The tempering microstructure and mechanical properties of X80 steel used for heating-bent pipe were analyzed. The results show that the microstructure of X80 steel tempered at 550 ℃ and 600 ℃ is bainitic ferrite (BF...The tempering microstructure and mechanical properties of X80 steel used for heating-bent pipe were analyzed. The results show that the microstructure of X80 steel tempered at 550 ℃ and 600 ℃ is bainitic ferrite (BF)+granular bainite (GB), and partial ferrite laths in BF merge and broaden. The interior sub-lath boundary of some GB begins to disappear due to merging, the M/A constituent (a mixture of martensite plus retained austenite) in GB is orbicular. At the two tempering temperatures the tested X80 steel shows a certain degree of tempering stability. After being tempered at 650 ℃, the microstructure of X80 steel is GB+quasi-polygonal ferrite(QF), and the original BF laths have merged to form smaller GB crystal grains. The reason is that the steel shows better match of strength and toughness. After being tempered at 700 ℃ , the microstructure of X80 steel is composed mainly of QF, which can improve the plasticity but decline severely the yield strength of X80, and the M/A constituent assembles and grows up at the grain boundary of QF, resulting in excellent lower low-temperature toughness of X80.展开更多
The coarse grain HAZ microstructure and property of X80 pipeline steel with different carbon content was investigated. The weld thermal simulation test was carried out on Gleeble 1500 thermal mechanical test machine. ...The coarse grain HAZ microstructure and property of X80 pipeline steel with different carbon content was investigated. The weld thermal simulation test was carried out on Gleeble 1500 thermal mechanical test machine. The Charpy tests were completed at --20 ℃ for evaluating the toughness of coarse grain heat affected zone (CGHAZ). The microstructure was examined by optical microscope (OM) and transmission electron microscopy (TEM), and the austenite constituent was quantified by X-ray diffraction. The results showed that the ultra-low carbon can improve the toughness of CGHAZ by suppressing the formation of carbide, decreasing the martensite austenite (M-A) constituent and increasing the residual austenite in the M A.展开更多
Dual-phase accelerated cooling(DPAC) was applied to X80 pipeline steel to obtain its microstructure with different amounts of bainite and ferrite. The microstructure, hardness, and polarization behaviors of the steel,...Dual-phase accelerated cooling(DPAC) was applied to X80 pipeline steel to obtain its microstructure with different amounts of bainite and ferrite. The microstructure, hardness, and polarization behaviors of the steel, cooled to different temperatures, were investigated. Results showed that, with decreasing cooling temperature, the amount of polygon ferrite(PF) increased while that of acicular ferrite(AF) decreased. The amount of bainite correspondingly decreased, except when cooled to 760°C. Moreover, the grain size of ferrite increased. The corrosion behaviors of different phases were distinct. Martensite/austenite(M/A) islands presented at the grain boundary of the PF phase caused small pits. Numerous micro-corrosion cells were formed in the AF and bainite phases, where micropores were prone to form. X80 pipeline steel cooled to 700°C had the best corrosion resistance in the simulated seawater. The decreased amount of the PF phase reduced the area of cathode, resulting in slight corrosion. About 40 vol% of the bainite phase provided strength while the PF phase provided adequate ductility to the X80 steel. It was concluded that the appropriate cooling temperature was 700°C for ideal corrosion resistance and mechanical properties.展开更多
The relation between microstructure characteristics and mechanical properties of X80 pipeline steels was investigated using optical microscopy, scanning electron microscopy, etc. It is shown that the structure consist...The relation between microstructure characteristics and mechanical properties of X80 pipeline steels was investigated using optical microscopy, scanning electron microscopy, etc. It is shown that the structure consists of polygonal ferrite (PF), quasi-polygonal ferrite (QPF), acicular ferrite (AF), and granular bainitic ferrite (GF). With increasing volume fraction of M-A islands (below 3%), the yield strength increases. With increasing content of higher angle grain boundaries(HAGBs), the yield strength, elongation, and DWTT properties at -15 ℃ increase, and the volume fraction of M-A islands reaches its highest point in the steel containing the most volume fraction of GF.展开更多
Coarse grain heat-affected zone samples of X80 pipeline steel under different heat inputs were obtained through thermal welding simulation experiments with Gleeble 3500.Charpy impact tests and a combination of multisc...Coarse grain heat-affected zone samples of X80 pipeline steel under different heat inputs were obtained through thermal welding simulation experiments with Gleeble 3500.Charpy impact tests and a combination of multiscale characterizations were conducted to investigate the influence of various microstructural features on impact toughness and crack initiation behavior.The results prove that, as the heat input increases, the number of M/A components increases, thereby degrading toughness and increasing hardness.Meanwhile, more M/A constituents tend to aggregate on prior austenite grain boundaries(PAGBs),and the overall dimensions of M/A and the width and volume fraction of the lath martensite substructure inside M/A islands would increase as well.These changes make intersections between boundary M/As and PAGBs become one of the preferred sites for crack initiation.In addition, only large-sized grotesque inclusions can act as a direct inducement of crack initiation.展开更多
