Cooling panels are increasingly used in domestic residential buildings.To provide medium temperature cold water for the cooling panel,and dehumidify the indoor air simultaneously,a new kind of temperature-humidity ind...Cooling panels are increasingly used in domestic residential buildings.To provide medium temperature cold water for the cooling panel,and dehumidify the indoor air simultaneously,a new kind of temperature-humidity independent control air-conditioning unit was developed for single residential house by utilizing multi-variable technology.First,the supply air temperature was studied to determine the proper supply air flow rate for the humidity control.Then,the energy consumption of different temperature-humidity independent control systems was studied.The analysis indicates that unity evaporating temperature can be used to handle the moisture load and sensible heat load in two evaporators.So the unit scheme was put forward.Two evaporators were used to produce medium temperature water and dry air separately,and electric expansion valves were used to control the refrigerant distribution between the two evaporators.Then,experimental work was carried out to investigate the influence of compressor frequency,refrigerant distribution on the dehumidification capacity,energy efficiency and refrigeration capacity.In the end,the paper concludes that both compressor frequency and refrigerant distribution can control the dehumidification capacity,but the former influences the EER more than the latter,while the latter influences the refrigeration capacity more than the former.We can find a proper running point at certain sensible and latent cooling load by adjusting both compressor frequency and electric expansion valve.The energy consumption of this kind of unit was estimated and compared with present room air conditioners,which shows that it can save about 41% cooling energy consumption.展开更多
The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly d...The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.展开更多
The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is intr...The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is introduced briefly. Then the concrete overall design of the electronic controllers of four wheel independent steering system (4WIS) is formulated in details. Under the control strategy of zero sideslip angle at mass center, the mathematical model of 4WIS is established to deduce the equations of separated rear wheel steering angles. According to these equations, simulation analysis for 4WIS vehicle performances is finished to show that 4WIS vehicle can improve the maneuverability greatly at low speed and increase the handling stability at high speed. Finally, the road test of 4WIS vehide has performed to verify the correctness of simulation and show that compared with the conventional four wheel steering (4WS) vehicle, the 4WIS vehicle not only improves the kinematical harmony but also decreases steering resistance and lighten abrasion of tires.展开更多
Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to e...Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to enhance the vehicle’s longitudinal and vertical motion control performance.While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden.To facilitate the controller design and ease the load,a half-vehicle dynamics system is built and simplified to the linear-time-varying(LTV)model.Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety,energy-saving and comfort requirements.The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption.Finally,the effectiveness of the proposed controller is verified through the rapid-control-prototype(RCP)test.The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability.展开更多
In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonabl...In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonable method to optimize system dynamic performance.Integrating these two technologies into one component can combine their advantages together.However,few works focused on it.In this paper,a twin spools valve with switching technologycontrolled pilot stage(TSVSP)is presented,which applied DHT into its pilot stage while appending IMC into its main stage.Based on this prototype valve,a series of numerical and experiment analysis of its IMC performance with both simulated load and excavator boom cylinder are carried out.Results showed fast and robust performance of pressure and flow compound control with acceptable fluctuation phenomenon caused by switching technology.Rising time of flow response in excavator cylinder can be controlled within 200 ms,meanwhile,the recovery time of rod chamber pressure under suddenly changed condition is optimized within 250 ms.IMC system based on TSVSP can improve both dynamic performance and robust characteristics of the target actuator so it is practical in valve-cylinder system and can be applied in mobile machineries.展开更多
Autonomous tracking control is one of the fundamental challenges in the field of robotic autonomous navigation,especially for future intelligent robots.In this paper,an improved pure pursuit control method is proposed...Autonomous tracking control is one of the fundamental challenges in the field of robotic autonomous navigation,especially for future intelligent robots.In this paper,an improved pure pursuit control method is proposed for the path tracking control problem of a four-wheel independent steering robot.Based on the analysis of the four-wheel independent steering model,the kinematic model and the steering geometry model of the robot are established.Then the path tracking control is realized by considering the correlation between the look-ahead distance and the velocity,as well as the lateral error between the robot and the reference path.The experimental results demonstrate that the improved pure pursuit control method has the advantages of small steady-state error,fast response and strong robustness,which can effectively improve the accuracy of path tracking.展开更多
