It is widely accepted that in a turbulent boundary layer (TBL) with adverse pressure gradient (APG) an outer peak usually appears in the profile of streamwise Reynolds stress. However, the effect of APG on this ou...It is widely accepted that in a turbulent boundary layer (TBL) with adverse pressure gradient (APG) an outer peak usually appears in the profile of streamwise Reynolds stress. However, the effect of APG on this outer peak is not clearly understood. In this paper, the effect of APG is analysed using the numerical and experimental results in the literature. Because the effect of upstream flow is inherent in the TBL, we first analyse this effect in TBLs with zero pressure gradient on flat plates. Under the individual effect of upstream flow, an outer peak already appears in the profile of streamwise Reynolds stress when the TBL continues developing in the streamwise direction. The APG accelerates the appearance of the outer peak, instead of being a trigger.展开更多
Previous studies carried out in the early 1990s conjectured that the main compressible effects could be associated with the dilatational effects of velocity fluctuation. Later, it was shown that the main compressibili...Previous studies carried out in the early 1990s conjectured that the main compressible effects could be associated with the dilatational effects of velocity fluctuation. Later, it was shown that the main compressibility effect came from the reduced pressure-strain term due to reduced pressure fluctuations. Although better understanding of the compressible turbulence is generally achieved with the increased DNS and experimental research effort, there are still some discrepancies among these recent findings. Analysis of the DNS and experimental data suggests that some of the discrepancies are apparent if the compressible effect is related to the turbulent Mach number, Mt. From the comparison of two classes of compressible flow, homogenous shear flow and inhomogeneous shear flow (mixing layer), we found that the effect of compressibility on both classes of shear flow can be characterized in three categories corresponding to three regions of turbulent Mach numbers: the low-Mr, the moderate-Mr and high-Mr regions. In these three regions the effect of compressibility on the growth rate of the turbulent mixing layer thickness is rather different. A simple approach to the reduced pressure-strain effect may not necessarily reduce the mixing-layer growth rate, and may even cause an increase in the growth rate. The present work develops a new second-moment model for the compressible turbulence through the introduction of some blending functions of Mt to account for the compressibility effects on the flow. The model has been successfully applied to the compressible mixing layers.展开更多
In this work,the laminar-to-turbulent transition phenomenon around the two-and three-dimensional ellipsoid at different Reynolds numbers is numerically investigated.In the present paper,Reynolds Averaged Navier Stokes...In this work,the laminar-to-turbulent transition phenomenon around the two-and three-dimensional ellipsoid at different Reynolds numbers is numerically investigated.In the present paper,Reynolds Averaged Navier Stokes(RANS)equations with the Spalart-Allmaras,SST k-ω,and SST-Trans models are used for numerical simulations.The possibility of laminar-toturbulent boundary layer transition is summarized in phase diagrams in terms of skin friction coefficient and Reynolds number.The numerical results show that SST-Trans method can detect different aspects of flow such as adverse pressure gradient and laminar-to-turbulent transition onset.Our numerical results indicate that the laminar-to-turbulent transition location on the 6:1 prolate spheroid is in a good agreement with the experimental data at high Reynolds numbers.展开更多
Background Turbulent shear stress (TSS) plays an important role in the research of fluid dynamics of heart valves. This study aimed to perform a quantitative study of TSS downstream of porcine artificial mitral valv...Background Turbulent shear stress (TSS) plays an important role in the research of fluid dynamics of heart valves. This study aimed to perform a quantitative study of TSS downstream of porcine artificial mitral valves in order to verify the correlation of hot-film anemometry (HFA) and Doppler echocardiography combined with computer-aided image analysis for the detection of TSS. Methods A porcine model of mitral valve replacement was established. HFA and Doppler ultrasound techniques were used to directly and indirectly measure TSS-relevant parameters of the artificial mitral valve following different mitral valve replacements: different approaches were used to reserve the subvalvular apparatus of the mitral valve. A correlation analysis was then carried out. Results There was a significant correlation between the HFA and Doppler ultrasound combined with computer-aided image analysis of the TSS at the same time and at the same site. No significant difference was found in the TSS measured by the two methods. Conclusions Compared with HFA, Doppler echocardiography combined with computer-aided image analysis is a safe, non-invasive, and real-time method that enables accurate and quantitative detection of TSS downstream in vivo, objectively reflecting the flow field downstream of the artificial mitral valve. Doppler ultrasound combined with computer- aided image analysis can be employed for quantitatively evaluating the downstream hemodynamic performance of the mitral valve.展开更多