The effects of extreme stray current on the anodic dissolution and passivation of X80 steel in NaHCO3 solution were investigated using measurements of polarization curves and EIS,AFM and SEM techniques.Under the inter...The effects of extreme stray current on the anodic dissolution and passivation of X80 steel in NaHCO3 solution were investigated using measurements of polarization curves and EIS,AFM and SEM techniques.Under the interference of anodic current(i=0~200 A/m2),main constituents of corrosion products of X80 steel were FeO(OH)and Fe3 O4.A double-layer film formed at i=00 A/m2,in which FeOOH was in outer and Fe3 O4 lied in inner.The formation mechanism of Fe3 O4 was confirmed and described by the electrochemical reaction in various regions on anodic potentiodynamic polarization curve.展开更多
X80 pipeline steel produced by TMCP has high strength and high toughness with ultrafine grain microstructure. The mi-crostructure coarsens and the toughness worsens at the coarse grained (CG) HAZ apparently after weld...X80 pipeline steel produced by TMCP has high strength and high toughness with ultrafine grain microstructure. The mi-crostructure coarsens and the toughness worsens at the coarse grained (CG) HAZ apparently after weld simulation. The experimental results indicated that the bainitic ferrite and the second phases formed at cooling are differently as the variation of carbon in base metal. In low carbon steels, the bainitic ferrite laths are long and narrow, the second phases are complex including residual austenite, martensite, the M-A constituent and the Fe3C carbide. The formation of Fe3C carbide is the main reason of the poor toughness in CG HAZ. The ultralow carbon in base metal, however, can improve the CG HAZ toughness through restraining the formation of carbides, decreasing the M-A constituent, increasing the residual austenite content, which are beneficial to the CG HAZ toughness.展开更多
X80 pipeline steel was welded with submerged arc automatic welding, the microstructures, cavity sizes, fusion depths and plane scanning of chemical elements in the welded zone, fusion zone, heat affected zone and base...X80 pipeline steel was welded with submerged arc automatic welding, the microstructures, cavity sizes, fusion depths and plane scanning of chemical elements in the welded zone, fusion zone, heat affected zone and base steel were observed with OM(optical microscope) and SEM(scanning electron microscope), respectively. The experimental results show that there is main acicular ferrite in the base steel and welded zone, the microscopic structure of fusion zone is a blocked bainite, and the heat affected zone is composed of multilateral ferrite and pearlite. M-A unit of the welded zone is the main factor to strengthen the welded zone, composed of acicular ferrites. The percentage of cavities in the welded joint is less than that in the base steel, which is beneficial to increasing its mechanical performance and corrosion resistance. The fusion depth in the fusion zone and welded zone is 101.13 μm and 115.85 μm, respectively, and the distribution of chemical elements in the welded zone is uniform, no enrichment phenomena.展开更多
Submerged arc welding(SAW) and gas metal arc welding(GMAW) experiments of Nb-bearing X80 steel were conducted with high-toughness wires.The inclusions in weld metals were analyzed in terms of their types and sizes.In ...Submerged arc welding(SAW) and gas metal arc welding(GMAW) experiments of Nb-bearing X80 steel were conducted with high-toughness wires.The inclusions in weld metals were analyzed in terms of their types and sizes.In GMAW,the inclusions are primarily Ti, Ca, Si, Al, and Mg compounds with no Nb and are generally less than 0.8 μm in size, whereas, in SAW weld, the inclusions are larger, mostly approximately 2-5 μm in size, and are cored with Ca and Ti, exhibiting obvious oxidation metallurgical features.The SAW joint was hot-deformed, and Nb-bearing nano precipitates were newly found in the weld metal through transmission electron microscopy, and Nb-free core-shell inclusion was found through scanning electron microscopy.The inclusions and precipitates were dispersed in or on the boundaries of acicular ferrite, contributing to acicular ferrite nucleation and grain refinement.展开更多
In this study, the microstructure evolution and corrosion resistance in O. 5 M Na2CO3 - 1 M NaHCO3 solution of X80 high-deformability ( X8OHD ) pipeline steel coarse-grained heat-affected zone (CGHAZ) with several...In this study, the microstructure evolution and corrosion resistance in O. 5 M Na2CO3 - 1 M NaHCO3 solution of X80 high-deformability ( X8OHD ) pipeline steel coarse-grained heat-affected zone (CGHAZ) with several heat input levels were investigated. It is shown that the microstructure of CGHAZ changes from bainite ferrite to granular bainite as the heat input increasing. In addition, the corrosion resistance and the stability of passive film of base material are better than those of CGHAZ with several heat input levels. Too small or too big heat input is inadvisable and better corrosion resistance of CGHAZ is attained when heat input is 30 kJ/cm.展开更多
The ablation tests on coated and uncoated Q235 B steel sheets were conducted under 30/80 μs impulse current simulating the lightning first return stroke current, aimed at further understanding the ablation characteri...The ablation tests on coated and uncoated Q235 B steel sheets were conducted under 30/80 μs impulse current simulating the lightning first return stroke current, aimed at further understanding the ablation characteristics of steel and investigating the impact of anti-corrosion coating on these characteristics. Ablation characteristics were investigated through the macroscopic morphology and x-ray diffraction patterns on the surface of damaged zones, the microstructure and micro Vickers hardness on the cross-section of damaged zones, and the maximum rear-face temperature of sample sheets. It can be concluded that the ablation areas of uncoated sheet consist of the melted layer and the heat-affect layer. These ablation areas include not only the area ablated directly by the arc root, of which the depth is deeper, but also the area forming due to the splashing of molten steel, of which the depth is shallower and decreases when the area’s distance from the arc attachment point increases. For coated sheet, coating materials have decomposed and evaporated forming an ablation pit on the sheet surface, in which the steel surface is exposed, and zinc filler of coating primer has infused into the exposed surface. The ablation diameter of uncoated sheet relates to the amplitude of the 30/80 μs impulse current in quadratic function, while for coated sheet, the relation is linear. In general, under the 30/80 μs impulse current, the coating can decrease the energy injected from the arc to the steel sheet and reduce the melting and splashing of steel. As a result, the ablation severity of uncoated sheet is severer than that of coated sheet.展开更多
