Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SM...Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study.展开更多
This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep ...This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively.展开更多
In order to slove a realistic test problem of TF/TA algorithm, it is necessary to make a discrete terrain model. The model has adjustable roughness parameters so as to test the optimization procedure for different typ...In order to slove a realistic test problem of TF/TA algorithm, it is necessary to make a discrete terrain model. The model has adjustable roughness parameters so as to test the optimization procedure for different types of terrain. In this paper, an algorithm to generate random terrain data is given.展开更多
[Objective] The aim was to study the distribution characteristics of terrain reflected radiation in Fujian Province.[Method] Based on solar radiation data,digital elevation model (DEM) and surface meteorological obser...[Objective] The aim was to study the distribution characteristics of terrain reflected radiation in Fujian Province.[Method] Based on solar radiation data,digital elevation model (DEM) and surface meteorological observation data in Fujian Province,plus surface albedo obtained by using remote sensing inversion method,the distribution of terrain reflected radiation in Fujian Province from 1988 to 2007 was simulated,and then its temporal and spatial distribution characteristics was studied.[Result] The simulation results of terrain reflected radiation in Fujian Province was credible.Terrain reflected radiation in Fujian Province was the highest in July (about 160 MJ/m2) and lowest in January (about 60 MJ/m2),and it was obviously higher from May to August compared with other months,while the order of terrain reflected radiation in four seasons was summer>spring>autumn>winter,and complex terrain affected the distribution of terrain reflected radiation greatly,especially in autumn and winter when sun elevation angle was small.In addition,terrain reflected radiation in most areas of Fujian Province was below 100 MJ/m2,and it was high in Ningde,Sanming and Nanping City in northern Fujian,while the maximum value (630 MJ/m2) could be found in Dong’an Island in Xiapu County in Ningde City and had good utilization value.[Conclusion] The study could provide theoretical foundation for the development and utilization of solar energy resources under complex terrain in China.展开更多
A rainstorm caused by mesoscale convective system (MCS) in Guizhou Province in June 25-26 in 2005 was simulated with the MM5 model. Based on the good simulated results of the MCS developing and the clouds physics proc...A rainstorm caused by mesoscale convective system (MCS) in Guizhou Province in June 25-26 in 2005 was simulated with the MM5 model. Based on the good simulated results of the MCS developing and the clouds physics process, and by means of reducing the height of Yunnan-Guizhou Plateau and cutting off the middle-east of the Yunnan-Guizhou Plateau on the simulated tests, the question as how the ladder terrain on the west of Yunnan-Guizhou Plateau impact on the rainstorm of Guizhou was studied. The analysis results showed that the second ladder terrain of Yunnan-Guizhou Plateau only affected the development of convective clouds on its backward position,and hardly affected the rain on its upward. The whole terrain of the Yunnan-Guizhou Plateau had a distinct impact not only on the windward slope rainfall of the west of the plateau, but also on the rainfall distribution, intensity and continuing time of the convective clouds on the middle-east of the plateau.展开更多
To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environme...To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.展开更多
To achieve accurate positioning of autonomous underwater vehicles, an appropriate underwater terrain database storage format for underwater terrain-matching positioning is established using multi-beam data as underwat...To achieve accurate positioning of autonomous underwater vehicles, an appropriate underwater terrain database storage format for underwater terrain-matching positioning is established using multi-beam data as underwater terrainmatching data. An underwater terrain interpolation error compensation method based on fractional Brownian motion is proposed for defects of normal terrain interpolation, and an underwater terrain-matching positioning method based on least squares estimation(LSE) is proposed for correlation analysis of topographic features. The Fisher method is introduced as a secondary criterion for pseudo localization appearing in a topographic features flat area, effectively reducing the impact of pseudo positioning points on matching accuracy and improving the positioning accuracy of terrain flat areas. Simulation experiments based on electronic chart and multi-beam sea trial data show that drift errors of an inertial navigation system can be corrected effectively using the proposed method. The positioning accuracy and practicality are high, satisfying the requirement of underwater accurate positioning.展开更多