Tidal current velocity profile in the near-bed layers has been widely studied. The results showed that velocity profile in the near-bed layer obviously departure from the traditional logarithmic profile, due to the ac...Tidal current velocity profile in the near-bed layers has been widely studied. The results showed that velocity profile in the near-bed layer obviously departure from the traditional logarithmic profile, due to the acceleration or deceleration. Although the logarithmic linear profile can reduce the rate of deviation from this, only it is a lower-order approximate solution. In this paper, considering the unsteady and non-linear features of tidal motion, the double logarithmic profile near-bed layers in estuarine and coastal waters is established on the assumption that the turbulent shear stress along the water depth was parabolic distribution, and on the basis of Prandtl's mixing length theory and yon Karman's self-similar theory. Having been verified the data observed at the West Solent in the south of England, and comparison of the logarithmic linear profile, it found that the double logarithmic profile is more precious than the latter. At last, the discussed results showed that: (1) The parabolic distribution of the tidal shear stresses verified good by the field data and experimental data, can be better reflected the basic features of the tidal shear stress deviating from linear distribution that is downward when to accelerate, upward when to decelerate. (2) The traditional logarithmic velocity profile is the zero-order approximation solution of the double logarithmic profile, the logarithmic linear profile is the first order, and the logarithmic parabolic profile is the second order. (3) Ignoring the conditions of diffusion and convection in the tida movement, the double logarithmic profile can reflect the tidal properties of acceleration or deceleration, so that the calculation of the friction velocity and roughness length are more reasonable. When the acceleration or the deceleration is about zero, the double logarithmic profile becomes the logarithmic profile.展开更多
Natural beaches tend to be concave-up rather than planar and are reasonable to be modeled by an equilibrium beach profile. A governing equation for longshore current on an equilibrium beach is derived and its analytic...Natural beaches tend to be concave-up rather than planar and are reasonable to be modeled by an equilibrium beach profile. A governing equation for longshore current on an equilibrium beach is derived and its analytical solution is given in this paper. Through comparisons of the present solution and field data of longshore current for a step-type beach, the present solution is found to have fairly agreeable prediction to longshore current inside the surf zone. The effects of the shape of a concave-up beach and turbulent mixing stress on longshore current inside the surf zone are discussed in the present paper.展开更多
The non-physiologic turbulent flows in centrifugal rotary blood pumps (RBPs) may result in complications such as the hemolysis and the platelet activation. Recent researches suggest that the turbulent viscous dissipat...The non-physiologic turbulent flows in centrifugal rotary blood pumps (RBPs) may result in complications such as the hemolysis and the platelet activation. Recent researches suggest that the turbulent viscous dissipation in the smallest eddies is the main factor of the blood trauma caused by the turbulent flow. The turbulent viscous shear stress (TVSS) was taken as the realistic physical force acting on the cells. However, limited by the temporal and spatial resolutions of the instrumentation currently available, very limited studies are available for the TVSS in the RBPs. In this paper, the large eddy particle image velocimetry (PIV) method is used to estimate the turbulent dissipation rate in the sub-grid scale, to investigate the effect of the TVSS on the blood trauma. Detailed flow characteristics, such as the relative velocity vectors, the estimated TVSS levels and the Kolmogorov length scales, are analyzed in three impeller phases at three constant flow rates (3 L/min, 5 L/min and 7 L/min). Over the measures range in this study, the maximum TVSS in the investigated RBP is lower than the reported critical value of stress. This study demonstrates that the large eddy PIV method is effective to evaluate the flow-dependent force on the cells. On the other hand, it is found that the TVSS is highly dependent on the flow behavior. Under severe off-design conditions, the complex flow characteristics, such as the flow separation and the vortical structures, will increase the TVSS. Thus, in order to reduce the hemolysis in the RBPs, the flow disturbance, induced by the departure of the incidence angle, should be avoided during the design of the RBPs.展开更多
