期刊文献+
共找到181篇文章
< 1 2 10 >
每页显示 20 50 100
Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors
1
作者 Tengjie Wang Wenkai Li +2 位作者 Xuehui Ge Ting Qiu Xiaoda Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期243-250,共8页
High-purity ethylene carbonate(EC)is widely used as battery electrolyte,polycarbonate monomer,organic intermediate,and so on.An economical and sustainable route to synthesize high-purity ethylene carbonate(EC)via the ... High-purity ethylene carbonate(EC)is widely used as battery electrolyte,polycarbonate monomer,organic intermediate,and so on.An economical and sustainable route to synthesize high-purity ethylene carbonate(EC)via the transesterification of dimethyl carbonate(DMC)with ethylene glycol(EG)is provided in this work.However,this reaction is so fast that the reaction kinetics,which is essential for the industrial design,is hard to get by the traditional measuring method.In this work,an easy-to-assemble microreactor was used to precisely determine the reaction kinetics for the fast transesterification of DMC with EG using sodium methoxide as catalyst.The effects of flow rate,microreactor diameter,catalyst concentration,reaction temperature,and reactant molar ratio were investigated.An activity-based pseudohomogeneous kinetic model,which considered the non-ideal properties of reaction system,was established to describe the transesterification of DMC with EG.Detailed kinetics data were collected in the first 5 min.Using these data,the parameters of the kinetic model were correlated with the maximum average error of 11.19%.Using this kinetic model,the kinetic data at different catalyst concentrations and reactant molar ratios were predicted with the maximum average error of 13.68%,suggesting its satisfactory prediction performance. 展开更多
关键词 Microreactor KINETICS Ethylene carbonate synthesis transesterification Sodium methoxide
下载PDF
Process Characterization of the Transesterification of Rapeseed Oil to Biodiesel Using Design of Experiments and Infrared Spectroscopy
2
作者 Tobias Drieschner Andreas Kandelbauer +1 位作者 Bernd Hitzmann Karsten Rebner 《Journal of Renewable Materials》 SCIE EI 2023年第4期1643-1660,共18页
For optimization of production processes and product quality,often knowledge of the factors influencing the process outcome is compulsory.Thus,process analytical technology(PAT)that allows deeper insight into the proc... For optimization of production processes and product quality,often knowledge of the factors influencing the process outcome is compulsory.Thus,process analytical technology(PAT)that allows deeper insight into the process and results in a mathematical description of the process behavior as a simple function based on the most important process factors can help to achieve higher production efficiency and quality.The present study aims at characterizing a well-known industrial process,the transesterification reaction of rapeseed oil with methanol to produce fatty acid methyl esters(FAME)for usage as biodiesel in a continuous micro reactor set-up.To this end,a design of experiment approach is applied,where the effects of two process factors,the molar ratio and the total flow rate of the reactants,are investigated.The optimized process target response is the FAME mass fraction in the purified nonpolar phase of the product as a measure of reaction yield.The quantification is performed using attenuated total reflection infrared spectroscopy in combination with partial least squares regression.The data retrieved during the conduction of the DoE experimental plan were used for statistical analysis.A non-linear model indicating a synergistic interaction between the studied factors describes the reactor behavior with a high coefficient of determination(R^(2))of 0.9608.Thus,we applied a PAT approach to generate further insight into this established industrial process. 展开更多
关键词 Process analytical technology transesterification design of experiment attenuated total reflection infrared spectroscopy partial least square regression
下载PDF
Simulation for Transesterification of Methyl Acetate and n-Butanol in a Reactive and Extractive Distillation Column Using Ionic Liquids as Entrainer and Catalyst 被引量:12
3
作者 蔡贾林 崔现宝 杨志才 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第5期754-762,共9页