The thermophysical properties of API 5L X80 steel were experimentally measured, in order to use these in computational models to determine the temperature field in welded joints. In this work, values of thermal expans...The thermophysical properties of API 5L X80 steel were experimentally measured, in order to use these in computational models to determine the temperature field in welded joints. In this work, values of thermal expansion coefficient, specific heat, thermal diffusivity and thermal conductivity were experimentally obtained as a function of temperature. The thermal expansion coefficient was determined at temperatures of 20°C to 1200°C in a dilatometer DIL 402 PC. The specific heat was determined on a differential scanning calorimeter at temperatures between 300°C and 1200°C. The diffusivity and thermal conductivity were determined in the temperature range 100°C to 800°C in a 457 LFA diffusivimeter using laser flash technique. The thermal expansion coefficient remained approximately with constant value of 8.5 × 10-6 K-1 and suffered two falls reaching values -25 × 10-6 K-1 and -50 × 10-6 K-1 in the stages of heating and cooling respectively. It was observed for this material, minimum and maximum values of specific heat equal to 0.571 J/gK and 1.084 J/gK at temperatures of 300°C and 720°C, respectively. The behavior of thermal diffusivity and thermal conductivity in the temperature range 100°C to 800°C tends to decrease with increasing temperature. Based on the measured properties, computational modeling of the temperature field can be numerically obtained with better accuracy.展开更多
The relationship between the microstructure and toughness of welding heat-affected zone in XSO grade pipeline steels is studied. It is found that the intercritical reheated coarse-grained heat-affected zone (ICCGHAZ...The relationship between the microstructure and toughness of welding heat-affected zone in XSO grade pipeline steels is studied. It is found that the intercritical reheated coarse-grained heat-affected zone (ICCGHAZ) of experimental steels has the lowest toughness values when the secondary peak temperature is at intercritical ( α + γ ) region during multi-pass welding. The local embrittlement is mainly attributed to the morphology, amount and size of M-A constituent. It is also found that the microstructural inhabitanee at ICCGHAZ has a deleterious effect on the toughness. On the basis of above experimental results, it is suggested that the local embrittlement should be prevented by using pre-heating thermal cycle which could eliminate the microstructural inhabitance and using post-heating thermal cycle which could improve the morphology, amount and size of MA constituent.展开更多
The study systematically investigated the impact of zinc sacrificial anode(Zn-SA)cathode protection on the corrosion of X80 steel caused by Desulfovibrio desulfuricans(D.desulfuricans)in a marine tidal environment.Uti...The study systematically investigated the impact of zinc sacrificial anode(Zn-SA)cathode protection on the corrosion of X80 steel caused by Desulfovibrio desulfuricans(D.desulfuricans)in a marine tidal environment.Utilizing weight-loss analysis,electrochemical measurements,Raman spectroscopy,and 3D morphology microscopy,the research unveiled significant findings.Unprotected steel suffered pronounced localized corrosion in the presence of D.desulfuricans in the marine tidal environment.However,the implementation of Zn-SA cathode protection notably reduced the activity of both planktonic and sessile D.desulfuricans cells.Over time,the accumulation of calcareous deposits within the corrosion products increased,as evidenced by a rise in the resistance of the corrosion produt film(Rf).Remarkably,Zn-SA cathode protection demonstrated substantial inhibition of the steel’s corrosion rate,albeit exhibiting reduced efficiency as the vertical height of the steel within the tidal environment increased.展开更多
Sulfate reducing bacteria(SRB)are widely present in oil and gas industry,causing pitting corrosion on pipeline steel.Stress corrosion cracking(SCC)often occurs in the presence of mechanical stress before pit-ting perf...Sulfate reducing bacteria(SRB)are widely present in oil and gas industry,causing pitting corrosion on pipeline steel.Stress corrosion cracking(SCC)often occurs in the presence of mechanical stress before pit-ting perforation failure,leading to economic losses and even catastrophic accidents.In this study,stress distribution simulation using the finite element method(FEM),corrosion analysis techniques and elec-trochemical corrosion measurements were employed to investigate the SCC mechanism of X80 pipeline steel caused by Desulfovibrio vulgaris,which is a common SRB strain used in microbiologically influenced corrosion(MIC)studies.It was found that D.vulgaris MIC caused sharp microcracks on an X80 U-bend coupon after only 2 weeks of immersion at 37℃in the deoxygenated ATCC 1249 culture medium inocu-lated with D.vulgaris.The X80 U-bend coupon’s weight loss-based uniform corrosion rate for the 12 cm^(2)surface was 60%of that for the unstressed flat square coupon(2.3 mg cm^(−2)vs.3.8 mg cm^(−2)).This was likely because the square coupon had wide MIC pits,providing a larger effective surface area for more sessile cells(4.2×10^(8)cells cm^(−2)on square coupon vs.2.4×10^(8)cells cm^(−2)on U-bend coupon)to attach and harvest more electrons.An SCC failure occurred on an X80 U-bend pre-cracked at the outer bottom after a 6-week immersion in the D.vulgaris broth.Apart from MIC damage,this could also be because D.vulgaris metabolism increased the availability hydrogen atoms on the steel surface,and promoted the diffusion of hydrogen atoms into the metal lattice,thus increasing the brittleness of the steel.展开更多