The Ice,Cloud and Land Elevation Satellite-2(ICESat-2),a new spaceborne light detection and ranging(LiDAR)system,was successfully launched on September 15,2018.The ICESat-2 data increase the types of spaceborne LiDAR ...The Ice,Cloud and Land Elevation Satellite-2(ICESat-2),a new spaceborne light detection and ranging(LiDAR)system,was successfully launched on September 15,2018.The ICESat-2 data increase the types of spaceborne LiDAR data archive and provide new control point data for large-scale topographic mapping and geodetic surveying.However,the accuracy of the ATL 08 terrain estimates has not been fully evaluated on a large scale and in complex terrain conditions.This article aims to quantitatively assess the accuracy of ICESat-2 ATL 08 terrain estimates.Firstly,the ICESat-2 ATL 08 terrain estimates were compared with the high-precision airborne LiDAR digital terrain model(DTM),and impacts of acquisition time,vegetation cover type,terrain slope,and season change on the terrain estimation accuracy were analyzed.We get the following conclusions from the analysis:1)the mean and RMSE of the terrain estimates of day acquisitions are 0.22 m and 0.59 m higher than that of night acquisitions;2)the accuracy of the ATL 08 terrain estimates acquired in vegetated areas is lower than those in non-vegetated areas;3)the accuracy of the ATL 08 terrain estimates is inversely proportional to the slope,and the elevation error increases significantly when the terrain slope is larger than 30°;4)in the non-vegetation covered area,the accuracy of the ATL 08 terrain estimates of summer and winter acquisitions has no obvious discrepancy,but in vegetated area,the accuracy of winter acquisitions is significantly better than that of summer acquisitions.This research provides references for the selection and application of ICESat-2 data.展开更多
Terrain texture analysis is an important method of digital terrain analysis in quantitative geomorphological research and in the exploration of the spatial heterogeneity and autocorrelation of terrain features. Howeve...Terrain texture analysis is an important method of digital terrain analysis in quantitative geomorphological research and in the exploration of the spatial heterogeneity and autocorrelation of terrain features. However, a major issue often neglected in previous studies is the calculation unit of the terrain texture, that is, the stability analysis unit. As the test size increases, the derived terrain textures become increasingly similar so that their differences can be ignored. The test size of terrain texture is defined as the stability analysis unit. This study randomly selected 48 areas within the Loess Plateau in northern Shaanxi in China as the study sites and used the gray level co-occurrence matrix to calculate the terrain texture. The stability analysis unit of the terrain texture was then extracted, and its spatial distribution pattern in the Loess Plateau was studiedusing spatial interpolation method. Four terrain texture metrics, i.e., homogeneity, energy, correlation, and contrast, were extracted on the basis of the stability analysis unit, and the spatial variation patterns of these parameters were studied. Results showed that the spatial distribution pattern and the terrain texture metrics reflected a trend of high–low–high from north to south, which correlated with the spatial distribution of the landforms at the Loess Plateau. In addition, the terrain texture measures was significantly correlated with the terrain factors of gully density and slope, and this relationship showed that terrain texture measures based on the stability analysis unit could reflect the basic characteristics of terrain morphology. The stability analysis unit provided a reasonable analytical scale for terrain texture analysis and could be used as a measure of the regional topography to accurately describe basic terrain characteristics.展开更多
Aiming to deal with the difficult issues of terrain data model simplification and crack disposal,the paper proposed an improved level of detail(LOD)terrain rendering algorithm,in which a variation coefficient of eleva...Aiming to deal with the difficult issues of terrain data model simplification and crack disposal,the paper proposed an improved level of detail(LOD)terrain rendering algorithm,in which a variation coefficient of elevation is introduced to express the undulation of topography.Then the coefficient is used to construct a node evaluation function in the terrain data model simplification step.Furthermore,an edge reduction strategy is combined with the improved restrictive quadtree segmentation to handle the crack problem.The experiment results demonstrated that the proposed method can reduce the amount of rendering triangles and enhance the rendering speed on the premise of ensuring the rendering effect compared with a traditional LOD algorithm.展开更多
Recently, the issue has surfaced that the availability factors for wind farms built on complex terrain are lower than the originally projected values. In other words, problems have occurred such as extreme decreases i...Recently, the issue has surfaced that the availability factors for wind farms built on complex terrain are lower than the originally projected values. In other words, problems have occurred such as extreme decreases in generation output, failures of components inside and outside wind turbines including yaw motors and yaw gears, and cracking on wind turbine blades. As one of the causes of such issues, the effects of wind turbulence (terrain-induced turbulence) have been pointed out. In this study, we investigated the effects of terrain-induced turbulence on the structural strength of wind turbines through the measurement of strains in wind turbine blades and the analysis of wind data in order to establish a method for optimal wind turbine deployment that uses numerically simulated wind data and takes the structural strength of wind turbines into consideration. The investigation was conducted on Wind Turbine #10 of the Kushikino Reimei Wind Farm (in operation since Nov. 2012) in cooperation with Kyudenko New Energy Co., Ltd. Subsequently, we conducted numerical wind simulations (diagnoses of terrain-induced turbulence) to study the effects of the properties of airflow on the structural strength of wind turbines. For these simulations, the natural terrain version of the RIAM-COMPACT software package, which is based on large eddy simulation (LES), was used. The numerical simulations successfully reproduced the characteristics of the wind conditions and the structure of the three-dimensional airflow. These results enabled us to determine the threshold value for a turbulence index to be used for optimal wind turbine deployment planning that utilizes quantitative data from simulations with the natural terrain version of the RIAM-COMPACT software package.展开更多
