In the study of quantitative structure-activity relationships (QSARs), Hansch’s linear free-energy relationships (LFERs) are the most commonly used. However, LFERs have many limitations. Free-Wilson method has its sp...In the study of quantitative structure-activity relationships (QSARs), Hansch’s linear free-energy relationships (LFERs) are the most commonly used. However, LFERs have many limitations. Free-Wilson method has its specialties in the study of QSARs. It is es pecially suitable for the compounds of the same parent structure and with this method, the physicochemical parameters of the compounds are not necessarily calculated. The method can give the contribution of each substitute on each position. Though free-Wilson展开更多
Quasi-periodic responses can appear in a wide variety of nonlinear dynamical systems. To the best of our knowledge, it has been a tough job for years to solve quasi-periodic solutions, even by numerical algorithms. He...Quasi-periodic responses can appear in a wide variety of nonlinear dynamical systems. To the best of our knowledge, it has been a tough job for years to solve quasi-periodic solutions, even by numerical algorithms. Here in this paper, we will present effective and accurate algorithms for quasi-periodic solutions by improving Wilson-θ and Newmark-β methods, respectively. In both the two methods, routinely, the considered equations are rearranged in the form of incremental equilibrium equations with the coefficient matrixes being updated in each time step. In this study, the two methods are improved via a predictor-corrector algorithm without updating the coefficient matrixes, in which the predicted solution at one time point can be corrected to the true one at the next. Numerical examples show that, both the improved Wilson-θ and Newmark-β methods can provide much more accurate quasi-periodic solutions with a smaller amount of computational resources. With a simple way to adjust the convergence of the iterations, the improved methods can even solve some quasi-periodic systems effectively, for which the original methods cease to be valid.展开更多
Cascadic multigrid technique for mortar Wilson finite element method ofhomogeneous boundary value planar linear elasticity is described and analyzed. Firstthe mortar Wilson finite element method for planar linear elas...Cascadic multigrid technique for mortar Wilson finite element method ofhomogeneous boundary value planar linear elasticity is described and analyzed. Firstthe mortar Wilson finite element method for planar linear elasticity will be analyzed,and the error estimate under L2 and H1 norm is optimal. Then a cascadic multigridmethod for the mortar finite element discrete problem is described. Suitable grid trans-fer operator and smoother are developed which lead to an optimal cascadic multigridmethod. Finally, the computational results are presented.展开更多
基金Project supported by the National Natural Science Foundation of China.
文摘In the study of quantitative structure-activity relationships (QSARs), Hansch’s linear free-energy relationships (LFERs) are the most commonly used. However, LFERs have many limitations. Free-Wilson method has its specialties in the study of QSARs. It is es pecially suitable for the compounds of the same parent structure and with this method, the physicochemical parameters of the compounds are not necessarily calculated. The method can give the contribution of each substitute on each position. Though free-Wilson
文摘Quasi-periodic responses can appear in a wide variety of nonlinear dynamical systems. To the best of our knowledge, it has been a tough job for years to solve quasi-periodic solutions, even by numerical algorithms. Here in this paper, we will present effective and accurate algorithms for quasi-periodic solutions by improving Wilson-θ and Newmark-β methods, respectively. In both the two methods, routinely, the considered equations are rearranged in the form of incremental equilibrium equations with the coefficient matrixes being updated in each time step. In this study, the two methods are improved via a predictor-corrector algorithm without updating the coefficient matrixes, in which the predicted solution at one time point can be corrected to the true one at the next. Numerical examples show that, both the improved Wilson-θ and Newmark-β methods can provide much more accurate quasi-periodic solutions with a smaller amount of computational resources. With a simple way to adjust the convergence of the iterations, the improved methods can even solve some quasi-periodic systems effectively, for which the original methods cease to be valid.
基金The project is supported by the Special Funds for Major State Basic Research Projects G19990328 and the National Natural Science Foundation of China(No.10071015)
文摘Cascadic multigrid technique for mortar Wilson finite element method ofhomogeneous boundary value planar linear elasticity is described and analyzed. Firstthe mortar Wilson finite element method for planar linear elasticity will be analyzed,and the error estimate under L2 and H1 norm is optimal. Then a cascadic multigridmethod for the mortar finite element discrete problem is described. Suitable grid trans-fer operator and smoother are developed which lead to an optimal cascadic multigridmethod. Finally, the computational results are presented.