The aim of this study is to evaluate the internal corrosion process on X52 and X80 steels/real petroleum interfaces containing condensed hydrocarbon plus oilfield-produced water,which were subjected to stimulated emul...The aim of this study is to evaluate the internal corrosion process on X52 and X80 steels/real petroleum interfaces containing condensed hydrocarbon plus oilfield-produced water,which were subjected to stimulated emulsions using 50/50 vol ratio mixtures at 45℃,different hydrodynamic conditions,1 h,and 24 h.A washing process by using deionized water was proposed to simulate and identify the corrosiveness of the hydrocarbon phase after 24 h of exposure time.The characterization by electrochemical impedance spectroscopy and the monitoring of the polarization curves indicated that X80 steel/oilfield-produced water interfaces were more susceptible to corrosion than X52 steel exposed to oilfield-produced water.The combined speed rotation of 600 rpm using a magnetic stirrer+600 rpm using a rotating disk electrode decreased the corrosion rate on X52 steel.The stimulated emulsions made of hydrocarbon+oilfield-produced water and hydrocarbon+deionized water at 24 h increased the corrosion rate on X80 steel(0.34 mm/year and 0.43 mm/year,respectively),promoting the formation of erosion and pitting corrosion.These types of corrosion depended mainly on the physicochemical properties of the hydrocarbon,oilfield-produced water,exposure times,and hydrodynamic systems in which the hydrocarbon was studied.展开更多
Corrosion failure accidents owing to flow erosion and pipeline corrosion frequently occur during transportation.The welding reinforcement height(WRH)can induce locally micro-turbulent flow field,which aggravates local...Corrosion failure accidents owing to flow erosion and pipeline corrosion frequently occur during transportation.The welding reinforcement height(WRH)can induce locally micro-turbulent flow field,which aggravates local corrosion of welded joints.A high wall shear stress(WsS)experimental setup was established to conduct the online electrochemical corrosion test.The influence of WRH sizes on local corrosion of welded joints was studied at different flow rates.The electrochemical signals of the local corrosion of X80 welded joints at different flow rates were monitored in real time using electrochemical impedance spectroscopy and wire beam microelectrode.In addition,the corrosion products composition and properties were analyzed.The results show that the micro-turbulent flow fields induced by the WRHs can enhance ion mass transfer near the welded joints.The corrosion products on the WRH surface also present different microscopic morphologies at different flow rates.In strong flow fields,the locally enhanced wsS can peel off the dense corrosion product partially,leading to the electrochemical distribution of large cathode and small anode,which accelerates the occurrence and development processes of the local corrosion of welded joints.The scientific guidelines for the corrosion protection of long-distance oil and gas pipelines can be potentially provided.展开更多
A pipeline steel X80 with welded joint was subjected to surface mechanical attrition treatment (SMAT). After SMAT, a nanostructure surface layer with an average grain size of about 10 nm was formed in the treated sa...A pipeline steel X80 with welded joint was subjected to surface mechanical attrition treatment (SMAT). After SMAT, a nanostructure surface layer with an average grain size of about 10 nm was formed in the treated sample, and the fatigue limit of the welded joint was elevated by about 13% relative to the untreated joints. In the low and the high amplitude stress regimes, both fatigue strength and fatigue life were enhanced. Formation of the nanostructured surface layer played more important role in the enhanced fatigue behavior than that of residual stress induced by the SMAT.展开更多
The conditions of heating and cooling of piercing mandrels made of 4X5MFS steel of a three-roll screw mill 30-80 in the production of a closed cavity of steel vessels of small volume are determined.It is established t...The conditions of heating and cooling of piercing mandrels made of 4X5MFS steel of a three-roll screw mill 30-80 in the production of a closed cavity of steel vessels of small volume are determined.It is established that multiple cycles of heating up to 600℃ and cooling with water up to 80℃ for about 7 seconds/1 cycle lead to the formation of ridges,shells and cracks on the surface and in the volume of the tool.The loss of structural strength of the material leads to the breakdown of the mandrel during the stitching process.The technique and equipment of magnetic powder control have been developed to establish the dynamics of the growth of internal and external defects of mandrels.An equation is obtained that allows determining the increase in the number of defects in the sewing tool of a screw rolling mill.The technology of non-destructive testing made it possible to develop a rational plan for replacing the sewing mandrels,which allows for predicting the appearance of defects leading to a complex breakdown of the deforming tool at the NPO Pribor machine-building enterprise.展开更多