Incremental LOD can be transmitted on the network as a stream, then users on the clients can easily catch the skeleton of terrain without downloading all the data from the server. Detailed information in a local part ...Incremental LOD can be transmitted on the network as a stream, then users on the clients can easily catch the skeleton of terrain without downloading all the data from the server. Detailed information in a local part can be added gradually when users zoom it in without redundant data transmission in this procedure. To do this, an incremental LOD method is put forward according to the regular arrangement of grid. This method applies arbitrary sized grid terrains and is not restricted to square ones with a side measuring 2 k + 1 samples. Maximum height errors are recorded when the LOD is preprocessed and it can be visualized with the geometrical Mipmaps to reduce the screen error.展开更多
Social psychology of people affected by hazards is different from normal psychology. For example, severe bank erosion in the lower reach of the Bhagirathi River in West Bengal has resulted in significant land loss (-...Social psychology of people affected by hazards is different from normal psychology. For example, severe bank erosion in the lower reach of the Bhagirathi River in West Bengal has resulted in significant land loss (-60% of all households lost land over last 20 years) and affected the livelihoods of the people in the study villages along the river. Per capita income has almost halved from 1970-2012 due to land loss. This stark nature of land erosion and vulnerability of livelihood has had far-reaching repercussions on the fabric of society and the psychology of the people in this region. Results showed that erosion-affected villages have registered compara- tively larger average family sizes (-4.1 as compared to -3.9 in non-affected villages), lower literacy levels (〈 50% compared to 〉 65% for the non-affected villages), and poor health. Reports of poor health as a result of land erosion include -60% of the respondents having reported physical ailments such as headache and abdominal discomfort, as well as 3%-5% reporting loss of emotional and psychological balance. Villages suffering from erosion showed higher positive loadings in average-coefficient of variation (CV) differential (25%-40%) depicting objectivity in their opinions for select variables of social processes. Principal component analysis (PCA) por- trayed maximum eigenvalues in the first principal component for interpersonal processes (-98%) and a minimum for intergroup proc- esses (-80%). Categorical principal component analysis (CATPCA) depicted a cluster between interpersonal and intergroup processes and another between intra-individual and group categories. The positive loadings in female-male differences in CV of perceptions portrayed relative consistency of males over the females concerning fear/phobia and physical stress while negative loadings exhibited higher consistency for females regarding psychological stress and shock. Lastly, the Taj fel matrix portrayed a distinction between hazard psychology characterized by maximum joint profit as found in Rukunpur, and normal psychology characterized by in-group favoritism as found in Matiari.展开更多
The geometric and physical analysis methods are conventional methods for the derivation of skeleton lines in the fields of cartography,digital photogrammetry,and related areas.This paper proposes a stepwise approach t...The geometric and physical analysis methods are conventional methods for the derivation of skeleton lines in the fields of cartography,digital photogrammetry,and related areas.This paper proposes a stepwise approach that uses the physical analysis method in the first stage and the geometric analysis method in the subsequent stage.The physical analysis method analyses the terrain globally to obtain a rough set of skeleton lines for a terrain surface.The rough skeleton lines help to structure the ordering of feature points by the geometric analysis method.展开更多
Most of the current computing methods used to determine the magnetic field of a uniformly magnetized cuboid assume that the observation point is located in the upper half space without a source. However, such methods ...Most of the current computing methods used to determine the magnetic field of a uniformly magnetized cuboid assume that the observation point is located in the upper half space without a source. However, such methods may generate analytical singularities for conditions of undulating terrain. Based on basic geomagnetic field theories, in this study an improved magnetic field expression is derived using an integration method of variable substitution, and all singularity problems for the entire space without a source are discussed and solved. This integration process is simpler than that of previous methods, and final integral results with a more uniform form. AT at all points in the source-flee space can be calculated without requiring coordinate transformation; thus forward modeling is also simplified. Corresponding model tests indicate that the new magnetic field expression is more correct because there is no analytical singularity and can be used with undulating terrain.展开更多