This article concerns the delay-independent guaranteed-cost control problem via memoryless state feedback for a class of neutral-type systems with structural uncertainty and a given quadratic cost function. New delay-...This article concerns the delay-independent guaranteed-cost control problem via memoryless state feedback for a class of neutral-type systems with structural uncertainty and a given quadratic cost function. New delay-independent conditions for the existence of the guaranteed-cost controller are presented in the term of LMIs. An algorithm involving optimization is proposed to design a controller achieving an optimal guaranteed-cost, such that, the system can be stabilized for all admissible uncertainties. A numerical example is provided to illustrate the feasibility of the proposed method.展开更多
The controllability of delay degenerate differential control systems is discussed. Firstly, delay degenerate differential control system was transformed to be canonical form, and the connected terms were gotten rid of...The controllability of delay degenerate differential control systems is discussed. Firstly, delay degenerate differential control system was transformed to be canonical form, and the connected terms were gotten rid of, had delay degenerate differential control systems with independent subsystems. For the general delay degenerate differnetial control systems, it was gotten that the necessary and sufficient condition of that they are controllable is that their reachable set is equal to the whole space. For the delay degenerate differential control systems with independent subsystems, it was gotten that the necessary and sufficient conditions of that they are controllable are that their reachable sets are equal to their corresponding subspaces. Then some algebra criteria were gotten. Finally, an example was given to illustrate the main results.展开更多
Aiming at the problem of large energy consumption in hydraulic control system with large load and variable working conditions,based on the multi-level pressure switching control system(MPSCS),a multi-level pressure sw...Aiming at the problem of large energy consumption in hydraulic control system with large load and variable working conditions,based on the multi-level pressure switching control system(MPSCS),a multi-level pressure switching control system based on independent metering control is proposed combined with the independent metering control technology.The configuration principle of the system is given,the mathematical model of this system is established,and the control strategy of the system under 4 different working quadrants is put forward.Finally,the control performance and energy saving characteristics of the system are tested.The test results show that the switching of high and low pressure power supply has a certain effect on the response of step position and ramp position under impedance working condition.The displacement curves show slow climbing or abrupt change of ramp position,and the position accuracy is less than 1 mm.The multi-level pressure switching control system based on independent metering control can recover and store energy under the transcendence working conditions.The control accuracy is about 1 mm,and the energy recovery rate is about 70%~80%.展开更多
Aiming at the shortcomings of the separate meter in and separate meter out?hydraulic system, a new type of independent metering control system is proposed by referring to the principle of load-sensing system. The valv...Aiming at the shortcomings of the separate meter in and separate meter out?hydraulic system, a new type of independent metering control system is proposed by referring to the principle of load-sensing system. The valve group unit in the system is designed, and the AMESim/Matlab cosimulation model of the component and system is established. The actuator speed control, energy consumption and anti-flow saturation characteristics of the system are discussed. The simulation result shows that the system proposed in this article can achieve?better performances.展开更多
In order to research stability of four-wheel independent driving (4WID) electric vehicle, a torque allocation method based on the tire longitudinal forces optimization distribution is adopted. There are two layers in ...In order to research stability of four-wheel independent driving (4WID) electric vehicle, a torque allocation method based on the tire longitudinal forces optimization distribution is adopted. There are two layers in the controller, which includes the upper layer and the lower layer. In the upper layer, according to the demand of the longitudinal force, PID controller is set up to calculate the additional yaw moment created by yaw rate and side-slip angle. In the lower layer, the additional yaw moment is distributed properly to each wheel limited by several constraints. Carsim is used to build up the vehicle model and MATLAB/Simulink is used to build up the control model and both of them are used to simulate jointly. The result of simulation shows that a torque allocation method based on the tire longitudinal forces optimization distribution can ensure the stability of the vehicle.展开更多