A new reactive and extractive distillation process with ionic liquids as entrainer and catalyst (RED-IL)was proposed to produce methanol and n-butyl acetate by transesterification reaction of methyl acetate with n-b... A new reactive and extractive distillation process with ionic liquids as entrainer and catalyst (RED-IL)was proposed to produce methanol and n-butyl acetate by transesterification reaction of methyl acetate with n-butanol. The RED-IL process was simulated via a rigorous model, and high purity products of methanol and n-butyl acetate can be obtained in such a process. The effects of reflux ratio, feed mode, holdup, feed location, entrainer ratio and catalyst concentration on RED-IL process were investigated. The conversion of methyl acetate and purities of products increase with the holdup in column, entrainer ratio and catalyst content. An optimal reflux ratio exists in RED-IL process. Comparing to the mixed-feed mode, the segregated-feed mode is more effective, in which the optimal feed locations of reactants exist. 展开更多
关键词 ionic liquid reactive and extractive distillation transesterification reaction azeotropic mixture
下载PDF
Activity and basic properties of KOH/mordenite for transesterification of palm oil 被引量:7
4
作者 Pisitpong Intarapong Sotsanan Iangthanarat +2 位作者 Pitchaya Phanthong Apanee Luengnaruemitchai Samai Jai-In 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第5期690-700,共11页
The catalytic performance of KOH/mordenite has been studied for transesterification of palm oil using a batch reactor and a packed-bed reactor at 60 C and atmospheric pressure.The KOH/mordenite processed transesterifi... The catalytic performance of KOH/mordenite has been studied for transesterification of palm oil using a batch reactor and a packed-bed reactor at 60 C and atmospheric pressure.The KOH/mordenite processed transesterification in the batch reactor gave the highest methyl ester yield of96.7%under optimum conditions,while a methyl ester content over 94.5%was obtained in the packed-bed reactor.This comparison indicates that transesterification in a batch-type reactor gives a higher methyl ester yield than that of a continuous-flow reactor.Dealumination was found in the calcined catalysts and had a significant effect on the physical structure and chemical composition of the catalysts.Leaching of the potassium species was negligible,whereas depositing and washing of the reacted mixture with acetone on the catalyst surface were observed by FTIR. 展开更多
关键词 transesterification BIODIESEL MORDENITE KOH solid base catalyst
下载PDF
Zirconium-containing UiO-66 as an efficient and reusable catalyst for transesterification of triglyceride with methanol 被引量:8
5
作者 Fan Zhou Ningyue Lu +2 位作者 Binbin Fan Huigang Wang Ruifeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第5期874-879,共6页
Zirconium-based MOFs of the UiO family have attracted considerable attention due to their high thermal,chemical and mechanical stability. With the aim of further exploring the applications of zirconium-based UiO-66 in... Zirconium-based MOFs of the UiO family have attracted considerable attention due to their high thermal,chemical and mechanical stability. With the aim of further exploring the applications of zirconium-based UiO-66 in acid-catalyzed reactions and elucidating the effects of the defects in UiO-66 materials on their catalytic performances, in this work, a series of zirconium-containing UiO-66 samples were synthesized by varying the synthesis temperatures and BDC/Zr(terephthalic acid/ZrCl) ratios in the synthesis system.The synthesized UiO-66 samples were characterized by X-ray diffraction(XRD), Nadsorption-desorption,scanning electron microscopy(SEM), thermogravimetrical analysis(TGA), temperature-programmed desorption of NH(NH-TPD). Their catalytic performances were investigated in transesterification of tributyrin and soybean oil with methanol. The results showed that UiO-66 samples with different amounts of defects could be successfully prepared by varying the synthesis temperatures and/or the BDC/Zr ratios used in the synthesis system. The catalytic activities of the UiO-66 materials greatly depended on their linker defects and enhanced with the increase of the defect amount. The UiO-66 was an efficient catalyst for transesterification of tributyrin and soybean oil with methanol under mild reaction conditions and its catalytic activity was comparable to other solid acid catalysts reported in the literatures. The UiO-66 catalyst was relatively stable and could be reused. 展开更多
关键词 Metal organic frameworks Solid acid transesterification UiO-66 CATALYST
下载PDF
Modified graphene‐based materials as effective catalysts for transesterification of rapeseed oil to biodiesel fuel 被引量:6
