期刊文献+
共找到1,107篇文章
< 1 2 56 >
每页显示 20 50 100
ONLINE GRINDING WHEEL WEAR COMPENSATION BY IMAGE BASED MEASURING TECHNIQUES 被引量:10
1
作者 WAN Daping HU Dejin +1 位作者 WU Qi ZHANG Yonghong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期509-513,共5页
Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detect... Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detects the topography changes of the grinding wheel surface. Profile data, which corresponds to the wear and the topography, is measured by using a digital image processing method. The grinding wheel wear is evalualed by analyzing the position deviation of the grinding wheel edge. The online wear compensation is achieved according to the measure results. The precise detection and automatic compensation system is integrated into an open structure CNC curve grinding machine. A practical application is carried out to fulfil the precision curve grinding. The experimental results confirm the benefits of the proposed techniques, and the online detection accuracy is less than 5 um. The grinding machine provides higher precision according to the in-process grinding wheel error compensation. 展开更多
关键词 Grinding wheel wear Compensation Online measurement Charge-coupled device (CCD)
下载PDF
Deep learning-based fault diagnostic network of high-speed train secondary suspension systems for immunity to track irregularities and wheel wear 被引量:3
2
作者 Yunguang Ye Ping Huang Yongxiang Zhang 《Railway Engineering Science》 2022年第1期96-116,共21页
Fault detection and isolation of high-speed train suspension systems is of critical importance to guarantee train running safety. Firstly, the existing methods concerning fault detection or isolation of train suspensi... Fault detection and isolation of high-speed train suspension systems is of critical importance to guarantee train running safety. Firstly, the existing methods concerning fault detection or isolation of train suspension systems are briefly reviewed and divided into two categories, i.e., model-based and data-driven approaches. The advantages and disadvantages of these two categories of approaches are briefly summarized. Secondly, a 1D convolution network-based fault diagnostic method for highspeed train suspension systems is designed. To improve the robustness of the method, a Gaussian white noise strategy(GWN-strategy) for immunity to track irregularities and an edge sample training strategy(EST-strategy) for immunity to wheel wear are proposed. The whole network is called GWN-EST-1 DCNN method. Thirdly, to show the performance of this method, a multibody dynamics simulation model of a high-speed train is built to generate the lateral acceleration of a bogie frame corresponding to different track irregularities, wheel profiles, and secondary suspension faults. The simulated signals are then inputted into the diagnostic network, and the results show the correctness and superiority of the GWN-EST-1DCNN method. Finally,the 1DCNN method is further validated using tracking data of a CRH3 train running on a high-speed railway line. 展开更多
关键词 High-speed train suspension system Fault diagnosis Track irregularities wheel wear Deep learning Literature review
下载PDF
Numerical simulation of wheel wear evolution for heavy haul railway 被引量:13
3
作者 王璞 高亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期196-207,共12页
The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spati... The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht's material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel-rail rolling contact calculation is carried out based on Hertz's theory and Kalker's FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht's model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway,dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step.Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root; while the wear of inner wheels mainly distributes around the nominal rolling circle. For the outer wheel of front wheelset of each bogie, the development of wear is gradually concentrated on the flange and the developing speed increases continually with the increase of traveled distance. 展开更多
关键词 heavy haul railway wheel wear evolution wheel-rail rolling contact vehicle-track coupling dynamics profile updating
下载PDF
Wheel wear comparison between motor car and trailer of intercity train 被引量:1
4
作者 KOU Jie ZHANG Ji-min +2 位作者 ZHOU He-chao WANG Cheng-ping SUN Li-xia 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1737-1746,共10页