We have developed an LES (Large-Eddy Simulation) code called RIAM-COMPACT (Research Institute for Applied Mechanics, Kyushu University, Computational Prediction of Airflow over Complex Terrain). The analysis do-main o...We have developed an LES (Large-Eddy Simulation) code called RIAM-COMPACT (Research Institute for Applied Mechanics, Kyushu University, Computational Prediction of Airflow over Complex Terrain). The analysis do-main of this numerical model extends from several meters to several kilometers. The model is able to predict airflow over complex terrain with high accuracy and is also now able to estimate the annual power output of wind turbine generators with the use of field observation data. In the present study, a numerical simulation of turbulent airflow over an existing wind farm was performed using RIAM-COMPACT and high-resolution elevation data. Based on the simulation results, suitable and unsuitable locations for the operation of WTGs (Wind Turbine Generators) were identified. The latter location was subject to the influence of turbulence induced by small topographical variations just upwind of the WTG location.展开更多
Terrain slope and climate zone(heat zone)are important factors affecting land use zoning and agricultural production layout in mountainous areas.Using"weight grade method",a quantitative index of comprehensi...Terrain slope and climate zone(heat zone)are important factors affecting land use zoning and agricultural production layout in mountainous areas.Using"weight grade method",a quantitative index of comprehensively evaluating terrain slope and climatic(thermal)conditions in mountainous areas was proposed:terrain-climate superiority degree(TCSD),and TCSD,terrain superiority degree(TSD),and climate superiority degree(CSD)in 129 counties(cities and districts)of Yunnan Province were measured and analyzed.The results showed that TCSD in 50.39%of counties of Yunnan Province was relatively better(levels I and II),and TCSD in 38.76%of counties was moderate(level III),while TCSD in 10.85%of counties was relatively poorer(levels IV and V).展开更多
The Hengshan complex forms part of the central zone of the North China Craton and consists predominantly of ductilely-deformed late Archaean to Palaeoproterozoic high-grade, partly migmatitic, granitoid orthogneisses,...The Hengshan complex forms part of the central zone of the North China Craton and consists predominantly of ductilely-deformed late Archaean to Palaeoproterozoic high-grade, partly migmatitic, granitoid orthogneisses, intruded by mafic dykes of gabbroic composition. Many highly strained rocks were previously misinterpreted as supracrustal sequences and represent mylonitized granitoids and sheared dykes. Our single zircon dating documents magmatic granitoid emplacement ages between 2.52 Ga and 2.48 Ga, with rare occurrences of 2.7 Ga gneisses, possibly reflecting an older basement. A few granitic gneisses have emplacement ages between 2.35 and 2.1 Ga and show the same structural features as the older rocks, indicating that the main deformation occurred after -2.1 Ga. Intrusion of gabbroic dykes occurred at -1920 Ma, and all Hengshan rocks underwent granulite-facies metamorphism at 1.88-1.85 Ga, followed by retrogression, sheafing and uplift. We interpret the Hengshan and adjacent Fuping granitoid gneisses as the lower, plutonic, part of a late Archaean to early Palaeoproterozoic Japan-type magmatic arc, with the upper, volcanic part represented by the nearby Wutai complex. Components of this arc may have evolved at a continental margin as indicated by the 2.7 Ga zircons. Major deformation and HP metamorphism occurred in the late Palaeoproterozoic during the Luliang orogeny when the Eastern and Western blocks of the North China Craton collided to form the Trans-North China orogen. Shear zones in the Hengshan are interpreted as major lower crustal discontinuities post-dating the peak of HP metamorphism, and we suggest that they formed during orogenic collapse and uplift of the Hengshan complex in the late Palaeoproterozoic (〈1.85 Ga).展开更多
The Loess positive and negative terrains (P-N terrains), which are widely distributed on the Loess Plateau, are discussed for the first time by introducing its characteristic, demarcation as well as extraction metho...The Loess positive and negative terrains (P-N terrains), which are widely distributed on the Loess Plateau, are discussed for the first time by introducing its characteristic, demarcation as well as extraction method from high-resolution Digital Elevation Models. Using 5 m-resolution DEMs as original test data, P-N terrains of 48 geomorphological units in different parts of Shaanxi Loess Plateau are extracted accurately. Then six indicators for depicting the geomorphologic landscape and spatial configuration characteristic of P-N terrains are proposed. The spatial distribution rules of these indicators and the relationship between the P-N terrains and Loess relief are discussed for further understanding of Loess landforms. Finally, with the integration of P-N terrains and traditional terrain indices, a series of un-supervised classification methods are applied to make a proper landform classification in northern Shaanxi. Results show that P-N terrains are an effect clue to reveal energy and substance distribution rules on the Loess Plateau. A continuous change of P-N terrains from south to north in Shaanxi Loess Plateau shows an obvious spatial difference of Loess land-forms and the positive terrain area only accounted for 60.5% in this region. The P-N terrains participant landform classification method increases validity of the result, especially in the Loess tableland, Loess tableland-ridge and the Loess low-hill area. This research is significant on the study of Loess landforms with the Digital Terrains Analysis methods.展开更多
基金supported by the National Natural Science Foundation of China(No.U2142206).