6
作者 Justina Gaidukevic Jurgis Barkauskas +4 位作者 Anna Malaika Paulina Rechnia-Goracy Aleksandra Mozdzynska Vitalija Jasulaitiene Mieczyslaw Kozlowski 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第10期1633-1645,共13页
Production of biodiesel by the transesterification process using different modified graphene‐based materials as catalysts was studied.Solid acid graphene‐based samples were prepared by grafting sulfonic or phosphate... Production of biodiesel by the transesterification process using different modified graphene‐based materials as catalysts was studied.Solid acid graphene‐based samples were prepared by grafting sulfonic or phosphate groups on the surface of thermally reduced graphene oxide.The obtained materials were thoroughly characterized using scanning electron microscopy,X‐ray diffraction,thermogravimetric analysis,X‐ray photoelectron spectroscopy,N2 adsorption‐desorption measurements,potentiometric titration,elemental analysis,and Fourier transform infrared spectroscopy.The prepared catalysts were tested in the transesterification of rapeseed oil with methanol at 130°C under pressure,and their activities were compared to the performance of a commercially available heterogeneous acidic catalyst,Amberlyst‐15.All modified samples were active in the transesterification process;however,significant differences were observed in the yield of biodiesel,depending on the method of catalyst preparation and strength of the acidic sites.The highest yield of fatty acid methyl esters of 70%was obtained for thermally reduced graphene oxide functionalized with 4‐benzenediazonium sulfonate after 6 h of processing,and this result was much higher than that obtained for the commercial catalyst Amberlyst‐15.The results of the reusability test were also promising. 展开更多
关键词 GRAPHENE Surface functionalization Acidic catalyst Sulfonic group transesterification BIODIESEL
下载PDF
Study on Immobilized Lipase Catalyzed Transesterification Reaction of Tung Oil 被引量:8
7
作者 XU Gui-zhuan ZHANG Bai-liang LIU Sheng-yong YUE Jian-zhi 《Agricultural Sciences in China》 CAS CSCD 2006年第11期859-864,共6页
The transesterification reaction conditions of tung oil with methanol have been studied in this article, with immobilized lipase NOVO435 as catalyst. The response surface methodology was used to optimize the transeste... The transesterification reaction conditions of tung oil with methanol have been studied in this article, with immobilized lipase NOVO435 as catalyst. The response surface methodology was used to optimize the transesterification reaction of tung oil in a nonsolvent system. The optimal conditions were rotation rate 200 r/min, molar ratio of methanol to oil 2.2: l, reaction temperature 43℃, and the catalyst amount 14% (based on the weight of oil). After reacting for 18 h, 67.5% of the oil was converted to its corresponding methyl esters (the theoretical ester conversion was 73.3%). The lipase was washed by organic solvents after each reaction and was reused again. The esters conversion of tung oil was decreased by 6% after the lipase was reused for 120 h. The theoretical amount of methanol was added in two steps, 85% ester conversion was obtained after 36 h of reaction (theoretical ester conversion was 100%). The molar ratio of methanol to oil, the catalyst amount, the reaction temperature, and reaction time were all highly significant factors, and there was a relative significant interaction between every two factors. 展开更多
关键词 NONSOLVENT transesterification BIODIESEL LIPASE tung oil
下载PDF
Molybdosphoric Acid Mixed with Titania Used as a Catalyst to Synthesize Diphenyl Carbonate via Transesterification of Dimethyl Carbonate and Phenol 被引量:7
8
作者 Tong Chen Huajun Han +5 位作者 Zhiping Du Jie Yao Gongying Wang Dachuan Shi Desheng Zhang Zhiming Chen 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第4期303-306,共4页
The 12-molybdosphoric acid mixed with titania (MPA-TiO2) was found to be a novel and efficient catalyst for the synthesis of diphenyl carbonate (DPC) via transesterification of dimethyl carbonate (DMC) and pheno... The 12-molybdosphoric acid mixed with titania (MPA-TiO2) was found to be a novel and efficient catalyst for the synthesis of diphenyl carbonate (DPC) via transesterification of dimethyl carbonate (DMC) and phenol. The X-ray diffraction (XRD) and infrared (IR) techniques were employed to characterize the prepared catalysts. The effect of the weight ratio of the 12-molybdosphoric acid to titania on the transesterification was investigated. A 13.1% yield of DPC and an 11.6% yield of methyl phenyl carbonate (MPC) were obtained over MPA-TiO2 with the weight ratio of MPA to TiO2 as 5:1. 展开更多
