In this study, we examine the water wave radiation by arrays of truncated circular cylinders. Each cylinder can oscillate independently in any rigid oscillation mode with a prescribed amplitude, including translationa...In this study, we examine the water wave radiation by arrays of truncated circular cylinders. Each cylinder can oscillate independently in any rigid oscillation mode with a prescribed amplitude, including translational and rotational modes such as surge, sway, heave, pitch, roll, and their combinations. Based on the eigenfunction expansion and Graf's addition theorem for Bessel functions, we developed an analytical method that includes the effects of evanescent modes in order to analyze such arrays of cylinders. To investigate the effects of several influential factors on convergence,our objective is to dramatically reduce the number of tests required and determine the influencing relationships between truncation number and convergence behavior for different factor combinations. We use the orthogonal test method to fulfill the objective. Lastly, we present our results regarding the effects of evanescent modes on hydrodynamic coefficients.展开更多
The repetitive control(RC) or repetitive controller problem for nonminimum phase nonlinear systems is both challenging and practical. In this paper, we consider an RC problem for the translational oscillator with a ro...The repetitive control(RC) or repetitive controller problem for nonminimum phase nonlinear systems is both challenging and practical. In this paper, we consider an RC problem for the translational oscillator with a rotational actuator(TORA), which is a nonminimum phase nonlinear system. The major difficulty is to handle both a nonminimum phase RC problem and a nonlinear problem simultaneously. For such purpose, a new RC design, namely the additive-state-decomposition-based approach, is proposed,by which the nonminimum phase RC problem and the nonlinear problem are separated. This makes RC for the TORA benchmark tractable. To demonstrate the effectiveness of the proposed approach, a numerical simulation is given.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11072246, 51490673)the National Basic Research Program (973 Program) of China (Grant 2014CB046801)
文摘In this study, we examine the water wave radiation by arrays of truncated circular cylinders. Each cylinder can oscillate independently in any rigid oscillation mode with a prescribed amplitude, including translational and rotational modes such as surge, sway, heave, pitch, roll, and their combinations. Based on the eigenfunction expansion and Graf's addition theorem for Bessel functions, we developed an analytical method that includes the effects of evanescent modes in order to analyze such arrays of cylinders. To investigate the effects of several influential factors on convergence,our objective is to dramatically reduce the number of tests required and determine the influencing relationships between truncation number and convergence behavior for different factor combinations. We use the orthogonal test method to fulfill the objective. Lastly, we present our results regarding the effects of evanescent modes on hydrodynamic coefficients.
基金supported by National Natural Science Foundation of China(No.61473012)
文摘The repetitive control(RC) or repetitive controller problem for nonminimum phase nonlinear systems is both challenging and practical. In this paper, we consider an RC problem for the translational oscillator with a rotational actuator(TORA), which is a nonminimum phase nonlinear system. The major difficulty is to handle both a nonminimum phase RC problem and a nonlinear problem simultaneously. For such purpose, a new RC design, namely the additive-state-decomposition-based approach, is proposed,by which the nonminimum phase RC problem and the nonlinear problem are separated. This makes RC for the TORA benchmark tractable. To demonstrate the effectiveness of the proposed approach, a numerical simulation is given.