The X80 pipeline steel was welded with the way of submerged arc welding. The SST (slow strain test) of the welded joint samples in the air, NACE (National Association of Corrosion Engineers) solution (no H2S), N...The X80 pipeline steel was welded with the way of submerged arc welding. The SST (slow strain test) of the welded joint samples in the air, NACE (National Association of Corrosion Engineers) solution (no H2S), NACE solution (saturated H2S) was performed to research the sensibility index of SCC (stress corrosion cracking) Iscc. The morphologies of the welded joint fractures and the fracture modes were observed with SEM (scanning electron microscope), and the fracture chemical compositions were analyzed with EDS (energy dispersive spectrometer), respectively. The fracture mechanisms of the welded joints were discussed. The results show that sensibility index of SCC in the air is not obvious, the fracture is dimple, and the mode of fracture is ductile fracture. The sensibility index of SCC in NACE solution (no H2S) is 13.21%, the stress corrosion is not obvious. The sample fracture shows quasi cleavage+dimple, and the fracture mode is toughness+brittle rupture. The sensibility index of SCC in NACE solution (saturated H2S) is 56.94%, the plastic loss is the most serious, appearing an obvious stress corrosion tendency, and there is no obvious necking phenomenon. The fracture mode is brittle fracture, and the sample fracture has a high sulfur concentration, prompting S to a aliquation of crisp crystal in the welded zone, and making its mechanical properties worsen.展开更多
基金Project(6990-HT-XEX-03-(2008)-0137) supported by the Major Special Project of Science and Technology of China National Petroleum Corporation
文摘The tempering microstructure and mechanical properties of X80 steel used for heating-bent pipe were analyzed. The results show that the microstructure of X80 steel tempered at 550 ℃ and 600 ℃ is bainitic ferrite (BF)+granular bainite (GB), and partial ferrite laths in BF merge and broaden. The interior sub-lath boundary of some GB begins to disappear due to merging, the M/A constituent (a mixture of martensite plus retained austenite) in GB is orbicular. At the two tempering temperatures the tested X80 steel shows a certain degree of tempering stability. After being tempered at 650 ℃, the microstructure of X80 steel is GB+quasi-polygonal ferrite(QF), and the original BF laths have merged to form smaller GB crystal grains. The reason is that the steel shows better match of strength and toughness. After being tempered at 700 ℃ , the microstructure of X80 steel is composed mainly of QF, which can improve the plasticity but decline severely the yield strength of X80, and the M/A constituent assembles and grows up at the grain boundary of QF, resulting in excellent lower low-temperature toughness of X80.
文摘The coarse grain HAZ microstructure and property of X80 pipeline steel with different carbon content was investigated. The weld thermal simulation test was carried out on Gleeble 1500 thermal mechanical test machine. The Charpy tests were completed at --20 ℃ for evaluating the toughness of coarse grain heat affected zone (CGHAZ). The microstructure was examined by optical microscope (OM) and transmission electron microscopy (TEM), and the austenite constituent was quantified by X-ray diffraction. The results showed that the ultra-low carbon can improve the toughness of CGHAZ by suppressing the formation of carbide, decreasing the martensite austenite (M-A) constituent and increasing the residual austenite in the M A.
基金financially supported by the National Natural Science Foundation of China(Nos.51761030 and 51701064)the Inner Mongolia Natural Science Foundation(No.2019MS05081)
文摘Dual-phase accelerated cooling(DPAC) was applied to X80 pipeline steel to obtain its microstructure with different amounts of bainite and ferrite. The microstructure, hardness, and polarization behaviors of the steel, cooled to different temperatures, were investigated. Results showed that, with decreasing cooling temperature, the amount of polygon ferrite(PF) increased while that of acicular ferrite(AF) decreased. The amount of bainite correspondingly decreased, except when cooled to 760°C. Moreover, the grain size of ferrite increased. The corrosion behaviors of different phases were distinct. Martensite/austenite(M/A) islands presented at the grain boundary of the PF phase caused small pits. Numerous micro-corrosion cells were formed in the AF and bainite phases, where micropores were prone to form. X80 pipeline steel cooled to 700°C had the best corrosion resistance in the simulated seawater. The decreased amount of the PF phase reduced the area of cathode, resulting in slight corrosion. About 40 vol% of the bainite phase provided strength while the PF phase provided adequate ductility to the X80 steel. It was concluded that the appropriate cooling temperature was 700°C for ideal corrosion resistance and mechanical properties.
基金Funded by the National Natural Science Foundation of China (No.50527402)
文摘The relation between microstructure characteristics and mechanical properties of X80 pipeline steels was investigated using optical microscopy, scanning electron microscopy, etc. It is shown that the structure consists of polygonal ferrite (PF), quasi-polygonal ferrite (QPF), acicular ferrite (AF), and granular bainitic ferrite (GF). With increasing volume fraction of M-A islands (below 3%), the yield strength increases. With increasing content of higher angle grain boundaries(HAGBs), the yield strength, elongation, and DWTT properties at -15 ℃ increase, and the volume fraction of M-A islands reaches its highest point in the steel containing the most volume fraction of GF.
文摘Coarse grain heat-affected zone samples of X80 pipeline steel under different heat inputs were obtained through thermal welding simulation experiments with Gleeble 3500.Charpy impact tests and a combination of multiscale characterizations were conducted to investigate the influence of various microstructural features on impact toughness and crack initiation behavior.The results prove that, as the heat input increases, the number of M/A components increases, thereby degrading toughness and increasing hardness.Meanwhile, more M/A constituents tend to aggregate on prior austenite grain boundaries(PAGBs),and the overall dimensions of M/A and the width and volume fraction of the lath martensite substructure inside M/A islands would increase as well.These changes make intersections between boundary M/As and PAGBs become one of the preferred sites for crack initiation.In addition, only large-sized grotesque inclusions can act as a direct inducement of crack initiation.