关键词 transesterification 12-molybdosphate acid TITANIA methyl phenyl carbonate diphenyl carbonate
下载PDF
Solid base catalysts derived from Ca-M-Al(M = Mg, La, Ce, Y) layered double hydroxides for dimethyl carbonate synthesis by transesterification of methanol with propylene carbonate 被引量:14
9
作者 Yunhui Liao Feng Li +2 位作者 Xin Dai Ning Zhao Fukui Xiao 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第11期1860-1869,共10页
Composite solid base catalysts derived from Ca‐M‐Al(M=Mg,La,Ce,Y)layered double hydroxides(LDH)were synthesized,characterized and applied to the transesterification of methanol with propylene carbonate.X‐ray diffra... Composite solid base catalysts derived from Ca‐M‐Al(M=Mg,La,Ce,Y)layered double hydroxides(LDH)were synthesized,characterized and applied to the transesterification of methanol with propylene carbonate.X‐ray diffraction analyses of the catalysts show that all of the catalysts were in the form of composite oxides.Compared with the Ca‐Al LDH catalyst,the specific surface areas and pore volumes of the catalysts were increased with the introduction of Mg,La or Ce.The catalytic performance of these catalysts increases in the order of Ca‐Y‐Al<Ca‐Al<Ca‐Ce‐Al<Ca‐La‐Al<Ca‐Mg‐Al,which is consistent with the total surface basic amounts of these materials and the formation of especially strong basic sites following modification with Mg and La.The Ca‐Mg‐Al catalyst shows the highest(Ca+Mg):Al atomic ratio,indicating that it likely contains more unsaturated O2?ions,providing it with the highest concentration of very strong basic sites.The recyclability of these catalysts is improved following the addition of Mg,La,Ce or Y,with the Ca‐Mg‐Al maintaining a high level of activity after ten recycling trials.X‐ray diffraction analyses of fresh and used Ca‐Mg‐Al demonstrate that this catalyst is exceptionally stable,which could be of value in practical applications related to heterogeneous catalysis. 展开更多
关键词 Ca‐M‐Al layered double hydroxide Solid base transesterification Dimethyl carbonate
下载PDF
Transesterification of palm oil to biodiesel using Brφnsted acidic ionic liquid as high-efficient and eco-friendly catalyst 被引量:5
10
作者 Yaoyao Feng Ting Qiu +3 位作者 Jinbei Yang Ling Li Xiaoda Wang Hongxing Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第9期1222-1229,共8页
The transesterification of palm oil and methanol catalyzed by Br?nsted acidic ionic liquids was investigated. Four eco-friendly Br?nsted acidic ionic liquids were prepared and their structures were characterized by NM... The transesterification of palm oil and methanol catalyzed by Br?nsted acidic ionic liquids was investigated. Four eco-friendly Br?nsted acidic ionic liquids were prepared and their structures were characterized by NMR, FT-IR and TG–DTG. The results demonstrated that [CyN_(1,1)PrSO_3H][p-TSA] was more efficient than the other ionic liquids and chosen as catalyst for further research. The influences of various reaction parameters on the conversion of palm oil to biodiesel were performed, and the orthogonal test was investigated to seek the optimum reaction conditions, which were illustrated as follows: methanol to oil mole ratio of 24:1, catalyst dosage of 3.0 wt% of oil, reaction temperature of 120 °C, reaction time of 150 min, and the biodiesel yield achieved 98.4%. In addition, kinetic study was established for the conversion process, with activation energy and preexponential factor of 122.93 k J·mol^(-1) and 1.83 × 10^(15), respectively. Meanwhile, seven-time recycling runs of ionic liquid were completed with ignorable loss of its catalyst activity. The refined biodiesel met the biodiesel standard EN 14214. 展开更多
关键词 Brφnsted acidic ionic liquid BIODIESEL Palm oil transesterification KINETIC Optimization
下载PDF
Detailed investigation of optimized alkali catalyzed transesterification of Jatropha oil for biodiesel production 被引量:5
11
作者 Waqas Ahmed Muhammad Faizan Nazar +2 位作者 Syed Danish Ali Usman Ali Rana Salah Ud-Din Khan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第3期331-336,共6页