文摘Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study.
基金Sponsored by the Fundamental Research Funds for the Central Universities of China(Grant No.PA2023IISL0098)the Hefei Municipal Natural Science Foundation(Grant No.202201)+1 种基金the National Natural Science Foundation of China(Grant No.62071164)the Open Fund of Information Materials and Intelligent Sensing Laboratory of Anhui Province(Anhui University)(Grant No.IMIS202214 and IMIS202102)。
文摘This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively.
文摘In order to slove a realistic test problem of TF/TA algorithm, it is necessary to make a discrete terrain model. The model has adjustable roughness parameters so as to test the optimization procedure for different types of terrain. In this paper, an algorithm to generate random terrain data is given.
文摘[Objective] The aim was to study the distribution characteristics of terrain reflected radiation in Fujian Province.[Method] Based on solar radiation data,digital elevation model (DEM) and surface meteorological observation data in Fujian Province,plus surface albedo obtained by using remote sensing inversion method,the distribution of terrain reflected radiation in Fujian Province from 1988 to 2007 was simulated,and then its temporal and spatial distribution characteristics was studied.[Result] The simulation results of terrain reflected radiation in Fujian Province was credible.Terrain reflected radiation in Fujian Province was the highest in July (about 160 MJ/m2) and lowest in January (about 60 MJ/m2),and it was obviously higher from May to August compared with other months,while the order of terrain reflected radiation in four seasons was summer>spring>autumn>winter,and complex terrain affected the distribution of terrain reflected radiation greatly,especially in autumn and winter when sun elevation angle was small.In addition,terrain reflected radiation in most areas of Fujian Province was below 100 MJ/m2,and it was high in Ningde,Sanming and Nanping City in northern Fujian,while the maximum value (630 MJ/m2) could be found in Dong’an Island in Xiapu County in Ningde City and had good utilization value.[Conclusion] The study could provide theoretical foundation for the development and utilization of solar energy resources under complex terrain in China.
文摘A rainstorm caused by mesoscale convective system (MCS) in Guizhou Province in June 25-26 in 2005 was simulated with the MM5 model. Based on the good simulated results of the MCS developing and the clouds physics process, and by means of reducing the height of Yunnan-Guizhou Plateau and cutting off the middle-east of the Yunnan-Guizhou Plateau on the simulated tests, the question as how the ladder terrain on the west of Yunnan-Guizhou Plateau impact on the rainstorm of Guizhou was studied. The analysis results showed that the second ladder terrain of Yunnan-Guizhou Plateau only affected the development of convective clouds on its backward position,and hardly affected the rain on its upward. The whole terrain of the Yunnan-Guizhou Plateau had a distinct impact not only on the windward slope rainfall of the west of the plateau, but also on the rainfall distribution, intensity and continuing time of the convective clouds on the middle-east of the plateau.
基金Pre-Research Program of General Armament Department during the11th Five-Year Plan Period (No51309020503)the National Defense Basic Research Program of China (973Program)(No973-61334)+1 种基金the National Natural Science Foundation of China(No50575042)Specialized Research Fund for the Doctoral Program of Higher Education (No20050286026)
文摘To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51179035 and 51279221)the Natural Science Foundation of Heilongjiang Province(Grant No.E201121)
文摘To achieve accurate positioning of autonomous underwater vehicles, an appropriate underwater terrain database storage format for underwater terrain-matching positioning is established using multi-beam data as underwater terrainmatching data. An underwater terrain interpolation error compensation method based on fractional Brownian motion is proposed for defects of normal terrain interpolation, and an underwater terrain-matching positioning method based on least squares estimation(LSE) is proposed for correlation analysis of topographic features. The Fisher method is introduced as a secondary criterion for pseudo localization appearing in a topographic features flat area, effectively reducing the impact of pseudo positioning points on matching accuracy and improving the positioning accuracy of terrain flat areas. Simulation experiments based on electronic chart and multi-beam sea trial data show that drift errors of an inertial navigation system can be corrected effectively using the proposed method. The positioning accuracy and practicality are high, satisfying the requirement of underwater accurate positioning.