文摘The effects of extreme stray current on the anodic dissolution and passivation of X80 steel in NaHCO3 solution were investigated using measurements of polarization curves and EIS,AFM and SEM techniques.Under the interference of anodic current(i=0~200 A/m2),main constituents of corrosion products of X80 steel were FeO(OH)and Fe3 O4.A double-layer film formed at i=00 A/m2,in which FeOOH was in outer and Fe3 O4 lied in inner.The formation mechanism of Fe3 O4 was confirmed and described by the electrochemical reaction in various regions on anodic potentiodynamic polarization curve.
基金The present work was financially supported by a China National“973”Grant under Contract No.G1998061511.
文摘X80 pipeline steel produced by TMCP has high strength and high toughness with ultrafine grain microstructure. The mi-crostructure coarsens and the toughness worsens at the coarse grained (CG) HAZ apparently after weld simulation. The experimental results indicated that the bainitic ferrite and the second phases formed at cooling are differently as the variation of carbon in base metal. In low carbon steels, the bainitic ferrite laths are long and narrow, the second phases are complex including residual austenite, martensite, the M-A constituent and the Fe3C carbide. The formation of Fe3C carbide is the main reason of the poor toughness in CG HAZ. The ultralow carbon in base metal, however, can improve the CG HAZ toughness through restraining the formation of carbides, decreasing the M-A constituent, increasing the residual austenite content, which are beneficial to the CG HAZ toughness.
基金Funded by the Chief Expert (Engineer) Project of Jiangsu Provincial Association for Science(No.2013-216)the Innovation Program of Graduated Student of Jiangsu Province(CXLX2014-1098)
文摘X80 pipeline steel was welded with submerged arc automatic welding, the microstructures, cavity sizes, fusion depths and plane scanning of chemical elements in the welded zone, fusion zone, heat affected zone and base steel were observed with OM(optical microscope) and SEM(scanning electron microscope), respectively. The experimental results show that there is main acicular ferrite in the base steel and welded zone, the microscopic structure of fusion zone is a blocked bainite, and the heat affected zone is composed of multilateral ferrite and pearlite. M-A unit of the welded zone is the main factor to strengthen the welded zone, composed of acicular ferrites. The percentage of cavities in the welded joint is less than that in the base steel, which is beneficial to increasing its mechanical performance and corrosion resistance. The fusion depth in the fusion zone and welded zone is 101.13 μm and 115.85 μm, respectively, and the distribution of chemical elements in the welded zone is uniform, no enrichment phenomena.
文摘Submerged arc welding(SAW) and gas metal arc welding(GMAW) experiments of Nb-bearing X80 steel were conducted with high-toughness wires.The inclusions in weld metals were analyzed in terms of their types and sizes.In GMAW,the inclusions are primarily Ti, Ca, Si, Al, and Mg compounds with no Nb and are generally less than 0.8 μm in size, whereas, in SAW weld, the inclusions are larger, mostly approximately 2-5 μm in size, and are cored with Ca and Ti, exhibiting obvious oxidation metallurgical features.The SAW joint was hot-deformed, and Nb-bearing nano precipitates were newly found in the weld metal through transmission electron microscopy, and Nb-free core-shell inclusion was found through scanning electron microscopy.The inclusions and precipitates were dispersed in or on the boundaries of acicular ferrite, contributing to acicular ferrite nucleation and grain refinement.
基金This work was supported by The National Natural Science Foundation of China (No. 51271099).
文摘In this study, the microstructure evolution and corrosion resistance in O. 5 M Na2CO3 - 1 M NaHCO3 solution of X80 high-deformability ( X8OHD ) pipeline steel coarse-grained heat-affected zone (CGHAZ) with several heat input levels were investigated. It is shown that the microstructure of CGHAZ changes from bainite ferrite to granular bainite as the heat input increasing. In addition, the corrosion resistance and the stability of passive film of base material are better than those of CGHAZ with several heat input levels. Too small or too big heat input is inadvisable and better corrosion resistance of CGHAZ is attained when heat input is 30 kJ/cm.
基金supported by National Natural Science Foundation of China (No. 51577117)
文摘The ablation tests on coated and uncoated Q235 B steel sheets were conducted under 30/80 μs impulse current simulating the lightning first return stroke current, aimed at further understanding the ablation characteristics of steel and investigating the impact of anti-corrosion coating on these characteristics. Ablation characteristics were investigated through the macroscopic morphology and x-ray diffraction patterns on the surface of damaged zones, the microstructure and micro Vickers hardness on the cross-section of damaged zones, and the maximum rear-face temperature of sample sheets. It can be concluded that the ablation areas of uncoated sheet consist of the melted layer and the heat-affect layer. These ablation areas include not only the area ablated directly by the arc root, of which the depth is deeper, but also the area forming due to the splashing of molten steel, of which the depth is shallower and decreases when the area’s distance from the arc attachment point increases. For coated sheet, coating materials have decomposed and evaporated forming an ablation pit on the sheet surface, in which the steel surface is exposed, and zinc filler of coating primer has infused into the exposed surface. The ablation diameter of uncoated sheet relates to the amplitude of the 30/80 μs impulse current in quadratic function, while for coated sheet, the relation is linear. In general, under the 30/80 μs impulse current, the coating can decrease the energy injected from the arc to the steel sheet and reduce the melting and splashing of steel. As a result, the ablation severity of uncoated sheet is severer than that of coated sheet.