The non-edible oils are believed to be one of the major feedstock for the production of biodiesel in future.In the present study,we investigated the production of Jatropha oil methyl esters(JOMEs) via alkali-catalyz... The non-edible oils are believed to be one of the major feedstock for the production of biodiesel in future.In the present study,we investigated the production of Jatropha oil methyl esters(JOMEs) via alkali-catalyzed transesterification route.The biophysical characteristics of Jatropha oil were found within the optimal range in accordance with ASTM standards as a substitute diesel fuel.The chemical composition and production yield of as-synthesized biodiesel were confirmed by various analytical techniques such as FT-IR,1H NMR,13 C NMR and gas chromatography coupled with mass spectrometry.A high percentage conversion,~96.09%,of fatty acids into esters was achieved under optimized transesterification conditions with 6 :1 oil to methanol ratio and 0.9 wt% Na OH for 50 min at ~60°C.Moreover,twelve fatty acids methyl esters(FAME) were quantified in the GC/MS analysis and it was interesting to note that the mass fragmentation pattern of saturated,monounsaturated and diunsaturated FAME was comparable with the literature reported values. 展开更多
关键词 Jatropha oil methyl esters transesterification biodiesel fuel gas chromatography mass spectrometry
下载PDF
Transesterification of sunflower oil in microchannels with circular obstructions 被引量:4
12
作者 Harrson S.Santana Joao L.Silva Jr +1 位作者 Deborah S.Tortola Osvaldir P.Taranto 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第4期852-863,共12页
The present paper studied numerical and experimentally the transesterification reaction between sunflower oil and ethanol with NaO H catalyst in microchannels with circular obstructions. The micromixer design influenc... The present paper studied numerical and experimentally the transesterification reaction between sunflower oil and ethanol with NaO H catalyst in microchannels with circular obstructions. The micromixer design influence on fluid mixing and oil conversion was investigated for a range of operating conditions: Reynolds number(Re = 0.1–100),Temperature(25–75 °C), ethanol/oil molar ratio(6-12), and catalyst concentration(0.75 wt%–1.25 wt%), using three microchannel configurations(Length = 35 mm; Width = 1500 μm; Height = 200 μm): T-shape – channel without obstructions; MCO – channel with 3 obstructions ensemble – equally disposed over longitudinal length;MWO – channel with 7 obstructions ensemble. The MCO micromixer was based on literature work, and the MWO is a totally new micromixer design. Experimental tests were conducted in similar conditions in microreactors using these micromixers(Length = 411 mm) made of polydimethylsiloxane. The MCO configuration presented the highest performance(mixing index of 0.80 at Re = 100), oil conversion of 81.13% at 75 °C, molar ratio of 9 and catalyst concentration of 1%. Experimental results showed high conversions for MCO and MWO configurations(99.99%) at 50 °C, molar ratio of 9 and catalyst concentration of 1%, with a residence time of 12 s. 展开更多
关键词 BIODIESEL Sunflower oil-ethanol transesterification reaction Circular obstructions MICROREACTOR Numerical simulation
下载PDF
Investigation on the deactivation cause of lead-zinc double oxide for the synthesis of diphenyl carbonate by transesterification 被引量:3
13
作者 Zhihui Li Yanji Wang +1 位作者 Xiaoshu Ding Xinqiang Zhao 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第1期104-109,共6页
The deactivation cause of lead-zinc double oxide for synthesis of diphenyl carbonate (DPC) by transesterification of dimethyl carbonate (DMC) with phenol has been investigated. X-ray diffraction (XRD), X-ray pho... The deactivation cause of lead-zinc double oxide for synthesis of diphenyl carbonate (DPC) by transesterification of dimethyl carbonate (DMC) with phenol has been investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), thermogravimetry analysis (TG), atomic absorption spectroscopy and elementary analysis are employed for the catalyst characterization. The results show that, the formation of Pb4O(OC6H5)6 through the reaction of phenol and lead species in the catalyst leads to the crystal phase change of active component and serious leaching of lead, which is the cause of the catalyst deactivation. In addition, the composition of the leached lead is ascertained to be a mixture of Pb4O(OC6H5)6 and PbO with the weight percentage of 62.7% and 37.3%, respectively. 展开更多
关键词 lead-zinc double oxide DEACTIVATION dimethyl carbonate transesterification diphenyl carbonate organic lead
下载PDF
Optimization of safflower oil transesterification using the Taguchi approach 被引量:2
14
作者 N.Kumar S.K.Mohapatra +2 位作者 S.S.Ragit K.Kundu R.Karmakar 《Petroleum Science》 SCIE CAS CSCD 2017年第4期798-805,共8页