Ion's toroidal velocity, vt, in both the outermost 4 cm of the confined region and the scrap-off layer of Ohmic L-mode plasmas in EAST was measured using Mach probes. At about 1 cm inside the separatrix a local minim...Ion's toroidal velocity, vt, in both the outermost 4 cm of the confined region and the scrap-off layer of Ohmic L-mode plasmas in EAST was measured using Mach probes. At about 1 cm inside the separatrix a local minimum in vt was observed, from which a cocurrent rotation increased both inwards and outwards. The radial width of the vt dip was 1 cm to 2 cm, and both the density and electron temperature profiles exhibited steep gradients at this dip position. It was observed in both divertor and limiter configurations. To find out its origin, the toroidal torques induced by neutral friction, neoclassical viscosity, collisional perpendicular shear viscosity, ion orbit loss and turbulent Reynolds stress were estimated using the measured parameters. Our results indicate that in this particular parameter regime the neutral friction was the dominant damping force. The calculated cocurrent toroidal torque by the neoclassical viscosity dominates over those from the collisional perpendicular shear viscosity, ion orbit loss and turbulent Reynolds stress. These results are potentially important for the understanding of boundary conditions for the intrinsic toroidal momentum in tokamak plasmas.展开更多
Nettings are complex flexible structures used in various fisheries.Understanding the hydrodynamic characteristics,de-formation,and the flow field around nettings is important to design successful fishing gear.This stu...Nettings are complex flexible structures used in various fisheries.Understanding the hydrodynamic characteristics,de-formation,and the flow field around nettings is important to design successful fishing gear.This study investigated the hydrodynamic characteristics and deformation of five nettings made of polyethylene and nylon materials in different attack angles through numeri-cal simulation and physical model experiment.The numerical model was based on the one-way coupling between computational fluid dynamics(CFD)and large deflection nonlinear structural models.Navier-Stokes equations were solved using the finite volume ap-proach,the flow was described using the k-ωshear stress turbulent model,and the large deflection structural dynamic equation was derived using a finite element approach to understand the netting deformation and nodal displacement.The porous media model was chosen to model the nettings in the CFD solver.Numerical data were compared with the experimental results of the physical model to validate the numerical models.Results showed that the numerical data were compatible with the experimental data with an average relative error of 2.34%,3.40%,6.50%,and 5.80%in the normal drag coefficients,parallel drag coefficients,inclined drag coefficients,and inclined lift coefficients,respectively.The hydrodynamic forces of the polyethylene and nylon nettings decreased by approxi-mately 52.56%and 66.66%,respectively,with decreasing net solidity.The drag and lift coefficients of the nylon netting were appro-ximately 17.15%and 6.72%lower than those of the polyethylene netting.A spatial development of turbulent flow occurred around the netting because of the netting wake.However,the flow velocity reduction downstream from the netting in the wake region in-creased with increasing attack angle and net solidity.In addition,the deformation,stress,and strain on each netting increased with in-creasing solidity ratio.展开更多
A challenge in the study of turbulent boundary layers(TBLs) is to understand the non-equilibrium relaxation process after separation and reattachment due to shock-wave/boundary-layer interaction. The classical boundar...A challenge in the study of turbulent boundary layers(TBLs) is to understand the non-equilibrium relaxation process after separation and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.展开更多
The large eddy simulation(LES)is used to resolve the flow structure in the cavitating turbulent flow around the Clark-Y hydrofoil coupled with a homogeneous cavitation model.A new method is proposed in this paper to c...The large eddy simulation(LES)is used to resolve the flow structure in the cavitating turbulent flow around the Clark-Y hydrofoil coupled with a homogeneous cavitation model.A new method is proposed in this paper to calculate the LES error of the time-averaged streamwise velocity for the LES verification and validation(V&V).From the instantaneous cavity patterns,it is demonstrated that the predicted results agree fairly well with the experimental data.With this new proposed method,the LES errors can be easily and effectively calculated with a limited mesh number,and the method might be used in the other applications of the LES V&V.Results of the LES errors obtained by the new method show that the relatively steady flow can be simulated with small errors,while the complex flow structures at the cavity shedding region might lead to an increase of errors in the LES modeling.In addition,the distributions of the resolved Reynolds stresses are used to estimate the influences of the cavitation on the turbulent fluctuations.Results indicate that the turbulent fluctuations for the cavitating flow are much larger in magnitude as compared to the cases without cavitation.展开更多