Safety-critical applications such as the independently driving systems of electric vehicle (EV) require a high degree of reliability. The controller area network (CAN) is used extensively in the control sectors. A...Safety-critical applications such as the independently driving systems of electric vehicle (EV) require a high degree of reliability. The controller area network (CAN) is used extensively in the control sectors. A new real-time and reliable scheduling algorithm based on time-triggered scheduler with a focus on the CAN-based distributed control systems for independently driving EV is exploited. A distributed control network model for a dual-wheel independendy driving EV is established. The timing and reliabili- ty analysis in the worst case with the algorithm is used to evaluate the predictability and dependability and the simulation based on the algorithm with CANoe software is designed. The results indicate the algorithm is more predicable and dependable.展开更多
IEEE 1012 [1] describes the SDLC phase activities for software independent verification and validation (IV & V) for nuclear power plant in truly general and conceptual manner, which requires the upward and/or down...IEEE 1012 [1] describes the SDLC phase activities for software independent verification and validation (IV & V) for nuclear power plant in truly general and conceptual manner, which requires the upward and/or downward tailoring on its interpretation for practical IV & V. It contains crucial and encompassing check points and guidelines to analyze the design integrity, without addressing the formalized and the specific criteria for IV & V activities confirming the technical integrity. It is necessary to list up the inspection viewpoint via interpretation of the standard that is practical review points checking design consistency. For fruitful IV & V of Control Element Driving Mechanism Control System (CEDMCS) software for Yonggwang Nuclear Power Plant unit 3 & 4, the specific viewpoints and approach are necessary based on the guidelines of IEEE 1012 to enhance the system quality by considering the level of implementation of the theoretical and the practical IV & V. Additionally IV & V guideline of IEEE 1012 does not specifically provide the concrete measure considering the system characteristics of CEDMCS. This paper provides the seven (7) characteristic criteria for CEDMCS IV & V, and by applying these viewpoints, the design analysis such as function, performance, interface and exception, backward and forward requirement traceability analysis has been conducted. The requirement, design, implementation, and test phase were only considered for IV & V in this project. This article also provides the translation of code to map theoretical verification and validation into practical verification and validation. This paper emphasizes the necessity of the intensive design inspection and walkthrough for requirement phase to resolve the design faults because the IV & V of early phase of SDLC obviously contributes to find out most of critical design inconsistency. Especially for test phase IV & V, it is strongly recommended to prepare the test plan document which is going to be the basis for the test coverage selection and test strategy. This test plan document should be based on the critical characteristics of function and performance of CEDMCS. Also to guarantee the independency of V & V organization participating in this project, and to acquire the full package of design details for IV & V, the systematic approach and efforts with an aspect of management is highlighted among the participants.展开更多
基金Supported by Research Fund of the 11th 5year Sci Tech National Support Project
文摘Cooling panels are increasingly used in domestic residential buildings.To provide medium temperature cold water for the cooling panel,and dehumidify the indoor air simultaneously,a new kind of temperature-humidity independent control air-conditioning unit was developed for single residential house by utilizing multi-variable technology.First,the supply air temperature was studied to determine the proper supply air flow rate for the humidity control.Then,the energy consumption of different temperature-humidity independent control systems was studied.The analysis indicates that unity evaporating temperature can be used to handle the moisture load and sensible heat load in two evaporators.So the unit scheme was put forward.Two evaporators were used to produce medium temperature water and dry air separately,and electric expansion valves were used to control the refrigerant distribution between the two evaporators.Then,experimental work was carried out to investigate the influence of compressor frequency,refrigerant distribution on the dehumidification capacity,energy efficiency and refrigeration capacity.In the end,the paper concludes that both compressor frequency and refrigerant distribution can control the dehumidification capacity,but the former influences the EER more than the latter,while the latter influences the refrigeration capacity more than the former.We can find a proper running point at certain sensible and latent cooling load by adjusting both compressor frequency and electric expansion valve.The energy consumption of this kind of unit was estimated and compared with present room air conditioners,which shows that it can save about 41% cooling energy consumption.
基金supported in part by National Natural Science Foundation of China(NSFC)under Project No.51737010.
文摘The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.