基金Projects(41820104005,41904004,42030112)supported by the National Natural Science Foundation of China。
文摘The Ice,Cloud and Land Elevation Satellite-2(ICESat-2),a new spaceborne light detection and ranging(LiDAR)system,was successfully launched on September 15,2018.The ICESat-2 data increase the types of spaceborne LiDAR data archive and provide new control point data for large-scale topographic mapping and geodetic surveying.However,the accuracy of the ATL 08 terrain estimates has not been fully evaluated on a large scale and in complex terrain conditions.This article aims to quantitatively assess the accuracy of ICESat-2 ATL 08 terrain estimates.Firstly,the ICESat-2 ATL 08 terrain estimates were compared with the high-precision airborne LiDAR digital terrain model(DTM),and impacts of acquisition time,vegetation cover type,terrain slope,and season change on the terrain estimation accuracy were analyzed.We get the following conclusions from the analysis:1)the mean and RMSE of the terrain estimates of day acquisitions are 0.22 m and 0.59 m higher than that of night acquisitions;2)the accuracy of the ATL 08 terrain estimates acquired in vegetated areas is lower than those in non-vegetated areas;3)the accuracy of the ATL 08 terrain estimates is inversely proportional to the slope,and the elevation error increases significantly when the terrain slope is larger than 30°;4)in the non-vegetation covered area,the accuracy of the ATL 08 terrain estimates of summer and winter acquisitions has no obvious discrepancy,but in vegetated area,the accuracy of winter acquisitions is significantly better than that of summer acquisitions.This research provides references for the selection and application of ICESat-2 data.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41471316, 41571383, 41671389)the Priority Academic Program Development of Jiangsu Higher Education Institutions-PAPD (Grant No. 164320H101)the Key Project of Natural Science Research of Anhui Provincial Department of Education (Grant No. KJ2015A171)
文摘Terrain texture analysis is an important method of digital terrain analysis in quantitative geomorphological research and in the exploration of the spatial heterogeneity and autocorrelation of terrain features. However, a major issue often neglected in previous studies is the calculation unit of the terrain texture, that is, the stability analysis unit. As the test size increases, the derived terrain textures become increasingly similar so that their differences can be ignored. The test size of terrain texture is defined as the stability analysis unit. This study randomly selected 48 areas within the Loess Plateau in northern Shaanxi in China as the study sites and used the gray level co-occurrence matrix to calculate the terrain texture. The stability analysis unit of the terrain texture was then extracted, and its spatial distribution pattern in the Loess Plateau was studiedusing spatial interpolation method. Four terrain texture metrics, i.e., homogeneity, energy, correlation, and contrast, were extracted on the basis of the stability analysis unit, and the spatial variation patterns of these parameters were studied. Results showed that the spatial distribution pattern and the terrain texture metrics reflected a trend of high–low–high from north to south, which correlated with the spatial distribution of the landforms at the Loess Plateau. In addition, the terrain texture measures was significantly correlated with the terrain factors of gully density and slope, and this relationship showed that terrain texture measures based on the stability analysis unit could reflect the basic characteristics of terrain morphology. The stability analysis unit provided a reasonable analytical scale for terrain texture analysis and could be used as a measure of the regional topography to accurately describe basic terrain characteristics.
基金Supported by the National Natural Science Foundation of China(61363075)the National High Technology Research and Development Program of China(863 Program)(2012AA12A308)the Yue Qi Young Scholars Program of China University of Mining&Technology,Beijing(800015Z1117)
文摘Aiming to deal with the difficult issues of terrain data model simplification and crack disposal,the paper proposed an improved level of detail(LOD)terrain rendering algorithm,in which a variation coefficient of elevation is introduced to express the undulation of topography.Then the coefficient is used to construct a node evaluation function in the terrain data model simplification step.Furthermore,an edge reduction strategy is combined with the improved restrictive quadtree segmentation to handle the crack problem.The experiment results demonstrated that the proposed method can reduce the amount of rendering triangles and enhance the rendering speed on the premise of ensuring the rendering effect compared with a traditional LOD algorithm.