文摘The thermophysical properties of API 5L X80 steel were experimentally measured, in order to use these in computational models to determine the temperature field in welded joints. In this work, values of thermal expansion coefficient, specific heat, thermal diffusivity and thermal conductivity were experimentally obtained as a function of temperature. The thermal expansion coefficient was determined at temperatures of 20°C to 1200°C in a dilatometer DIL 402 PC. The specific heat was determined on a differential scanning calorimeter at temperatures between 300°C and 1200°C. The diffusivity and thermal conductivity were determined in the temperature range 100°C to 800°C in a 457 LFA diffusivimeter using laser flash technique. The thermal expansion coefficient remained approximately with constant value of 8.5 × 10-6 K-1 and suffered two falls reaching values -25 × 10-6 K-1 and -50 × 10-6 K-1 in the stages of heating and cooling respectively. It was observed for this material, minimum and maximum values of specific heat equal to 0.571 J/gK and 1.084 J/gK at temperatures of 300°C and 720°C, respectively. The behavior of thermal diffusivity and thermal conductivity in the temperature range 100°C to 800°C tends to decrease with increasing temperature. Based on the measured properties, computational modeling of the temperature field can be numerically obtained with better accuracy.
基金This work was supported by the National Natural Science Foundation of China(No. 50874090).
文摘The relationship between the microstructure and toughness of welding heat-affected zone in XSO grade pipeline steels is studied. It is found that the intercritical reheated coarse-grained heat-affected zone (ICCGHAZ) of experimental steels has the lowest toughness values when the secondary peak temperature is at intercritical ( α + γ ) region during multi-pass welding. The local embrittlement is mainly attributed to the morphology, amount and size of M-A constituent. It is also found that the microstructural inhabitanee at ICCGHAZ has a deleterious effect on the toughness. On the basis of above experimental results, it is suggested that the local embrittlement should be prevented by using pre-heating thermal cycle which could eliminate the microstructural inhabitance and using post-heating thermal cycle which could improve the morphology, amount and size of MA constituent.
基金Projects(52471096,51971191)supported by the National Natural Science Foundation of ChinaProject(S202410530205)supported by the College Students Innovation and Entrepreneurship Training Program of Hunan Province,ChinaProject(S202310530029)supported by the National College Students Innovation and Entrepreneurship Training Program,China。
文摘The study systematically investigated the impact of zinc sacrificial anode(Zn-SA)cathode protection on the corrosion of X80 steel caused by Desulfovibrio desulfuricans(D.desulfuricans)in a marine tidal environment.Utilizing weight-loss analysis,electrochemical measurements,Raman spectroscopy,and 3D morphology microscopy,the research unveiled significant findings.Unprotected steel suffered pronounced localized corrosion in the presence of D.desulfuricans in the marine tidal environment.However,the implementation of Zn-SA cathode protection notably reduced the activity of both planktonic and sessile D.desulfuricans cells.Over time,the accumulation of calcareous deposits within the corrosion products increased,as evidenced by a rise in the resistance of the corrosion produt film(Rf).Remarkably,Zn-SA cathode protection demonstrated substantial inhibition of the steel’s corrosion rate,albeit exhibiting reduced efficiency as the vertical height of the steel within the tidal environment increased.
基金supported by National Natural Science Foundation of China(No.U2106206)Institute of Marine Science and Technology,Shandong Univer-sity,China.
文摘Sulfate reducing bacteria(SRB)are widely present in oil and gas industry,causing pitting corrosion on pipeline steel.Stress corrosion cracking(SCC)often occurs in the presence of mechanical stress before pit-ting perforation failure,leading to economic losses and even catastrophic accidents.In this study,stress distribution simulation using the finite element method(FEM),corrosion analysis techniques and elec-trochemical corrosion measurements were employed to investigate the SCC mechanism of X80 pipeline steel caused by Desulfovibrio vulgaris,which is a common SRB strain used in microbiologically influenced corrosion(MIC)studies.It was found that D.vulgaris MIC caused sharp microcracks on an X80 U-bend coupon after only 2 weeks of immersion at 37℃in the deoxygenated ATCC 1249 culture medium inocu-lated with D.vulgaris.The X80 U-bend coupon’s weight loss-based uniform corrosion rate for the 12 cm^(2)surface was 60%of that for the unstressed flat square coupon(2.3 mg cm^(−2)vs.3.8 mg cm^(−2)).This was likely because the square coupon had wide MIC pits,providing a larger effective surface area for more sessile cells(4.2×10^(8)cells cm^(−2)on square coupon vs.2.4×10^(8)cells cm^(−2)on U-bend coupon)to attach and harvest more electrons.An SCC failure occurred on an X80 U-bend pre-cracked at the outer bottom after a 6-week immersion in the D.vulgaris broth.Apart from MIC damage,this could also be because D.vulgaris metabolism increased the availability hydrogen atoms on the steel surface,and promoted the diffusion of hydrogen atoms into the metal lattice,thus increasing the brittleness of the steel.
