锂硫电池由于其高能量密度、低成本效益被认为是最有前途的下一代电池体系之一.然而多硫化物的穿梭效应大幅降低了锂硫电池的循环稳定性和寿命,严重阻碍其实际应用.无机金属化合物材料改性的隔膜不仅能抑制多硫化锂(LiPS)的穿梭效应,其...锂硫电池由于其高能量密度、低成本效益被认为是最有前途的下一代电池体系之一.然而多硫化物的穿梭效应大幅降低了锂硫电池的循环稳定性和寿命,严重阻碍其实际应用.无机金属化合物材料改性的隔膜不仅能抑制多硫化锂(LiPS)的穿梭效应,其部分特殊的晶面还能加速多硫化物的氧化还原反应动力学.本文在罗盘状ZnS表面原位生长球状的MoO_(2),制备MoO_(2)/ZnS复合材料.MoO_(2)对多硫化物有着较强的吸附作用,ZnS有着良好的电导率,两者的复合可加速电子传导效率和氧化还原速率.以所制备的MoO_(2)/ZnS作为隔膜改性材料,锂硫电池在5 C的大电流密度下,经过1000次循环后仍可以保持690 mAh g^(-1)的放电比容量,平均每圈的容量衰减率仅为0.014%,表现出优异的循环性能和倍率性能.展开更多
Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme hetero...Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.展开更多
采用磁控溅射技术在硅衬底上制备ZnS薄膜,探究了溅射功率对ZnS薄膜沉积速率、表面粗糙度和表面形貌的影响。采用台阶仪、原子力显微镜(Atomic Force Microscope,AFM)、扫描电子显微镜(Scanning Electron Microscope,SEM)、椭偏仪等表征...采用磁控溅射技术在硅衬底上制备ZnS薄膜,探究了溅射功率对ZnS薄膜沉积速率、表面粗糙度和表面形貌的影响。采用台阶仪、原子力显微镜(Atomic Force Microscope,AFM)、扫描电子显微镜(Scanning Electron Microscope,SEM)、椭偏仪等表征薄膜的表面形貌、微观结构和光学性能。结果表明,ZnS薄膜的沉积速率与溅射功率有关,随溅射功率的增加而线性增加;表面粗糙度与溅射功率相关,随溅射功率的增大呈现先增大后减小的趋势。在微观结构方面,薄膜晶粒尺寸也呈现先变大后减小的趋势。随着溅射功率的增大,ZnS膜层的折射率先减小后增大。因此,溅射功率对膜层生长具有重要的作用。展开更多
文摘锂硫电池由于其高能量密度、低成本效益被认为是最有前途的下一代电池体系之一.然而多硫化物的穿梭效应大幅降低了锂硫电池的循环稳定性和寿命,严重阻碍其实际应用.无机金属化合物材料改性的隔膜不仅能抑制多硫化锂(LiPS)的穿梭效应,其部分特殊的晶面还能加速多硫化物的氧化还原反应动力学.本文在罗盘状ZnS表面原位生长球状的MoO_(2),制备MoO_(2)/ZnS复合材料.MoO_(2)对多硫化物有着较强的吸附作用,ZnS有着良好的电导率,两者的复合可加速电子传导效率和氧化还原速率.以所制备的MoO_(2)/ZnS作为隔膜改性材料,锂硫电池在5 C的大电流密度下,经过1000次循环后仍可以保持690 mAh g^(-1)的放电比容量,平均每圈的容量衰减率仅为0.014%,表现出优异的循环性能和倍率性能.
文摘Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.
文摘采用磁控溅射技术在硅衬底上制备ZnS薄膜,探究了溅射功率对ZnS薄膜沉积速率、表面粗糙度和表面形貌的影响。采用台阶仪、原子力显微镜(Atomic Force Microscope,AFM)、扫描电子显微镜(Scanning Electron Microscope,SEM)、椭偏仪等表征薄膜的表面形貌、微观结构和光学性能。结果表明,ZnS薄膜的沉积速率与溅射功率有关,随溅射功率的增加而线性增加;表面粗糙度与溅射功率相关,随溅射功率的增大呈现先增大后减小的趋势。在微观结构方面,薄膜晶粒尺寸也呈现先变大后减小的趋势。随着溅射功率的增大,ZnS膜层的折射率先减小后增大。因此,溅射功率对膜层生长具有重要的作用。