文摘Recently, the issue has surfaced that the availability factors for wind farms built on complex terrain are lower than the originally projected values. In other words, problems have occurred such as extreme decreases in generation output, failures of components inside and outside wind turbines including yaw motors and yaw gears, and cracking on wind turbine blades. As one of the causes of such issues, the effects of wind turbulence (terrain-induced turbulence) have been pointed out. In this study, we investigated the effects of terrain-induced turbulence on the structural strength of wind turbines through the measurement of strains in wind turbine blades and the analysis of wind data in order to establish a method for optimal wind turbine deployment that uses numerically simulated wind data and takes the structural strength of wind turbines into consideration. The investigation was conducted on Wind Turbine #10 of the Kushikino Reimei Wind Farm (in operation since Nov. 2012) in cooperation with Kyudenko New Energy Co., Ltd. Subsequently, we conducted numerical wind simulations (diagnoses of terrain-induced turbulence) to study the effects of the properties of airflow on the structural strength of wind turbines. For these simulations, the natural terrain version of the RIAM-COMPACT software package, which is based on large eddy simulation (LES), was used. The numerical simulations successfully reproduced the characteristics of the wind conditions and the structure of the three-dimensional airflow. These results enabled us to determine the threshold value for a turbulence index to be used for optimal wind turbine deployment planning that utilizes quantitative data from simulations with the natural terrain version of the RIAM-COMPACT software package.
文摘Incremental LOD can be transmitted on the network as a stream, then users on the clients can easily catch the skeleton of terrain without downloading all the data from the server. Detailed information in a local part can be added gradually when users zoom it in without redundant data transmission in this procedure. To do this, an incremental LOD method is put forward according to the regular arrangement of grid. This method applies arbitrary sized grid terrains and is not restricted to square ones with a side measuring 2 k + 1 samples. Maximum height errors are recorded when the LOD is preprocessed and it can be visualized with the geometrical Mipmaps to reduce the screen error.
文摘Social psychology of people affected by hazards is different from normal psychology. For example, severe bank erosion in the lower reach of the Bhagirathi River in West Bengal has resulted in significant land loss (-60% of all households lost land over last 20 years) and affected the livelihoods of the people in the study villages along the river. Per capita income has almost halved from 1970-2012 due to land loss. This stark nature of land erosion and vulnerability of livelihood has had far-reaching repercussions on the fabric of society and the psychology of the people in this region. Results showed that erosion-affected villages have registered compara- tively larger average family sizes (-4.1 as compared to -3.9 in non-affected villages), lower literacy levels (〈 50% compared to 〉 65% for the non-affected villages), and poor health. Reports of poor health as a result of land erosion include -60% of the respondents having reported physical ailments such as headache and abdominal discomfort, as well as 3%-5% reporting loss of emotional and psychological balance. Villages suffering from erosion showed higher positive loadings in average-coefficient of variation (CV) differential (25%-40%) depicting objectivity in their opinions for select variables of social processes. Principal component analysis (PCA) por- trayed maximum eigenvalues in the first principal component for interpersonal processes (-98%) and a minimum for intergroup proc- esses (-80%). Categorical principal component analysis (CATPCA) depicted a cluster between interpersonal and intergroup processes and another between intra-individual and group categories. The positive loadings in female-male differences in CV of perceptions portrayed relative consistency of males over the females concerning fear/phobia and physical stress while negative loadings exhibited higher consistency for females regarding psychological stress and shock. Lastly, the Taj fel matrix portrayed a distinction between hazard psychology characterized by maximum joint profit as found in Rukunpur, and normal psychology characterized by in-group favoritism as found in Matiari.
文摘The geometric and physical analysis methods are conventional methods for the derivation of skeleton lines in the fields of cartography,digital photogrammetry,and related areas.This paper proposes a stepwise approach that uses the physical analysis method in the first stage and the geometric analysis method in the subsequent stage.The physical analysis method analyses the terrain globally to obtain a rough set of skeleton lines for a terrain surface.The rough skeleton lines help to structure the ordering of feature points by the geometric analysis method.
基金supported by China Geological Survey Northeastern Tarim Aeromagnetic and Aerogravity comprehensive survey project(No.12120115039401)
文摘Most of the current computing methods used to determine the magnetic field of a uniformly magnetized cuboid assume that the observation point is located in the upper half space without a source. However, such methods may generate analytical singularities for conditions of undulating terrain. Based on basic geomagnetic field theories, in this study an improved magnetic field expression is derived using an integration method of variable substitution, and all singularity problems for the entire space without a source are discussed and solved. This integration process is simpler than that of previous methods, and final integral results with a more uniform form. AT at all points in the source-flee space can be calculated without requiring coordinate transformation; thus forward modeling is also simplified. Corresponding model tests indicate that the new magnetic field expression is more correct because there is no analytical singularity and can be used with undulating terrain.