文摘The aim of this study is to evaluate the internal corrosion process on X52 and X80 steels/real petroleum interfaces containing condensed hydrocarbon plus oilfield-produced water,which were subjected to stimulated emulsions using 50/50 vol ratio mixtures at 45℃,different hydrodynamic conditions,1 h,and 24 h.A washing process by using deionized water was proposed to simulate and identify the corrosiveness of the hydrocarbon phase after 24 h of exposure time.The characterization by electrochemical impedance spectroscopy and the monitoring of the polarization curves indicated that X80 steel/oilfield-produced water interfaces were more susceptible to corrosion than X52 steel exposed to oilfield-produced water.The combined speed rotation of 600 rpm using a magnetic stirrer+600 rpm using a rotating disk electrode decreased the corrosion rate on X52 steel.The stimulated emulsions made of hydrocarbon+oilfield-produced water and hydrocarbon+deionized water at 24 h increased the corrosion rate on X80 steel(0.34 mm/year and 0.43 mm/year,respectively),promoting the formation of erosion and pitting corrosion.These types of corrosion depended mainly on the physicochemical properties of the hydrocarbon,oilfield-produced water,exposure times,and hydrodynamic systems in which the hydrocarbon was studied.
基金support from the National Natural Science Foundation of China(Nos.52206199,42176209,51979282,and 41676071)the Natural Science Foundation of Shandong Province(No.ZR2021MD064).
文摘Corrosion failure accidents owing to flow erosion and pipeline corrosion frequently occur during transportation.The welding reinforcement height(WRH)can induce locally micro-turbulent flow field,which aggravates local corrosion of welded joints.A high wall shear stress(WsS)experimental setup was established to conduct the online electrochemical corrosion test.The influence of WRH sizes on local corrosion of welded joints was studied at different flow rates.The electrochemical signals of the local corrosion of X80 welded joints at different flow rates were monitored in real time using electrochemical impedance spectroscopy and wire beam microelectrode.In addition,the corrosion products composition and properties were analyzed.The results show that the micro-turbulent flow fields induced by the WRHs can enhance ion mass transfer near the welded joints.The corrosion products on the WRH surface also present different microscopic morphologies at different flow rates.In strong flow fields,the locally enhanced wsS can peel off the dense corrosion product partially,leading to the electrochemical distribution of large cathode and small anode,which accelerates the occurrence and development processes of the local corrosion of welded joints.The scientific guidelines for the corrosion protection of long-distance oil and gas pipelines can be potentially provided.
基金supported by the CNPC (China National Petroleum Corporation) Innovation Foundation under grant No.07E1015
文摘A pipeline steel X80 with welded joint was subjected to surface mechanical attrition treatment (SMAT). After SMAT, a nanostructure surface layer with an average grain size of about 10 nm was formed in the treated sample, and the fatigue limit of the welded joint was elevated by about 13% relative to the untreated joints. In the low and the high amplitude stress regimes, both fatigue strength and fatigue life were enhanced. Formation of the nanostructured surface layer played more important role in the enhanced fatigue behavior than that of residual stress induced by the SMAT.
文摘The conditions of heating and cooling of piercing mandrels made of 4X5MFS steel of a three-roll screw mill 30-80 in the production of a closed cavity of steel vessels of small volume are determined.It is established that multiple cycles of heating up to 600℃ and cooling with water up to 80℃ for about 7 seconds/1 cycle lead to the formation of ridges,shells and cracks on the surface and in the volume of the tool.The loss of structural strength of the material leads to the breakdown of the mandrel during the stitching process.The technique and equipment of magnetic powder control have been developed to establish the dynamics of the growth of internal and external defects of mandrels.An equation is obtained that allows determining the increase in the number of defects in the sewing tool of a screw rolling mill.The technology of non-destructive testing made it possible to develop a rational plan for replacing the sewing mandrels,which allows for predicting the appearance of defects leading to a complex breakdown of the deforming tool at the NPO Pribor machine-building enterprise.
基金Item Sponsored by Natural Science Foundation of Jiangsu Province of China(BK2009104)Innovation Program of Graduated Student of Jiangsu Province China(CXZZ12-731,CXLX11-0388)
文摘The X80 pipeline steel was welded with the way of submerged arc welding. The SST (slow strain test) of the welded joint samples in the air, NACE (National Association of Corrosion Engineers) solution (no H2S), NACE solution (saturated H2S) was performed to research the sensibility index of SCC (stress corrosion cracking) Iscc. The morphologies of the welded joint fractures and the fracture modes were observed with SEM (scanning electron microscope), and the fracture chemical compositions were analyzed with EDS (energy dispersive spectrometer), respectively. The fracture mechanisms of the welded joints were discussed. The results show that sensibility index of SCC in the air is not obvious, the fracture is dimple, and the mode of fracture is ductile fracture. The sensibility index of SCC in NACE solution (no H2S) is 13.21%, the stress corrosion is not obvious. The sample fracture shows quasi cleavage+dimple, and the fracture mode is toughness+brittle rupture. The sensibility index of SCC in NACE solution (saturated H2S) is 56.94%, the plastic loss is the most serious, appearing an obvious stress corrosion tendency, and there is no obvious necking phenomenon. The fracture mode is brittle fracture, and the sample fracture has a high sulfur concentration, prompting S to a aliquation of crisp crystal in the welded zone, and making its mechanical properties worsen.