FeSm6Si2S(14) represents a new chemical composition among the large family of AxRE3MQ7 compounds. The other related compounds containing transition metal are also discussed. 展开更多
关键词 rare-earth sulfide solid-state reaction crystal structure AxRE3MQ7 family compounds
下载PDF
Synthesis,Crystal Structure,Physical Properties and Theoretical Studies of the New Ternary Sulfide with Closed Cavities:CsYb_7S_(11) 被引量:2
4
作者 郑宇君 刘鹏飞 +2 位作者 吴新涛 吴立明 林华 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第11期1780-1790,共11页
A novel ternary rare-earth sulfide, CsYb7S(11), has been successfully synthesized by high-temperature solid-state reaction of an elemental mixture with modified Cs Cl flux. The single-crystal X-ray diffraction data ... A novel ternary rare-earth sulfide, CsYb7S(11), has been successfully synthesized by high-temperature solid-state reaction of an elemental mixture with modified Cs Cl flux. The single-crystal X-ray diffraction data reveal its orthorhombic symmetry in space group Cmca(no. 64) with a = 15.271(3), b = 13.414(2), c = 18.869(3) A°, V = 3865.2(2) A°^3, Z = 8, Mr = 1696.85, Dc = 5.832 g/cm^3, μ = 36.538 mm^-1, F(000) = 5768, the final R = 0.0225 and w R = 0.0517 for 2258 observed reflections with I 〉 2σ(I), 2.67〈θ〈27.48o, w = 1/[σ^2(Fo^2) +(0.0443 P)2 + 8.7453 P], where P =(Fo^2 + 2Fc^2)/3, S = 1.036,(Δρ)max = 1.609 and(Δρ)min = –1.922. The remarkable structural feature is the dual tricapped Cs2@S18 cube closed cavities far apart within the three-dimensional [Yb7S(11)]-covalent bonding matrix. Magnetic susceptibility measurements show that the title compound exhibits temperature-dependent(50~300 K) para-magnetism and obey the Curie-Weiss law. Moreover, the optical gap of 2.03 Ev for CsYb7S11 was deduced from the UV/Vis reflectance spectroscopy and DFT study indicates an indirect band gap with an electronic transfer excitation of S-3p to Yb-5d orbital. 展开更多
关键词 rare-earth sulfide high-temperature solid-state reaction crystal structure magnetic property optical band gap
下载PDF
Electrochemical and spectroscopic study of interfacial interactions between chalcopyrite and typical flotation process reagents 被引量:3
5
作者 Gustavo Urbano Isabel Lázaro +3 位作者 Israel Rodríguez Juan Luis Reyes Roxana Larios Roel Cruz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第2期127-136,共10页
Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between cnalcopyrite(CuFeS2) and n-isopropyl xanthate(X) in the presence of ammonium bi... Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between cnalcopyrite(CuFeS2) and n-isopropyl xanthate(X) in the presence of ammonium bisulfite/39wt%SO2 and caustic starch at different pH values.Raman spectroscopy,Fourier transform infrared(FTIR) spectroscopy,contact angle measurements,and microflotation tests were used to establish the type and extent of xanthate adsorption as well as the species involved under different mineral surface conditions in this study.The results demonstrate that the species that favor a greater hydrophobicity of chalcopyrite are primarily CuX and S^0,whereas oxides and hydroxides of Cu and Fe as well as an excess of starch decrease the hydrophobicity.A conditioning of the mineral surface with ammonium bisulfite/39wt%SO2 at pH 6 promotes the activation of surface and enhances the xanthate adsorption.However,this effect is diminished at pH ≥ 8,when an excess of starch is added during the preconditioning step. 展开更多
关键词 sulfide minerals chalcopyrite xanthates flotation interfacial reactions electrochemistry spectroscopy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部