A three-equation transition model based on the transition V-model is proposed for subsonic flows in this study. Considering the mechanical approximation of the generation process of the pre-transitional vorticities, t...A three-equation transition model based on the transition V-model is proposed for subsonic flows in this study. Considering the mechanical approximation of the generation process of the pre-transitional vorticities, the value of laminar Reynolds shear stress related to the mean shear deformation was calculated in the original transition V-model. Then a new transition model, named V-SA model, was proposed, which considered the phenomenological process of transition and presented great results for flows with and without pressure gradient. It is well-known that the baseline Shear Stress Transport(SST) turbulence model shows excellent performance of accuracy and robustness in plentiful flow cases, but it is important to predict boundary layer transition. The current model(V-SST) successfully couples the V-model to the SST turbulence model by introducing the effective turbulent viscosity and additional correction terms into the transport equations. A thorough evaluation of its ability to predict transition features is performed versus the well-documented flat plate of ERCOFTAC, including T3A and T3B without pressure gradient, T3L2 and T3L3 with semi-circular leading edge, the three-dimensional 6:1 prolate-spheroid under two angles of attack, and the NLR-7301 airfoil under different Mach numbers. Numerical results show that the current model has an attractive and superior performance in the simulation of boundary layer transition processes.展开更多
The author shows the existence of long-time averages to turbulent solutions of the Navier-Stokes equations and determines the equations satisfied by them, involving a Reynolds stress that is shown to be dissipative.
基金supported by the Sino-French Project AX-IOOM (Advanced Experiments and Simulations of Complex Flows in Turbomachines)the National Natural Science Foundation of China (51136003, 50976010)the National Basic Research Program of China (2012CB720205)
文摘It is widely accepted that in a turbulent boundary layer (TBL) with adverse pressure gradient (APG) an outer peak usually appears in the profile of streamwise Reynolds stress. However, the effect of APG on this outer peak is not clearly understood. In this paper, the effect of APG is analysed using the numerical and experimental results in the literature. Because the effect of upstream flow is inherent in the TBL, we first analyse this effect in TBLs with zero pressure gradient on flat plates. Under the individual effect of upstream flow, an outer peak already appears in the profile of streamwise Reynolds stress when the TBL continues developing in the streamwise direction. The APG accelerates the appearance of the outer peak, instead of being a trigger.
基金the National Natural Science Foundation of China (10232020,90505005)
文摘Previous studies carried out in the early 1990s conjectured that the main compressible effects could be associated with the dilatational effects of velocity fluctuation. Later, it was shown that the main compressibility effect came from the reduced pressure-strain term due to reduced pressure fluctuations. Although better understanding of the compressible turbulence is generally achieved with the increased DNS and experimental research effort, there are still some discrepancies among these recent findings. Analysis of the DNS and experimental data suggests that some of the discrepancies are apparent if the compressible effect is related to the turbulent Mach number, Mt. From the comparison of two classes of compressible flow, homogenous shear flow and inhomogeneous shear flow (mixing layer), we found that the effect of compressibility on both classes of shear flow can be characterized in three categories corresponding to three regions of turbulent Mach numbers: the low-Mr, the moderate-Mr and high-Mr regions. In these three regions the effect of compressibility on the growth rate of the turbulent mixing layer thickness is rather different. A simple approach to the reduced pressure-strain effect may not necessarily reduce the mixing-layer growth rate, and may even cause an increase in the growth rate. The present work develops a new second-moment model for the compressible turbulence through the introduction of some blending functions of Mt to account for the compressibility effects on the flow. The model has been successfully applied to the compressible mixing layers.