To analyze wheel wear discrepancy between motor car and trailer of an intercity train,a novel wheel wear rates calculation model was proposed,which was composed of the intercity train dynamics model,wheel-rail three-d... To analyze wheel wear discrepancy between motor car and trailer of an intercity train,a novel wheel wear rates calculation model was proposed,which was composed of the intercity train dynamics model,wheel-rail three-dimensional rolling contact FEM model and the wear model.The simulated results were contrasted with measured results in field test.The simulated results showed the motor car wheels had larger rotation rate and longitudinal creepage than the trailer wheels.Meanwhile,the motor car wheels encountered larger vertical forces and longitudinal forces from bogie because of the heavier car body and the impact of traction torque.The traction torque acting on motor car wheel could increase the slip rates in the rear part of wheel contact patch and weaken the spinning phenomenon of relative slip.Larger contact pressure and slip rates caused the higher wear rates of motor car wheel than those of trailer wheel.The overall trends of wheel wear depth in simulated and tested results were similar.And they both showed the motor car wheel encountered the more serious wear than the trailer wheel.These models can be used to study the effect of the traction characteristics curves on the wear of wheel. 展开更多
关键词 wheel wear intercity train motor car and trailer finite element method(FEM) field test
下载PDF
Interaction of subway LIM vehicle with ballasted track in polygonal wheel wear development 被引量:9
5
作者 Ling Li Xin-Biao Xiao Xue-Song Jin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第2期297-307,共11页
This paper develops a coupled dynamics model for a linear induction motor (LIM) vehicle and a subway track to investigate the influence of polygonal wheels of the vehicle on the dynamic behavior of the system. In th... This paper develops a coupled dynamics model for a linear induction motor (LIM) vehicle and a subway track to investigate the influence of polygonal wheels of the vehicle on the dynamic behavior of the system. In the model, the vehicle is modeled as a multi-body system with 35 degrees of freedom. A Timoshenko beam is used to model the rails which are discretely supported by sleepers. The sleepers are modeled as rigid bodies with their vertical, lateral, and rolling motions being considered. In order to simulate the vehicle running along the track, a moving sleeper support model is introduced to simulate the excitation by the discrete sleeper supporters, in which the sleepers are assumed to move backward at a constant speed that is the same as the train speed. The Hertzian contact theory and the Shen– Hedrick–Elkins’ model are utilized to deal with the normal dynamic forces and the tangential forces between wheels and rails, respectively. In order to better characterize the linear metro system (LMS), Euler beam theory based on modal superposition method is used to model LIM and RP. The vertical electric magnetic force and the lateral restoring force between the LIM and RP are also taken into consideration. The former has gap-varying nonlinear characteristics, whilst the latter is considered as a constant restoring force of 1 kN. The numerical analysis considers the effect of the excitation due to polygonal wheels on the dynamic behavior of the system at different wear stages, in which the used data regarding the polygonal wear on the wheel tread are directly measured at the subway site. 展开更多
关键词 Linear induction motor Uneven wear wheel out of roundness Vehicle-track coupling dynamics
下载PDF
Parametric analysis of wheel wear in high-speed vehicles
6
作者 Na Wu Jing Zeng 《Journal of Modern Transportation》 2014年第2期76-83,共8页
In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the ac... In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the actual measured track irregularities and line conditions were considered. The wear depth of the wheel profile was calculated by the well-known Archard wear law. Through this model, the influence of the wheel profile, primary suspension stiffness, track gage, and rail cant on the wear of wheel profile were studied through multiple iterafive calculations. Numerical simulation results show that the type XP55 wheel profile has the smallest cumulative wear depth, and the type LM wheel profile has the largest wear depth. To reduce the wear of the wheel profile, the equivalent conicity of the wheel should not be too large or too small. On the other hand, a small primary vertical stiffness, a track gage around 1,435-1,438 mm, and a rail cant around 1:35-1:40 are beneficial for dynamic performance improvement and wheel wear alleviation. 展开更多
关键词 Parametric analysis wheel profile wear Flexible wheelset High-speed railway Vehicle dynamicmodel Finite element method
下载PDF
On the Polygonal Wear Evolution of Heavy-Haul Locomotive Wheels due to Wheel/Rail Flexibility and Its Mitigation Measures