Biodiesel is an alternative renewable fuel which is produced by using biomass resources. Its physicochemical properties are close to those of the petroleum diesel fuel. This study highlights biodiesel production from ... Biodiesel is an alternative renewable fuel which is produced by using biomass resources. Its physicochemical properties are close to those of the petroleum diesel fuel. This study highlights biodiesel production from safflower seed oil. The main aim of this experimental work is to optimize the process parameters, namely the methanolto-oil molar ratio, catalyst concentration, reaction time and reaction temperature for biodiesel production. The Taguchi robust design approach was used with an L9 orthogonal array to analyze the influence of process factors on performance parameters. The results showed that the optimum yield of biodiesel was 93.8% with viscosity 5.60 c St, with a methanol-to-oil molar ratio of 4:1, catalyst concentration of 1.5 wt%, reaction time of 90 min and reaction temperature of 60 ℃. The catalyst concentration was found to be the most influencing parameter which contributed 51.1% and 50.8% of the total effect on the yield of biodiesel, Y;, and viscosity of biodiesel, Y;, respectively. 展开更多
关键词 ANOVA BIODIESEL OPTIMIZATION Taguchi approach transesterification
下载PDF
Preparation of Diphenyl Oxalate from Transesterification of Dimethyl Oxalate with Phenol over TS-1 Catalyst 被引量:2
15
作者 Xin Bin MA Sheng Ping WANG +1 位作者 Hong Li GUO Gen Hui XU 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第5期461-464,共4页
Diphenyl oxalate was synthesized from transesterification of dimethyl oxalate with phenol over TS-1 ( 2.5 wt% Ti ) catalyst. TS-1 catalyst, as a heterogeneous catalyst, showed excellent selectivity of diphenyl oxalat... Diphenyl oxalate was synthesized from transesterification of dimethyl oxalate with phenol over TS-1 ( 2.5 wt% Ti ) catalyst. TS-1 catalyst, as a heterogeneous catalyst, showed excellent selectivity of diphenyl oxalate and methylphenyl oxalate compared with other homogeneous catalysts. Lewis acid sites on TS-1 catalyst were the active sites for transesterification of dimethyl oxalate with phenol. The high selectivity was closely related to the weak acid sites over TS-1. 展开更多
关键词 Diphenyl oxalate transesterification dimethyl oxalate weak acid sites TS-1.
下载PDF
Dimethyl carbonate synthesis via transesterification catalyzed by quaternary ammonium salt functionalized chitosan 被引量:2
16
作者 Yuan Zhao Liang Nian He +1 位作者 Yuan Yi Zhuang Jin Quan Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第3期286-290,共5页
A quaternary ammonium salt covalently linked to chitosan was first used as a catalyst for dimethyl carbonate (DMC) synthesis by the transesterification of propylene carbonate (PC) with methanol. The effects of var... A quaternary ammonium salt covalently linked to chitosan was first used as a catalyst for dimethyl carbonate (DMC) synthesis by the transesterification of propylene carbonate (PC) with methanol. The effects of various reaction variables like reaction time, temperature and pressure on the catalytic performance were also investigated. 54% DMC yield and 71% PC conversion were obtained under the optimal reaction conditions. Notably, the catalyst was able to be reused with retention of high catalytic activity and selectivity. Consequently, the process presented here has great potential for industrial application due to its advantages such as stability, easy preparation from renewable biopolymer, and simple separation from products. 展开更多
关键词 CHITOSAN Quaternary ammonium salt transesterification Dimethyl carbonate
下载PDF
Synthesis of porous CaO microsphere and its application in catalyzing transesterification reaction for biodiesel 被引量:2
17
作者 白海鑫 沈晓真 +1 位作者 刘小花 刘圣勇 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期674-677,共4页
It is hoped to develop a simple and low cost route for preparing the CaO with a novel morphology which can present high catalytic activity in catalyzing transesterification reaction for biodiesel. The porous CaO micro... It is hoped to develop a simple and low cost route for preparing the CaO with a novel morphology which can present high catalytic activity in catalyzing transesterification reaction for biodiesel. The porous CaO microsphere was synthesized by calcining spherical CaCO3 precursor which was prepared easily by mixing CaCl2 with Na2CO3. The as-prepared CaO microsphere was characterized by scanning electronic microscopy(SEM), powder X-ray diffractometry(XRD) and N2 adsorption experiment. The results reveal that the synthesized CaO is regular microsphere with many pores in its exterior and interior. The CaO microsphere is applied in catalyzing the transesterification reaction of soybean oil for biodiesel and presents excellent catalytic ability with a transesterification yield of 98.72%. This catalyst could have potential applications in other fields in view of its well-defined morphology, simply synthetic route and low cost. 展开更多