基金Erfan Kadivar acknowledges the support of Shiraz University of Technology Research Council.
文摘In this work,the laminar-to-turbulent transition phenomenon around the two-and three-dimensional ellipsoid at different Reynolds numbers is numerically investigated.In the present paper,Reynolds Averaged Navier Stokes(RANS)equations with the Spalart-Allmaras,SST k-ω,and SST-Trans models are used for numerical simulations.The possibility of laminar-toturbulent boundary layer transition is summarized in phase diagrams in terms of skin friction coefficient and Reynolds number.The numerical results show that SST-Trans method can detect different aspects of flow such as adverse pressure gradient and laminar-to-turbulent transition onset.Our numerical results indicate that the laminar-to-turbulent transition location on the 6:1 prolate spheroid is in a good agreement with the experimental data at high Reynolds numbers.
基金This study was supported by grants from the National Natural Science Foundation of China (No. 30860297) and the United Specialized Foundation of Science and Technology Agency of Yunnan Province and Kunming Medical University (No. 2011FB 185).
文摘Background Turbulent shear stress (TSS) plays an important role in the research of fluid dynamics of heart valves. This study aimed to perform a quantitative study of TSS downstream of porcine artificial mitral valves in order to verify the correlation of hot-film anemometry (HFA) and Doppler echocardiography combined with computer-aided image analysis for the detection of TSS. Methods A porcine model of mitral valve replacement was established. HFA and Doppler ultrasound techniques were used to directly and indirectly measure TSS-relevant parameters of the artificial mitral valve following different mitral valve replacements: different approaches were used to reserve the subvalvular apparatus of the mitral valve. A correlation analysis was then carried out. Results There was a significant correlation between the HFA and Doppler ultrasound combined with computer-aided image analysis of the TSS at the same time and at the same site. No significant difference was found in the TSS measured by the two methods. Conclusions Compared with HFA, Doppler echocardiography combined with computer-aided image analysis is a safe, non-invasive, and real-time method that enables accurate and quantitative detection of TSS downstream in vivo, objectively reflecting the flow field downstream of the artificial mitral valve. Doppler ultrasound combined with computer- aided image analysis can be employed for quantitatively evaluating the downstream hemodynamic performance of the mitral valve.
基金The National Natural Science Foundation of China under contract No.50339010the public welfare projects of Water Resources Ministry of China under contract No.200701026the Natural Science Foundation of the Jiangsu Higher Education institutions of China under contract No.09KJA170003
文摘Tidal current velocity profile in the near-bed layers has been widely studied. The results showed that velocity profile in the near-bed layer obviously departure from the traditional logarithmic profile, due to the acceleration or deceleration. Although the logarithmic linear profile can reduce the rate of deviation from this, only it is a lower-order approximate solution. In this paper, considering the unsteady and non-linear features of tidal motion, the double logarithmic profile near-bed layers in estuarine and coastal waters is established on the assumption that the turbulent shear stress along the water depth was parabolic distribution, and on the basis of Prandtl's mixing length theory and yon Karman's self-similar theory. Having been verified the data observed at the West Solent in the south of England, and comparison of the logarithmic linear profile, it found that the double logarithmic profile is more precious than the latter. At last, the discussed results showed that: (1) The parabolic distribution of the tidal shear stresses verified good by the field data and experimental data, can be better reflected the basic features of the tidal shear stress deviating from linear distribution that is downward when to accelerate, upward when to decelerate. (2) The traditional logarithmic velocity profile is the zero-order approximation solution of the double logarithmic profile, the logarithmic linear profile is the first order, and the logarithmic parabolic profile is the second order. (3) Ignoring the conditions of diffusion and convection in the tida movement, the double logarithmic profile can reflect the tidal properties of acceleration or deceleration, so that the calculation of the friction velocity and roughness length are more reasonable. When the acceleration or the deceleration is about zero, the double logarithmic profile becomes the logarithmic profile.