7
作者 Yunfan Yang Feifan Chai +3 位作者 Pengfei Liu Liang Ling Kaiyun Wang Wanming Zhai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期40-61,共22页
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med... Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures. 展开更多
关键词 Heavy-haul locomotive wheel polygonal wear wheel/rail flexibility Long-term polygonal wear evolution Mitigation measures
下载PDF
Development and validation of a model for predicting wheel wear in high-speed trains 被引量:9
8
作者 Gong-quan TAO Xing DU +3 位作者 He-ji ZHANG Ze-feng WEN Xue-song JIN Da-bin CUI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2017年第8期603-616,共14页
In this paper, we present a comprehensive model for the prediction of the evolution of high-speed train wheel profiles due to wear. The model consists of four modules: a multi-body model implemented with the commerci... In this paper, we present a comprehensive model for the prediction of the evolution of high-speed train wheel profiles due to wear. The model consists of four modules: a multi-body model implemented with the commercial multi-body software SIMPACK to evaluate the dynamic response of the vehicle and track; a local contact model based on Hertzian theory and a novel method, named FaStrip (Sichani et al., 2016), to calculate the normal and tangential forces, respectively; a wear model proposed by the University of Sheffield (known as the USFD wear function) to estimate the amount of material removed and its distribution along the wheel profile; and a smoothing and updating strategy. A simulation of the wheel wear of the high-speed train CRH3 in service on the Wuhan-Guangzhou railway line was performed. A virtual railway line based on the statistics of the line was used to represent the entire real track. The model was validated using the wheel wear data of the CRH3 operating on the Wuhan- Guangzhou line, monitored by the authors' research group. The results of the predictions and measurements were in good agreement. 展开更多
关键词 High-speed train wheel profile wheel/Rail contact wheel wear prediction
原文传递
Identification of Grinding Wheel Wear Signature by a Wavelet Packet Decomposition Method 被引量:6
9
作者 许黎明 许开州 柴运东 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第3期323-328,共6页
Grinding is known as the most complicated material removal process and the method for monitoring the grinding wheel wear has its own characteristics comparing with the approaches for detecting the wear on regular cutt... Grinding is known as the most complicated material removal process and the method for monitoring the grinding wheel wear has its own characteristics comparing with the approaches for detecting the wear on regular cutting tools.Research efforts were made to develop the wheel wear monitoring system due to its significance in grinding process.This paper presents a novel method for identification of grinding wheel wear signature by combination of wavelet packet decomposition(WPD) based energies.The distinctive feature of the method is that it takes advantage of the combinational information of the decomposed frequency components based on the WPD so the extracted features can be customized according to the specific monitored object to get better diagnosis effects.Experiments are researched on monitoring of grinding wheel wear states under different machining conditions.The results show that the energy ratio extracted from the measured vibration signals is consistent with the grinding wheel wear condition evaluated by experiment and the further extracted feature ratio can be used in prediction of wheel wear condition. 展开更多
关键词 grinding wheel wear VIBRATION feature extraction wavelet packet decomposition(WPD)
原文传递
Wear characteristics and prediction of wheel profiles in high-speed trains
10
作者 韩鹏 张卫华 李艳 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3232-3238,共7页
Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its p... Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its prediction. Actual wheel profiles of the high-speed trains on service were measured in the high-speed line and the wear characteristics were analyzed which came to the following results. The wear location was centralized from-15 mm to 25 mm. The maximum wear value appeared at the area of 5 mm from tread center far from wheel flange and it was less than 1.5 mm. Then, wheel wear was fitted to get the polynomial functions on different locations and operation mileages. A binary numerical prediction model was raised to predict wheel wear. The prediction model was proved by vehicle system dynamics and wheel/rail contact geometry. The results show that the prediction model can reflect wear characteristics of measured profiles and vehicle performances. 展开更多
