Hot-box is a device used widely in the world for studying thermodynamic properties of architecture material and types of walls. It can run both static and dynamic experiments, and its demand for controlling is high. B...Hot-box is a device used widely in the world for studying thermodynamic properties of architecture material and types of walls. It can run both static and dynamic experiments, and its demand for controlling is high. Because it adopts traditional PI control presently, and is mainly used for static experiments, its dynamic response is bad. Therefore, this paper applies adaptive fuzzy control, which follows dynamic movement quite well to the hotbox device. At the same time, considering the characteristic that the stable state quality is high within little error of traditional PI control, it combines the adaptive fuzzy control with quantity factor and proportion factor serf-adjusting online and PI control to be a new double mode control using different control models at different conditions. The results of hotbox controlling experiments indicate that this control system is better than PI control or single fuzzy control both at response and precision.展开更多
With validamycin A.(0.2 billion spores/ml) Paenibacillus polymyxa DN-1 3% AS as the test agent, the effects of different dosage and different application time on the control efficacy for' rich sheath blight were in...With validamycin A.(0.2 billion spores/ml) Paenibacillus polymyxa DN-1 3% AS as the test agent, the effects of different dosage and different application time on the control efficacy for' rich sheath blight were investigated. The results of two- year test showed that when the application amount was in the range of 45-90 g.a.i/ hm^2, the field efficacy of validamycin A-(0.2 billion spores/ml) P. polymyxa DN-1 3% AS in the initial infection stage of rich sheath blight (Le., the diseased plant rate was below 5%) reached 80.38%-89.06%, and that in the peak infection stage (i.e., the diseased plant rate was higher than 10%) reached only 41.12%-53.26%. The field efficacy of validamycin A.(0.2 billion spores/ml) P. polymyxa DN-1 3% AS at the early onset of rich sheath blight was significantly better than that at the onset, so that the application time of validamycin A .(0.2 billion spores/ml) P. polymyxa DN-1 3% AS should be appropriately brought forward in the prevention and control of rice sheath blight.展开更多
电控空气悬架(electronically controlled air suspension,ECAS)系统的有效控制依赖于传感器实时采集的正确车身状态信号。针对电控空气悬架传感器卡死、恒偏差、恒增益3种故障,建立1种ECAS故障检测与隔离方法(fault detection and isol...电控空气悬架(electronically controlled air suspension,ECAS)系统的有效控制依赖于传感器实时采集的正确车身状态信号。针对电控空气悬架传感器卡死、恒偏差、恒增益3种故障,建立1种ECAS故障检测与隔离方法(fault detection and isolation,FDI)。建立电控空气悬架三自由度1/4车模型以及传感器故障时空气悬架模型,设计故障检测滤波器组,结合传感器实时测量值获得空气悬架输出残差,在此基础上确定故障检测指标,计算指标数值并选取适当阈值进行比较。诊断滤波器采用强跟踪滤波器方法进行设计,选取两级决策变量构造隔离决策函数,实现对故障传感器的检测与隔离。仿真分析表明,所提出的基于STF的方法实现了ECAS传感器故障的检测与隔离,有效提高了车辆控制的可靠性与安全性。展开更多
针对动车组运行环境多变、运行过程具有不确定和强非线性特性,提出了一种动车组运行过程自适应最小二乘支持向量机LSSVM(Least Squares Support Vector Machine)建模及其速度控制方法。首先基于动车组牵引特性和运行过程数据建立其LSSV...针对动车组运行环境多变、运行过程具有不确定和强非线性特性,提出了一种动车组运行过程自适应最小二乘支持向量机LSSVM(Least Squares Support Vector Machine)建模及其速度控制方法。首先基于动车组牵引特性和运行过程数据建立其LSSVM模型,并采用粒子群优化算法确定模型参数;其次,依据模型校正策略,通过动车组运行的新数据采用自适应迭代算法来校正LSSVM模型参数,以改善模型的适应性;最后给出了基于LSSVM模型的动车组速度预测控制方法。基于CRH380AL型动车组运行数据的对比仿真结果验证了本文方法的有效性。展开更多
文摘Hot-box is a device used widely in the world for studying thermodynamic properties of architecture material and types of walls. It can run both static and dynamic experiments, and its demand for controlling is high. Because it adopts traditional PI control presently, and is mainly used for static experiments, its dynamic response is bad. Therefore, this paper applies adaptive fuzzy control, which follows dynamic movement quite well to the hotbox device. At the same time, considering the characteristic that the stable state quality is high within little error of traditional PI control, it combines the adaptive fuzzy control with quantity factor and proportion factor serf-adjusting online and PI control to be a new double mode control using different control models at different conditions. The results of hotbox controlling experiments indicate that this control system is better than PI control or single fuzzy control both at response and precision.
基金Supported by National Agricultural Science and Technology Achievement Transformation Fund of China(2010GB2C300196)Modern Agricultural Production Development Fund(Rice Industry)Project of Anhui Academy of Agricultural SciencesIntegration and Demonstration of Chemical Fertilizer and Agrochemical Reduction and Efficiency Increasing Technology for Rice in Rice-wheat(rape)Rotation Areas in Anhui(2016YFD0200806)~~
文摘With validamycin A.(0.2 billion spores/ml) Paenibacillus polymyxa DN-1 3% AS as the test agent, the effects of different dosage and different application time on the control efficacy for' rich sheath blight were investigated. The results of two- year test showed that when the application amount was in the range of 45-90 g.a.i/ hm^2, the field efficacy of validamycin A-(0.2 billion spores/ml) P. polymyxa DN-1 3% AS in the initial infection stage of rich sheath blight (Le., the diseased plant rate was below 5%) reached 80.38%-89.06%, and that in the peak infection stage (i.e., the diseased plant rate was higher than 10%) reached only 41.12%-53.26%. The field efficacy of validamycin A.(0.2 billion spores/ml) P. polymyxa DN-1 3% AS at the early onset of rich sheath blight was significantly better than that at the onset, so that the application time of validamycin A .(0.2 billion spores/ml) P. polymyxa DN-1 3% AS should be appropriately brought forward in the prevention and control of rice sheath blight.
文摘电控空气悬架(electronically controlled air suspension,ECAS)系统的有效控制依赖于传感器实时采集的正确车身状态信号。针对电控空气悬架传感器卡死、恒偏差、恒增益3种故障,建立1种ECAS故障检测与隔离方法(fault detection and isolation,FDI)。建立电控空气悬架三自由度1/4车模型以及传感器故障时空气悬架模型,设计故障检测滤波器组,结合传感器实时测量值获得空气悬架输出残差,在此基础上确定故障检测指标,计算指标数值并选取适当阈值进行比较。诊断滤波器采用强跟踪滤波器方法进行设计,选取两级决策变量构造隔离决策函数,实现对故障传感器的检测与隔离。仿真分析表明,所提出的基于STF的方法实现了ECAS传感器故障的检测与隔离,有效提高了车辆控制的可靠性与安全性。
文摘针对动车组运行环境多变、运行过程具有不确定和强非线性特性,提出了一种动车组运行过程自适应最小二乘支持向量机LSSVM(Least Squares Support Vector Machine)建模及其速度控制方法。首先基于动车组牵引特性和运行过程数据建立其LSSVM模型,并采用粒子群优化算法确定模型参数;其次,依据模型校正策略,通过动车组运行的新数据采用自适应迭代算法来校正LSSVM模型参数,以改善模型的适应性;最后给出了基于LSSVM模型的动车组速度预测控制方法。基于CRH380AL型动车组运行数据的对比仿真结果验证了本文方法的有效性。