文摘Natural beaches tend to be concave-up rather than planar and are reasonable to be modeled by an equilibrium beach profile. A governing equation for longshore current on an equilibrium beach is derived and its analytical solution is given in this paper. Through comparisons of the present solution and field data of longshore current for a step-type beach, the present solution is found to have fairly agreeable prediction to longshore current inside the surf zone. The effects of the shape of a concave-up beach and turbulent mixing stress on longshore current inside the surf zone are discussed in the present paper.
基金Project supported by the National Natural Science Foundation of China(Grant No.51536008)the National Key R&D Program of China(Grant No.2018 YFB0606101).
文摘The non-physiologic turbulent flows in centrifugal rotary blood pumps (RBPs) may result in complications such as the hemolysis and the platelet activation. Recent researches suggest that the turbulent viscous dissipation in the smallest eddies is the main factor of the blood trauma caused by the turbulent flow. The turbulent viscous shear stress (TVSS) was taken as the realistic physical force acting on the cells. However, limited by the temporal and spatial resolutions of the instrumentation currently available, very limited studies are available for the TVSS in the RBPs. In this paper, the large eddy particle image velocimetry (PIV) method is used to estimate the turbulent dissipation rate in the sub-grid scale, to investigate the effect of the TVSS on the blood trauma. Detailed flow characteristics, such as the relative velocity vectors, the estimated TVSS levels and the Kolmogorov length scales, are analyzed in three impeller phases at three constant flow rates (3 L/min, 5 L/min and 7 L/min). Over the measures range in this study, the maximum TVSS in the investigated RBP is lower than the reported critical value of stress. This study demonstrates that the large eddy PIV method is effective to evaluate the flow-dependent force on the cells. On the other hand, it is found that the TVSS is highly dependent on the flow behavior. Under severe off-design conditions, the complex flow characteristics, such as the flow separation and the vortical structures, will increase the TVSS. Thus, in order to reduce the hemolysis in the RBPs, the flow disturbance, induced by the departure of the incidence angle, should be avoided during the design of the RBPs.
基金supported by National Natural Science Foundation of China(Nos.11075181,10725523,10721505,10990212 and 10605028)the ITER project of China(No.2010GB104001)
文摘Ion's toroidal velocity, vt, in both the outermost 4 cm of the confined region and the scrap-off layer of Ohmic L-mode plasmas in EAST was measured using Mach probes. At about 1 cm inside the separatrix a local minimum in vt was observed, from which a cocurrent rotation increased both inwards and outwards. The radial width of the vt dip was 1 cm to 2 cm, and both the density and electron temperature profiles exhibited steep gradients at this dip position. It was observed in both divertor and limiter configurations. To find out its origin, the toroidal torques induced by neutral friction, neoclassical viscosity, collisional perpendicular shear viscosity, ion orbit loss and turbulent Reynolds stress were estimated using the measured parameters. Our results indicate that in this particular parameter regime the neutral friction was the dominant damping force. The calculated cocurrent toroidal torque by the neoclassical viscosity dominates over those from the collisional perpendicular shear viscosity, ion orbit loss and turbulent Reynolds stress. These results are potentially important for the understanding of boundary conditions for the intrinsic toroidal momentum in tokamak plasmas.
基金This study was financially sponsored by the National Natural Science Foundation of China(Nos.31902426,41806110)the Shanghai Sailing Program(No.19YF1419800)+1 种基金the National Key R&D Program of China(No.2019YFD 0901502)the Special Project for the Exploitation and Utilization of Antarctic Biological Resources of Ministry of Agriculture and Rural Affairs(No.D-8002-18-0097).