关键词 high-speed trains wheel wear wear characteristics wear prediction vehicle system dynamics
下载PDF
Experimental Study on Wear and Spalling Behaviors of Railway Wheel 被引量:7
11
作者 WANG Wenjian GUO Jun LIU Qiyue 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第6期1243-1249,共7页
The current researches of the wear and spalling behaviors of wheel/rail materials focus on the field investigation rather than the mechanism. However, it is necessary and significant for clarifying the mechanism and r... The current researches of the wear and spalling behaviors of wheel/rail materials focus on the field investigation rather than the mechanism. However, it is necessary and significant for clarifying the mechanism and relationship between the wear and spalling damage of railway wheel to test and reproduce the wheel damages in laboratory. The objective of this paper is to investigate the wear and spalling damage behaviors of railway wheel using a JD-1 wheel/rail simulation facility, which consists of a small wheel serving as rolling stock wheel, and a larger wheel serving as rail. The damage process of wheel roller is explored in terms of the creep ratio, axle load, and carbon content by means of various microscopic examinations. The experimental results show that the wear volume growth of wheel roller is proved to be proportional to the increase of the creep ratio and normal load between simulating wheel and rail. The increase of carbon content of wheel material causes a linear reduction in the wear volume. The microscopic examinations indicate that the rolling wear mechanism transfers from abrasive wear to adhesive and fatigue wear with an increase of tangential friction force, which results in the initiation of fatigue crack, and then aggravates spalling damage on the wheel roller surface. The surface hardness of material depends strongly upon its carbon content. The decrease of the carbon content of wheel material may alleviate spalling damage, but can cause a significant growth in the wear volume of wheel roller. Therefore, there is a competitive relationship between the wear and spalling damage of wheel material. This research proposes an important measure for alleviating or preventing the wear and spalling damage of railway wheel material. 展开更多
关键词 wear SPALLING content carbon railway wheel wear mechanism
下载PDF
Study on the fatigue and wear characteristics of four wheel materials 被引量:3
12
作者 G.Y.Zhou J.H.Liu +2 位作者 W.J.Wang G.Wen Q.Y.Liu 《Journal of Modern Transportation》 2013年第3期182-193,共12页
The fatigue and wear characteristics of four different steel wheel materials are investigated in detail by using rolling contact fatigue and wear bench tests on a JD-1 apparatus, analyzing chemical composition and har... The fatigue and wear characteristics of four different steel wheel materials are investigated in detail by using rolling contact fatigue and wear bench tests on a JD-1 apparatus, analyzing chemical composition and hardness, and performing profile analysis and micro-morphology analysis. The wear and fatigue behavior of one of the materials under different operation speeds is also investigated. The results show that the wear resistance of the materials has a positive correlation with their carbon content, while fatigue resistance has a negative correlation. Based on hardness analysis as a function of depth into the specimen, the thickness of layers with a steep hardness gradient has a negative correlation with the initial surface hardness in the tests using different materials. The hardness increments, however, have a positive correlation with initial surface hardness. The rolling tests on one material using different rotation speeds show that the hardness increments and the thickness of layers with a steep hardness gradient increase with the rotation speed. The analyses and experimental results demonstrate that two of the four materials exhibit good wear resistance and rolling contact fatigue resistance, making them suitable for either highspeed or heavy axle railroad operations. 展开更多
关键词 wheel material . Fatigue . wear . Hardness
下载PDF
Research on Wheel Rail Wear for a 140 t Open Type Hot Metal Car 被引量:1
13
作者 Bo Feng Sumei Jia Guosheng Feng 《Engineering(科研)》 2020年第8期563-580,共18页