文摘The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is introduced briefly. Then the concrete overall design of the electronic controllers of four wheel independent steering system (4WIS) is formulated in details. Under the control strategy of zero sideslip angle at mass center, the mathematical model of 4WIS is established to deduce the equations of separated rear wheel steering angles. According to these equations, simulation analysis for 4WIS vehicle performances is finished to show that 4WIS vehicle can improve the maneuverability greatly at low speed and increase the handling stability at high speed. Finally, the road test of 4WIS vehide has performed to verify the correctness of simulation and show that compared with the conventional four wheel steering (4WS) vehicle, the 4WIS vehicle not only improves the kinematical harmony but also decreases steering resistance and lighten abrasion of tires.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975118,52025121)Foundation of State Key Laboratory of Automotive Simulation and Control of China(Grant No.20210104)+1 种基金Foundation of State Key Laboratory of Automobile Safety and Energy Saving of China(Grant No.KFZ2201)Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements of China(Grant No.BA2021023).
文摘Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to enhance the vehicle’s longitudinal and vertical motion control performance.While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden.To facilitate the controller design and ease the load,a half-vehicle dynamics system is built and simplified to the linear-time-varying(LTV)model.Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety,energy-saving and comfort requirements.The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption.Finally,the effectiveness of the proposed controller is verified through the rapid-control-prototype(RCP)test.The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability.
基金Supported by National Natural Science Foundation of China(Grant Nos.52005441,51890885)open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-201906)+1 种基金Zhejiang Province Natural Science Foundation of China(Grant No.LQ21E050017)China Postdoctoral Science Foundation(Grant Nos.2021M692777,2021T140594).
文摘In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonable method to optimize system dynamic performance.Integrating these two technologies into one component can combine their advantages together.However,few works focused on it.In this paper,a twin spools valve with switching technologycontrolled pilot stage(TSVSP)is presented,which applied DHT into its pilot stage while appending IMC into its main stage.Based on this prototype valve,a series of numerical and experiment analysis of its IMC performance with both simulated load and excavator boom cylinder are carried out.Results showed fast and robust performance of pressure and flow compound control with acceptable fluctuation phenomenon caused by switching technology.Rising time of flow response in excavator cylinder can be controlled within 200 ms,meanwhile,the recovery time of rod chamber pressure under suddenly changed condition is optimized within 250 ms.IMC system based on TSVSP can improve both dynamic performance and robust characteristics of the target actuator so it is practical in valve-cylinder system and can be applied in mobile machineries.
基金Supported by the National Natural Science Foundation of China(61103157)。
文摘Autonomous tracking control is one of the fundamental challenges in the field of robotic autonomous navigation,especially for future intelligent robots.In this paper,an improved pure pursuit control method is proposed for the path tracking control problem of a four-wheel independent steering robot.Based on the analysis of the four-wheel independent steering model,the kinematic model and the steering geometry model of the robot are established.Then the path tracking control is realized by considering the correlation between the look-ahead distance and the velocity,as well as the lateral error between the robot and the reference path.The experimental results demonstrate that the improved pure pursuit control method has the advantages of small steady-state error,fast response and strong robustness,which can effectively improve the accuracy of path tracking.
基金This project was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (2006A13)the Foundation of Research Project of Educational Department of Shaanxi Province (06JK149).
文摘This article concerns the delay-independent guaranteed-cost control problem via memoryless state feedback for a class of neutral-type systems with structural uncertainty and a given quadratic cost function. New delay-independent conditions for the existence of the guaranteed-cost controller are presented in the term of LMIs. An algorithm involving optimization is proposed to design a controller achieving an optimal guaranteed-cost, such that, the system can be stabilized for all admissible uncertainties. A numerical example is provided to illustrate the feasibility of the proposed method.
文摘The controllability of delay degenerate differential control systems is discussed. Firstly, delay degenerate differential control system was transformed to be canonical form, and the connected terms were gotten rid of, had delay degenerate differential control systems with independent subsystems. For the general delay degenerate differnetial control systems, it was gotten that the necessary and sufficient condition of that they are controllable is that their reachable set is equal to the whole space. For the delay degenerate differential control systems with independent subsystems, it was gotten that the necessary and sufficient conditions of that they are controllable are that their reachable sets are equal to their corresponding subspaces. Then some algebra criteria were gotten. Finally, an example was given to illustrate the main results.
基金the National Natural Science Foundation of China(No.51575471)the Natural Science Foundation of Hebei Province(No.E2018203028).