文摘Nettings are complex flexible structures used in various fisheries.Understanding the hydrodynamic characteristics,de-formation,and the flow field around nettings is important to design successful fishing gear.This study investigated the hydrodynamic characteristics and deformation of five nettings made of polyethylene and nylon materials in different attack angles through numeri-cal simulation and physical model experiment.The numerical model was based on the one-way coupling between computational fluid dynamics(CFD)and large deflection nonlinear structural models.Navier-Stokes equations were solved using the finite volume ap-proach,the flow was described using the k-ωshear stress turbulent model,and the large deflection structural dynamic equation was derived using a finite element approach to understand the netting deformation and nodal displacement.The porous media model was chosen to model the nettings in the CFD solver.Numerical data were compared with the experimental results of the physical model to validate the numerical models.Results showed that the numerical data were compatible with the experimental data with an average relative error of 2.34%,3.40%,6.50%,and 5.80%in the normal drag coefficients,parallel drag coefficients,inclined drag coefficients,and inclined lift coefficients,respectively.The hydrodynamic forces of the polyethylene and nylon nettings decreased by approxi-mately 52.56%and 66.66%,respectively,with decreasing net solidity.The drag and lift coefficients of the nylon netting were appro-ximately 17.15%and 6.72%lower than those of the polyethylene netting.A spatial development of turbulent flow occurred around the netting because of the netting wake.However,the flow velocity reduction downstream from the netting in the wake region in-creased with increasing attack angle and net solidity.In addition,the deformation,stress,and strain on each netting increased with in-creasing solidity ratio.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11452002, 11372008, and 11521091)the Aeronautical Science Foundation of China (Grant No. 2014ZA71001)
文摘A challenge in the study of turbulent boundary layers(TBLs) is to understand the non-equilibrium relaxation process after separation and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.
基金supported by the National Natural Science Foundation of China(Grant Nos.51822903,11772239).
文摘The large eddy simulation(LES)is used to resolve the flow structure in the cavitating turbulent flow around the Clark-Y hydrofoil coupled with a homogeneous cavitation model.A new method is proposed in this paper to calculate the LES error of the time-averaged streamwise velocity for the LES verification and validation(V&V).From the instantaneous cavity patterns,it is demonstrated that the predicted results agree fairly well with the experimental data.With this new proposed method,the LES errors can be easily and effectively calculated with a limited mesh number,and the method might be used in the other applications of the LES V&V.Results of the LES errors obtained by the new method show that the relatively steady flow can be simulated with small errors,while the complex flow structures at the cavity shedding region might lead to an increase of errors in the LES modeling.In addition,the distributions of the resolved Reynolds stresses are used to estimate the influences of the cavitation on the turbulent fluctuations.Results indicate that the turbulent fluctuations for the cavitating flow are much larger in magnitude as compared to the cases without cavitation.
基金supported by the National Natural Science Foundation of China(No.11721202)。
文摘A three-equation transition model based on the transition V-model is proposed for subsonic flows in this study. Considering the mechanical approximation of the generation process of the pre-transitional vorticities, the value of laminar Reynolds shear stress related to the mean shear deformation was calculated in the original transition V-model. Then a new transition model, named V-SA model, was proposed, which considered the phenomenological process of transition and presented great results for flows with and without pressure gradient. It is well-known that the baseline Shear Stress Transport(SST) turbulence model shows excellent performance of accuracy and robustness in plentiful flow cases, but it is important to predict boundary layer transition. The current model(V-SST) successfully couples the V-model to the SST turbulence model by introducing the effective turbulent viscosity and additional correction terms into the transport equations. A thorough evaluation of its ability to predict transition features is performed versus the well-documented flat plate of ERCOFTAC, including T3A and T3B without pressure gradient, T3L2 and T3L3 with semi-circular leading edge, the three-dimensional 6:1 prolate-spheroid under two angles of attack, and the NLR-7301 airfoil under different Mach numbers. Numerical results show that the current model has an attractive and superior performance in the simulation of boundary layer transition processes.
基金supported by ISFMA,Fudan University,China and CNRS,France
文摘The author shows the existence of long-time averages to turbulent solutions of the Navier-Stokes equations and determines the equations satisfied by them, involving a Reynolds stress that is shown to be dissipative.