To maintain the safety of an open-type hot-metal car and to reduce wheel-rail wear during transportation, simulation models of the main components of such car were built using Pro/E software and then tested. In partic... To maintain the safety of an open-type hot-metal car and to reduce wheel-rail wear during transportation, simulation models of the main components of such car were built using Pro/E software and then tested. In particular, the Pro/E models were imported into ADAMS/Rail for assembly and then used to construct a complete hot-metal car dynamic model. Locomotive wheel-rail attack angle, wheel-rail lateral force, and wear index were used as evaluation parameters during the simulation to analyze the effects of bogie parameter, rail parameter, and speed of the hot-metal car on wheel-rail wear. An improvement scheme for reducing wheel-rail wear was proposed based on the result of the dynamic simulation, wherein wheel-rail wear and curving performance were analyzed and compared. The simulation provided an important reference for evaluating and improving the dynamic performance of the hot-metal car. The applied effect showed that the improvement scheme is effective. 展开更多
关键词 Hot-Metal Car ADAMS/RAIL Dynamic Simulation wheel and Rail wear
下载PDF
On-Line Identification of Grinding Burn and Wheel Wear Based on Grinding Chips Thermal Flow
14
作者 史金飞 张晓玲 +3 位作者 钟秉林 毛善锋 黄仁 田小平 《Journal of Southeast University(English Edition)》 EI CAS 1996年第2期38-42,共5页
The theoretical basis of the grinding chips thermal flow being regarded as the characteristic signal of on line identification is summarized. And on line identification of grinding burn and wheel wear based on the g... The theoretical basis of the grinding chips thermal flow being regarded as the characteristic signal of on line identification is summarized. And on line identification of grinding burn and wheel wear based on the grinding chips thermal flow is introduc 展开更多
关键词 GRINDING BURN wheel wear identification artificial neural networks GRINDING CHIPS THERMAL flow
下载PDF
Effect of Sliding Wear on Surface Microstructure and Wear Property of D2 Wheel Steel
15
作者 Chunpeng Liu Xiujuan Zhao +2 位作者 Pengtao Liu Jinzhi Pan Ruiming Ren 《Materials Sciences and Applications》 2019年第9期600-613,共14页
In this paper, the surface microstructure and wear property of D2 wheel steel under sliding wear condition were studied by MRH-30 sliding wear tester. After testing, a transmission electron microscope (TEM), scanning ... In this paper, the surface microstructure and wear property of D2 wheel steel under sliding wear condition were studied by MRH-30 sliding wear tester. After testing, a transmission electron microscope (TEM), scanning electron microscope (SEM) with electron backscatter diffraction (EBSD), and micro-hardness testers were used to characterize the surface microstructure of samples with different cycles. The results show that the wear losss samples are increased as the increase of cycles, and the wear loss of wheel samples is higher than that of rail samples. The surface hardness and thickness of deformation layer of wheel samples are increased as the cycles increase. After sliding wear, the samples surfaces form the white etching layer with the thickness of several microns. Through the analysis of surface microstructure of sample with 12,000 cycles, the lamellar cementite in pearlite is fragment into cementite particles with the decrease of depth from surface, and the cementite is dissolved at surface to lead to the form of white etching layer. The ferrite grains are refined gradually and the fraction of high angle grain boundary is increased with the decrease of depth from surface. The nanosgrains layer of ferrite grains with 5 μm thickness is formed. According to the result of finite element simulation of contact surface temperature, the formation of surface nanograins and the dissolution of cementite are caused by the severe plastic deformation. The fiber structure of samples is formed after sliding wear, with direction of . 展开更多
关键词 D2 wheel Steel SLIDING wear Surface Microstructure WHITE ETCHING Layer
下载PDF
Influence of Angle of Attack and Lateral Force between Wheel and Rail on Wear of Rail ——a Laboratory Study
16
作者 金雪岩 王夏秋 《Journal of Modern Transportation》 2000年第1期85-91,共7页
Angle of attack and lateral force are two important parameters influencing wheel rail wear. This paper deals with the question of influences of the angle of attack and the lateral force on the wear of rail. A series ... Angle of attack and lateral force are two important parameters influencing wheel rail wear. This paper deals with the question of influences of the angle of attack and the lateral force on the wear of rail. A series of experiments are conducted on 1/4 JD 1 Wheel/Rail Tribology Simulation Facility. The angles of attack selected in the tests are 0°16′30″, 0°37′40″ and 1°0′0″ respectively. The lateral forces selected in the tests are 0.694 kN, 1.250 kN and 2.083 kN, respectively corresponding to the lateral forces of 25 kN, 45 kN and 75 kN measured in the field, with the aim of keeping the same ratio of L/V between laboratory and field conditions. It is found that the larger the angle of attack is, the more serious the wear of rail is. The relation of rail wear rate versus angle of attack is non linear, and the relation of rail wear rate versus lateral force is approximately linear. The influence of angle of attack is more serious than that of lateral force. For the tractive wheelset, the wear index involving linear and quadratic function terms of angle of attack has good agreement with the limited experimental data. Some conclusions are given. 展开更多