关键词 POROUS CAO MICROSPHERE transesterification CATALYSIS BIODIESEL
下载PDF
Synthesis of Mg_5(CO_3)_4(OH)_2·4H_2O with Flower-like Micro-structure and Its Catalytic Activity for Transesterification of Dimethyl Carbonate with Phenol 被引量:2
18
作者 WANG Qiang WANG Ke-li +2 位作者 WU Xing-long LUO Sheng-jun HU Chang-wen 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第6期641-645,共5页
A novel flower-like hydrated magnesium carbonate hydroxide, Mg5 (CO3 )4 (OH)2·4H2O, with micro-structure composed of individual thin nano-sheets was synthesized using a facile solution route without the use o... A novel flower-like hydrated magnesium carbonate hydroxide, Mg5 (CO3 )4 (OH)2·4H2O, with micro-structure composed of individual thin nano-sheets was synthesized using a facile solution route without the use of template or organic surfactant. Reaction time has an important effect on the final morphology of the product. The micro-structure and morphology of Mg5 (CO3)4 (OH)2·4H2O were characterized by means of X-ray diffractometry (XRD), fieldemission scanning electron microscopy(FE-SEM). Brunauer-Emmett-Teller(BET) surface areas of the samples were also measured. The probable formation mechanism of flower-like micro-structure was discussed. It was found that Mg5 (CO3)4( OH)2·4H2O with flower-like micro-structure was a novel and efficient catalyst for the synthesis of diphenyl carbonate (DPC) by transesterification of dimethyl carbonate (DMC) with phenol. 展开更多
关键词 Mg5(CO3)4(OH)2 ·4H2O Flower-like micro-structure Catalytic property transesterification Diphenyl carbonate
下载PDF
Molecular Simulation of Transesterification of Ethylene Carbonate and Methanol Catalyzed by Ionic Liquids 被引量:2
19
作者 Guo Liying Wu Hao +2 位作者 Wang Yirong Cui Zhongyi Chen Yanming 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2019年第4期73-80,共8页
Four ionic liquids [BMIM]OH, [BMIM]IM, [BMIM]Br, and [BMIM]PF6 were synthesized and characterized by infrared spectroscopy. Then the effects of ionic liquids(ILs), cocatalysts, and reaction temperature on the catalyti... Four ionic liquids [BMIM]OH, [BMIM]IM, [BMIM]Br, and [BMIM]PF6 were synthesized and characterized by infrared spectroscopy. Then the effects of ionic liquids(ILs), cocatalysts, and reaction temperature on the catalytic performance for transesterification of ethylene carbonate and methanol were investigated with orthogonal experiments. The influence of cations and anions of ILs on catalytic activity was revealed by the density functional theory(DFT). The reaction mechanism was proposed based on the experimental results and DFT. The results demonstrated that the optimal catalyst was [Bmim]PF6/CaO, which exhibited the advantages of high activity, excellent stability, and easy recycling. Under the optimized conditions covering a catalytic temperature of 130 °C, an ionic liquid/cocatalyst mass ratio of 5:1, and a catalyst dosage of 4.0%, the conversion rate could reach 65.23% with a dimethyl carbonate selectivity of 98.95%. No significant loss of catalyst activity was detected after 7 recycle times. 展开更多
关键词 ionic liquids CATALYST transesterification molecular simulation
下载PDF
Enzyme-catalyzed Transesterification of Unusual Substrate: Synthesis of Acyclovir and L-ascorbic Acid (Vitamin C) Vinyl Esters 被引量:1
20
作者 Xing Tao XUE De Shui Lu +3 位作者 Zhi Chun CHEN Qi WU Ying CAI Xian Fu LIN 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第2期163-166,共4页
The synthesis of acyclovir and L-ascorbic acid with divinyladipate was performed with alkaline protease from Bacillus subtilis and lipase from Lipozyme (immobilized from Mucor miehei) in different anhydrous organic so... The synthesis of acyclovir and L-ascorbic acid with divinyladipate was performed with alkaline protease from Bacillus subtilis and lipase from Lipozyme (immobilized from Mucor miehei) in different anhydrous organic solvents. Two corresponding derivatives were obtained. 展开更多
关键词 Alkaline protease LIPASE transesterification ACYCLOVIR vitamin C vinyl ester.
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部