文摘We have developed an LES (Large-Eddy Simulation) code called RIAM-COMPACT (Research Institute for Applied Mechanics, Kyushu University, Computational Prediction of Airflow over Complex Terrain). The analysis do-main of this numerical model extends from several meters to several kilometers. The model is able to predict airflow over complex terrain with high accuracy and is also now able to estimate the annual power output of wind turbine generators with the use of field observation data. In the present study, a numerical simulation of turbulent airflow over an existing wind farm was performed using RIAM-COMPACT and high-resolution elevation data. Based on the simulation results, suitable and unsuitable locations for the operation of WTGs (Wind Turbine Generators) were identified. The latter location was subject to the influence of turbulence induced by small topographical variations just upwind of the WTG location.
基金Graduate Program from Science Research Fund of Yunnan Department of Education(2021Y547).
文摘Terrain slope and climate zone(heat zone)are important factors affecting land use zoning and agricultural production layout in mountainous areas.Using"weight grade method",a quantitative index of comprehensively evaluating terrain slope and climatic(thermal)conditions in mountainous areas was proposed:terrain-climate superiority degree(TCSD),and TCSD,terrain superiority degree(TSD),and climate superiority degree(CSD)in 129 counties(cities and districts)of Yunnan Province were measured and analyzed.The results showed that TCSD in 50.39%of counties of Yunnan Province was relatively better(levels I and II),and TCSD in 38.76%of counties was moderate(level III),while TCSD in 10.85%of counties was relatively poorer(levels IV and V).
基金funded by the German Science Foundation(DFG,grant Kr 590/62)the National Natural Science Foundation of China(grant Nos.49832030,49772143 and 49572140 to Li Jianghai)
文摘The Hengshan complex forms part of the central zone of the North China Craton and consists predominantly of ductilely-deformed late Archaean to Palaeoproterozoic high-grade, partly migmatitic, granitoid orthogneisses, intruded by mafic dykes of gabbroic composition. Many highly strained rocks were previously misinterpreted as supracrustal sequences and represent mylonitized granitoids and sheared dykes. Our single zircon dating documents magmatic granitoid emplacement ages between 2.52 Ga and 2.48 Ga, with rare occurrences of 2.7 Ga gneisses, possibly reflecting an older basement. A few granitic gneisses have emplacement ages between 2.35 and 2.1 Ga and show the same structural features as the older rocks, indicating that the main deformation occurred after -2.1 Ga. Intrusion of gabbroic dykes occurred at -1920 Ma, and all Hengshan rocks underwent granulite-facies metamorphism at 1.88-1.85 Ga, followed by retrogression, sheafing and uplift. We interpret the Hengshan and adjacent Fuping granitoid gneisses as the lower, plutonic, part of a late Archaean to early Palaeoproterozoic Japan-type magmatic arc, with the upper, volcanic part represented by the nearby Wutai complex. Components of this arc may have evolved at a continental margin as indicated by the 2.7 Ga zircons. Major deformation and HP metamorphism occurred in the late Palaeoproterozoic during the Luliang orogeny when the Eastern and Western blocks of the North China Craton collided to form the Trans-North China orogen. Shear zones in the Hengshan are interpreted as major lower crustal discontinuities post-dating the peak of HP metamorphism, and we suggest that they formed during orogenic collapse and uplift of the Hengshan complex in the late Palaeoproterozoic (〈1.85 Ga).
基金Key Project of National Natural Science Foundation of China, No.40930531 National Youth Science Foundation of China, No.40801148 Anhui Provincial Natural Science Foundation. No. 090412062
文摘The Loess positive and negative terrains (P-N terrains), which are widely distributed on the Loess Plateau, are discussed for the first time by introducing its characteristic, demarcation as well as extraction method from high-resolution Digital Elevation Models. Using 5 m-resolution DEMs as original test data, P-N terrains of 48 geomorphological units in different parts of Shaanxi Loess Plateau are extracted accurately. Then six indicators for depicting the geomorphologic landscape and spatial configuration characteristic of P-N terrains are proposed. The spatial distribution rules of these indicators and the relationship between the P-N terrains and Loess relief are discussed for further understanding of Loess landforms. Finally, with the integration of P-N terrains and traditional terrain indices, a series of un-supervised classification methods are applied to make a proper landform classification in northern Shaanxi. Results show that P-N terrains are an effect clue to reveal energy and substance distribution rules on the Loess Plateau. A continuous change of P-N terrains from south to north in Shaanxi Loess Plateau shows an obvious spatial difference of Loess land-forms and the positive terrain area only accounted for 60.5% in this region. The P-N terrains participant landform classification method increases validity of the result, especially in the Loess tableland, Loess tableland-ridge and the Loess low-hill area. This research is significant on the study of Loess landforms with the Digital Terrains Analysis methods.