文摘Aiming at the problem of large energy consumption in hydraulic control system with large load and variable working conditions,based on the multi-level pressure switching control system(MPSCS),a multi-level pressure switching control system based on independent metering control is proposed combined with the independent metering control technology.The configuration principle of the system is given,the mathematical model of this system is established,and the control strategy of the system under 4 different working quadrants is put forward.Finally,the control performance and energy saving characteristics of the system are tested.The test results show that the switching of high and low pressure power supply has a certain effect on the response of step position and ramp position under impedance working condition.The displacement curves show slow climbing or abrupt change of ramp position,and the position accuracy is less than 1 mm.The multi-level pressure switching control system based on independent metering control can recover and store energy under the transcendence working conditions.The control accuracy is about 1 mm,and the energy recovery rate is about 70%~80%.
文摘Aiming at the shortcomings of the separate meter in and separate meter out?hydraulic system, a new type of independent metering control system is proposed by referring to the principle of load-sensing system. The valve group unit in the system is designed, and the AMESim/Matlab cosimulation model of the component and system is established. The actuator speed control, energy consumption and anti-flow saturation characteristics of the system are discussed. The simulation result shows that the system proposed in this article can achieve?better performances.
文摘In order to research stability of four-wheel independent driving (4WID) electric vehicle, a torque allocation method based on the tire longitudinal forces optimization distribution is adopted. There are two layers in the controller, which includes the upper layer and the lower layer. In the upper layer, according to the demand of the longitudinal force, PID controller is set up to calculate the additional yaw moment created by yaw rate and side-slip angle. In the lower layer, the additional yaw moment is distributed properly to each wheel limited by several constraints. Carsim is used to build up the vehicle model and MATLAB/Simulink is used to build up the control model and both of them are used to simulate jointly. The result of simulation shows that a torque allocation method based on the tire longitudinal forces optimization distribution can ensure the stability of the vehicle.
基金Supported by the National High Technology Research and Development Programme of China (No. (2008AA11 A146 ), China Postdoctoral Science Foundation (20090450298).
文摘Safety-critical applications such as the independently driving systems of electric vehicle (EV) require a high degree of reliability. The controller area network (CAN) is used extensively in the control sectors. A new real-time and reliable scheduling algorithm based on time-triggered scheduler with a focus on the CAN-based distributed control systems for independently driving EV is exploited. A distributed control network model for a dual-wheel independendy driving EV is established. The timing and reliabili- ty analysis in the worst case with the algorithm is used to evaluate the predictability and dependability and the simulation based on the algorithm with CANoe software is designed. The results indicate the algorithm is more predicable and dependable.
文摘IEEE 1012 [1] describes the SDLC phase activities for software independent verification and validation (IV & V) for nuclear power plant in truly general and conceptual manner, which requires the upward and/or downward tailoring on its interpretation for practical IV & V. It contains crucial and encompassing check points and guidelines to analyze the design integrity, without addressing the formalized and the specific criteria for IV & V activities confirming the technical integrity. It is necessary to list up the inspection viewpoint via interpretation of the standard that is practical review points checking design consistency. For fruitful IV & V of Control Element Driving Mechanism Control System (CEDMCS) software for Yonggwang Nuclear Power Plant unit 3 & 4, the specific viewpoints and approach are necessary based on the guidelines of IEEE 1012 to enhance the system quality by considering the level of implementation of the theoretical and the practical IV & V. Additionally IV & V guideline of IEEE 1012 does not specifically provide the concrete measure considering the system characteristics of CEDMCS. This paper provides the seven (7) characteristic criteria for CEDMCS IV & V, and by applying these viewpoints, the design analysis such as function, performance, interface and exception, backward and forward requirement traceability analysis has been conducted. The requirement, design, implementation, and test phase were only considered for IV & V in this project. This article also provides the translation of code to map theoretical verification and validation into practical verification and validation. This paper emphasizes the necessity of the intensive design inspection and walkthrough for requirement phase to resolve the design faults because the IV & V of early phase of SDLC obviously contributes to find out most of critical design inconsistency. Especially for test phase IV & V, it is strongly recommended to prepare the test plan document which is going to be the basis for the test coverage selection and test strategy. This test plan document should be based on the critical characteristics of function and performance of CEDMCS. Also to guarantee the independency of V & V organization participating in this project, and to acquire the full package of design details for IV & V, the systematic approach and efforts with an aspect of management is highlighted among the participants.