关键词 angle of attack lateral force wheel and rail wear
下载PDF
钢轨不平顺焊接区的磨耗及裂纹萌生预测
17
作者 林凤涛 王子旭 +3 位作者 谭荣凯 张子豪 杜瑞廷 史志勤 《机械强度》 北大核心 2025年第1期146-154,共9页
为探究钢轨焊接区的磨耗及裂纹萌生与轴重及摩擦因数的关系,通过对大量不平顺焊接区的实地测量,拟合了两种典型焊接区的不平顺数据,建立了上凸和下凹两类典型焊接区不平顺轮轨接触的有限元模型。结合摩擦功模型和Archard磨耗理论,对焊... 为探究钢轨焊接区的磨耗及裂纹萌生与轴重及摩擦因数的关系,通过对大量不平顺焊接区的实地测量,拟合了两种典型焊接区的不平顺数据,建立了上凸和下凹两类典型焊接区不平顺轮轨接触的有限元模型。结合摩擦功模型和Archard磨耗理论,对焊接区最大磨耗截面进行预测,基于Jiang-Sehitoglu模型对焊接区裂纹萌生寿命进行预测。发现随着轴重的增加,上凸及下凹焊接区的磨耗速率均增大;且轴重达到16 t时上凸型焊接区磨耗速率显著增大,而下凹型焊接区在轴重达到18 t时磨耗速率显著增大;摩擦因数从0.2增加到0.35,上凸和下凹两类焊接区最大磨耗量分别为1.93 mm、1.08 mm;且上凸型焊接区磨耗速率在摩擦因数为0.3时显著增大,而下凹型焊接区磨耗速率在摩擦因数为0.35时显著增大。轴重从12 t增加到18 t,上凸型焊接区服役寿命的衰减幅度较小,而下凹型焊接区服役寿命衰减幅度较大。此外,当摩擦因数从0.2增加至0.35时,其对上凸型焊接区服役寿命的影响明显小于轴重(12~18 t)的影响。然而,当摩擦因数从0.2增加至0.35时,其对下凹型焊接区服役寿命的影响与轴重(12~18 t)的影响相当。结果表明,随着轴重和摩擦因数的增加,对钢轨焊接区下凹型不平顺的寿命影响更加显著;在工务维护过程中,应着重关注下凹型焊接区的出现并及时标记和修复。 展开更多
关键词 铁道工程 轮轨关系 磨耗预测 裂纹萌生预测
下载PDF
Microstructural Characteristics and Wear Performance of Plasma Sprayed Al_2O_3-13 wt. % TiO_2 Coating on the Surface of Extrusion Wheel
18
作者 ZHANG Xue-fei REN Li-min 《International Journal of Plant Engineering and Management》 2013年第3期165-172,共8页
The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing... The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing are investigated by using X-ray diffractometry (XRD) , scanning electron microsopy (SEM) and energy dis- persive spectroscopy (EDS). Moreover, the microhardness of the substrate and the coating are investigated using Vickers mierohardness tester, the friction and wear behaviors of the substrate and the coating are investigated by using a block-on-ring tribometer under dry sliding conditions with the load of 245 N. The results show that both γ-Al2O3 and α-Al2O3 phases are observed in the as-sprayed coatings, the mian phase is γ-Al2O3. There are white particulates Al2O3 on its surface. The Al2O3-13 wt. % TiO2 coating possesses higher mierohardness which is about 1018HV and 1.6 times that of the substrate. The wear performance of coating is better than that of the substrate. In a practical application, the life of the extrusion wheel which is plasma sprayed Al2O3-13 wt. % TiO2 coating on the surface is 1.2 times that of the conventional extrusion wheel, and the life is about 330 h. 展开更多
关键词 extrusion wheel plasma spraying Al2O3-13 wt. % TiO2 ceramic coating wear performance
下载PDF
INFLUENCE OF WHEEL STRUCTURAL PARAMETERS ON MACHINING ACCURACY OF ULTRA-PRECISION PLANE HONING 被引量:4
19
作者 Guo Yinbiao Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, ChinaHu Jianyu Zheng Xiaoguang Katsuo SyojiXiamen University Chongqing University Tohoku University, Japan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第4期344-347,共4页
A new idea for designing wheel patterns is presented so as to solve theproblems about machining accuracy of workpiece and wear of honing wheel in ultra-precision planehoning. The influence factors on motion principle ... A new idea for designing wheel patterns is presented so as to solve theproblems about machining accuracy of workpiece and wear of honing wheel in ultra-precision planehoning. The influence factors on motion principle and pattern structures are analyzed andoptimization machining parameters are obtained. By calculating effective cutting length on thesurface of workpiece cut by wheel's abrasive and the orbit of one point on the surface of workpiececontacting with wheel, the wear coefficient of different kinds of wheels and accuracy coefficient ofworkpiece machined by corresponding wheels are obtained. Furthermore, the simulation results showthat the optimal pattern structure of wheel turns out to have lower wheel wear and higher machiningaccuracy. 展开更多
关键词 fine grit diamond wheel ultra-precision plane honing machining accuracy wheel wear
下载PDF
车轮表面激光熔覆铁基粉末熔覆层组织研究
20
作者 关天宇 张旭 《机械工程与自动化》 2025年第1期160-161,164,共3页
为了解决车轮磨耗问题,提出了一种新的解决方案,即在车轮上进行激光熔覆,并研究了熔覆后试样的材料性能。首先采用Fe基合金粉末在高速列车车轮所用钢CL60车轮试样上进行激光熔覆试验,涂层完成后,采用扫描电镜和X射线衍射对涂层的微观组... 为了解决车轮磨耗问题,提出了一种新的解决方案,即在车轮上进行激光熔覆,并研究了熔覆后试样的材料性能。首先采用Fe基合金粉末在高速列车车轮所用钢CL60车轮试样上进行激光熔覆试验,涂层完成后,采用扫描电镜和X射线衍射对涂层的微观组织和物相分布进行了分析,发现涂层的微观结构可分为三层:第一层为树枝晶、胞状晶和粗大柱状晶,第二层为细小的胞状晶和树枝晶,第三层为细小的等轴晶;涂层的物相主要由(Fe、Ni)固溶体和碳化物Cr 7C 3组成。之后采用往复摩擦磨损实验分析了涂层的力学性能,发现涂层具有良好的耐磨性,相较于未处理试样,其磨损率降低了89.7%。 展开更多
关键词 车轮磨耗 激光熔覆 铁基合金粉末 材料性能
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部