The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak so...The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak solutions to the incompressible active liquid crystals in R^(3).Our results yield that if there exists a strong solution,then it is unique among the Leray-Hopf type weak solutions associated with the same initial data.展开更多
In this paper,we prove the local existence and uniqueness of solutions to the evolutionary model for magnetoviscoelasticity in R^(2),R^(3).This model consists of an incompressible Navier-Stokes,a regularized system fo...In this paper,we prove the local existence and uniqueness of solutions to the evolutionary model for magnetoviscoelasticity in R^(2),R^(3).This model consists of an incompressible Navier-Stokes,a regularized system for the evolution of the deformation gradient and the Landau-Lifshitz-Gilbert system for the dynamics of the mag-netization.Our approach depends on approximating the system with a sequence of perturbed systems.展开更多
A global weak solution to the isentropic Navier-Stokes equation with initial data around a constant state in the L^(1)∩BV class was constructed in[1].In the current paper,we will continue to study the uniqueness and ...A global weak solution to the isentropic Navier-Stokes equation with initial data around a constant state in the L^(1)∩BV class was constructed in[1].In the current paper,we will continue to study the uniqueness and regularity of the constructed solution.The key ingredients are the Holder continuity estimates of the heat kernel in both spatial and time variables.With these finer estimates,we obtain higher order regularity of the constructed solution to Navier-Stokes equation,so that all of the derivatives in the equation of conservative form are in the strong sense.Moreover,this regularity also allows us to identify a function space such that the stability of the solutions can be established there,which eventually implies the uniqueness.展开更多
In this paper,we establish the unique determination result for inverse acoustic scattering of a penetrable obstacle with a general conductive boundary condition by using phaseless far field data at a fixed frequency.I...In this paper,we establish the unique determination result for inverse acoustic scattering of a penetrable obstacle with a general conductive boundary condition by using phaseless far field data at a fixed frequency.It is well-known that the modulus of the far field pattern is invariant under translations of the scattering obstacle if only one plane wave is used as the incident field,so it is impossible to reconstruct the location of the underlying scatterers.Based on some new research results on the impenetrable obstacle and inhomogeneous isotropic medium,we consider different types of superpositions of incident waves to break the translation invariance property.展开更多
In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate cri...In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate critical points of the potential function V(x),where a,b>0,1<p<5 are constants,andε>0 is a parameter.Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity,we establish the existence and local uniqueness results of multi-peak solutions,which concentrate at{a_(i)}1≤i≤k,where{a_(i)}1≤i≤k are non-degenerate critical points of V(x)asε→0.展开更多
The boundary value problems of the third-order ordinary differential equation have many practical application backgrounds and their some special cases have been studied by many authors. However, few scholars have stud...The boundary value problems of the third-order ordinary differential equation have many practical application backgrounds and their some special cases have been studied by many authors. However, few scholars have studied the boundary value problems of the complete third-order differential equations u′′′(t) = f (t,u(t),u′(t),u′′(t)). In this paper, we discuss the existence and uniqueness of solutions and positive solutions of the fully third-order ordinary differential equation on [0,1] with the boundary condition u(0) = u′(1) = u′′(1) = 0. Under some inequality conditions on nonlinearity f some new existence and uniqueness results of solutions and positive solutions are obtained.展开更多
In this paper, we study the Dirichlet boundary value problem involving the highly degenerate and h-homogeneous quasilinear operator associated with the infinity Laplacian, where the right hand side term is and the bou...In this paper, we study the Dirichlet boundary value problem involving the highly degenerate and h-homogeneous quasilinear operator associated with the infinity Laplacian, where the right hand side term is and the boundary value is . First, we establish the comparison principle by the double variables method based on the viscosity solutions theory for the general equation in. We propose two different conditions for the right hand side and get the comparison principle results under different conditions by making different perturbations. Then, we obtain the uniqueness of the viscosity solution to the Dirichlet boundary value problem by the comparison principle. Moreover, we establish the local Lipschitz continuity of the viscosity solution.展开更多
基金partially supported by NSFC(11831003,12031012)the Institute of Modern Analysis-A Frontier Research Center of Shanghai。
文摘The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak solutions to the incompressible active liquid crystals in R^(3).Our results yield that if there exists a strong solution,then it is unique among the Leray-Hopf type weak solutions associated with the same initial data.
文摘In this paper,we prove the local existence and uniqueness of solutions to the evolutionary model for magnetoviscoelasticity in R^(2),R^(3).This model consists of an incompressible Navier-Stokes,a regularized system for the evolution of the deformation gradient and the Landau-Lifshitz-Gilbert system for the dynamics of the mag-netization.Our approach depends on approximating the system with a sequence of perturbed systems.
基金partially the National Key R&D Program of China(2022YFA1007300)the NSFC(11901386,12031013)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA25010403)the NSFC(11801194,11971188)the Hubei Key Laboratory of Engineering Modeling and Scientific Computing。
文摘A global weak solution to the isentropic Navier-Stokes equation with initial data around a constant state in the L^(1)∩BV class was constructed in[1].In the current paper,we will continue to study the uniqueness and regularity of the constructed solution.The key ingredients are the Holder continuity estimates of the heat kernel in both spatial and time variables.With these finer estimates,we obtain higher order regularity of the constructed solution to Navier-Stokes equation,so that all of the derivatives in the equation of conservative form are in the strong sense.Moreover,this regularity also allows us to identify a function space such that the stability of the solutions can be established there,which eventually implies the uniqueness.
文摘In this paper,we establish the unique determination result for inverse acoustic scattering of a penetrable obstacle with a general conductive boundary condition by using phaseless far field data at a fixed frequency.It is well-known that the modulus of the far field pattern is invariant under translations of the scattering obstacle if only one plane wave is used as the incident field,so it is impossible to reconstruct the location of the underlying scatterers.Based on some new research results on the impenetrable obstacle and inhomogeneous isotropic medium,we consider different types of superpositions of incident waves to break the translation invariance property.
基金supported by the Natural Science Foundation of China(11771166,12071169)the Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT17R46。
文摘In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate critical points of the potential function V(x),where a,b>0,1<p<5 are constants,andε>0 is a parameter.Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity,we establish the existence and local uniqueness results of multi-peak solutions,which concentrate at{a_(i)}1≤i≤k,where{a_(i)}1≤i≤k are non-degenerate critical points of V(x)asε→0.
文摘The boundary value problems of the third-order ordinary differential equation have many practical application backgrounds and their some special cases have been studied by many authors. However, few scholars have studied the boundary value problems of the complete third-order differential equations u′′′(t) = f (t,u(t),u′(t),u′′(t)). In this paper, we discuss the existence and uniqueness of solutions and positive solutions of the fully third-order ordinary differential equation on [0,1] with the boundary condition u(0) = u′(1) = u′′(1) = 0. Under some inequality conditions on nonlinearity f some new existence and uniqueness results of solutions and positive solutions are obtained.
文摘In this paper, we study the Dirichlet boundary value problem involving the highly degenerate and h-homogeneous quasilinear operator associated with the infinity Laplacian, where the right hand side term is and the boundary value is . First, we establish the comparison principle by the double variables method based on the viscosity solutions theory for the general equation in. We propose two different conditions for the right hand side and get the comparison principle results under different conditions by making different perturbations. Then, we obtain the uniqueness of the viscosity solution to the Dirichlet boundary value problem by the comparison principle. Moreover, we establish the local Lipschitz continuity of the viscosity solution.