The objective of this paper is to present a new method for designing absorbing or non-reflective boundary conditions (ABC) or (NRBC), illustrated by the case study of the modelling of a solid body in water, specifical...The objective of this paper is to present a new method for designing absorbing or non-reflective boundary conditions (ABC) or (NRBC), illustrated by the case study of the modelling of a solid body in water, specifically the capillary gravity waves generated by its motion at the surface. The study analyses the flow of an inviscid, barotropic, and compressible fluid around the stationary solid body. The dynamic behaviour of the fluid is analysed using a two-dimensional coupled Neumann-Kelvin model extended with capillarity and inertia terms. For computational purposes, it is necessary to truncate the unbounded spatial domain with artificial boundaries and then introduce appropriate absorbing boundary conditions. The propagation of short wavelength waves in a convective fluid medium with significant differences in properties between the interior and the surface of the fluid presents a number of difficulties in the design of these conditions. The results are illustrated numerically and commented upon.展开更多
The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C...The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C composites were investigated in the frequency range of 8.2-12.4 GHz. Both the real and imaginary parts of the complex permittivity decreased after thermal oxidation. The composites after 100 h thermal oxidation showed that reflection loss exceeded-10 d B in the frequency of 9.7-11.9 GHz and the minimum value was-11.4 d B at 11.0 GHz. The flexural strength of composites decreased but fracture behavior was improved obviously after thermal oxidation. These results indicate that the SiCf/SiC composites containing PyC interphase after thermal oxidation possess good microwave absorbing property and fracture behavior.展开更多
Objective] This study almed to compare the effects of three absorbing medium on microwave degradation of chIordane in contaminated soiI under alkaline condition. [Method] SoiI sampIes were coI ected from the original ...Objective] This study almed to compare the effects of three absorbing medium on microwave degradation of chIordane in contaminated soiI under alkaline condition. [Method] SoiI sampIes were coI ected from the original site of a reIocated pesticide production enterprise as experimental materials, to investigate the effects of Cu2O, MnO2 and activated carbon powder as absorbing medium on soiI warming and removal rate of chIordane under alkaline condition with 20% moisture content. In addition, the effects of activated carbon as the optimal absorbing media on the removal rate of chIordane in contaminated soiI were analyzed, and the effects on the removal rate of chIordane in different weights of soiI sampIes were investigated. [Result] The effects of three different absorbing medium on the removal rates of chIordane demonstrated a descending order of activated carbon > MnO2 > CuO2. Under the same microwave condition, the removal rate of chIordane decreased with the increase of soiI weights, but the utiIization efficiency of microwave was improved continuousIy and tended to be stabiIized with the increase of soiI weights. [Conclu-sion] This study provided a theoretical basis for further Iarge-scale appIication in soiI remediation.展开更多
In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autoco...In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.展开更多
We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high...We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer(PML), the complexity decreases, and the stability and fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.展开更多
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) meth...With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) method. The reflection of the ABC caused by both the truncated error and the phase velocity error is analyzed. Based on the phase velocity estimation and the nonuniform cell, two methods are studied and then adopted to improve the performance of the ABC. A calculation case of a rectangular waveguide which is a typical dispersive transmission line is carried out using the ADI-FDTD method with the improved ABC for evaluation. According to the calculated case, the comparison is given between the reflection coefficients of the ABC with and without the velocity estimation and also the comparison between the reflection coefficients of the ABC with and without the nonuniform processing. The reflection variation of the ABC under different time steps is also analyzed and the acceptable worsening will not obscure the improvement on the absorption. Numerical results obviously show that efficient improvement on the absorbing performance of the ABC is achieved based on these methods for the ADI-FDTD.展开更多
In elastic wave forward modeling, absorbing boundary conditions (ABC) are used to mitigate undesired reflections from the model truncation boundaries. The perfectly matched layer (PML) has proved to be the best av...In elastic wave forward modeling, absorbing boundary conditions (ABC) are used to mitigate undesired reflections from the model truncation boundaries. The perfectly matched layer (PML) has proved to be the best available ABC. However, the traditional splitting PML (SPML) ABC has some serious disadvantages: for example, global SPML ABCs require much more computing memory, although the implementation is easy. The implementation of local SPML ABCs also has some difficulties, since edges and corners must be considered. The traditional non-splitting perfectly matched layer (NPML) ABC has complex computation because of the convolution. In this paper, based on non-splitting perfectly matched layer (NPML) ABCs combined with the complex frequency-shifted stretching function (CFS), we introduce a novel numerical implementation method for PML absorbing boundary conditions with simple calculation equations, small memory requirement, and easy programming.展开更多
Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer pr...Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer protection galleries do not have sufficient buffer capacity, a two-layered absorbing system has been designed. This study aims to find whether an expanded poly-styrol (EPS) cushion, which is used in the soil-covered protection galleries for shock absorption, could be positioned under dynamic loadings. The dynamic impacts of the two-layered absorbing system under the conditions of rock avalanches are numerically simulated through a 2D discrete dement method. By selecting reasonable parameters, a series of numerical experiments were conducted to find the best combination for the two- layered absorbing system. The values of the EPS layer area as a percentage of the total area were set as 0% (Sl), 22~ (S2), and 70% ($3). 22~ of the area of the EPS layer was found to be a reasonable value, and experiments were conducted to find the best position of the EPS layer in the two-layered absorbing system. The numerical results yield useful conclusions regarding the interaction between the impacting avalanches and the two-layered absorbing system. The soil layer can absorb the shock energy effectively and S2 (0.4-m thick EPS cushion covered with soil layer) is the most efficient combination, which can reduce the impact force, compared with the other combinations.展开更多
Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Am...Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Among the various presented technologies applied for oil/water separation, oil absorption process has been explored widely and offers satisfactory results especially with surface modified oil-absorbing material and/or hybrid absorbents. In this review, we summarize the recent research activities involved in the designing strategies of oil-absorbing absorbents and their application in oil absorption. Then, an extensive list of various oil-absorbing materials from literature, including polymer materials, porous inorganic materials and biomass materials, has been compiled and the oil adsorption capacities toward various types of oils and organic solvents as available in the literature are presented along with highlighting and discussing the various factors involved in the designing of oil-absorbing absorbents tested so far for oil/water separation. Finally, some future trends and perspectives in oil-absorbing material are outlined.展开更多
The numerical wave channel has been developed based on the volume of fluid method (VOF) in conjunction with the Navier-Stokes equations. The absorbing wave-maker boundary on the left side of the channel is presented b...The numerical wave channel has been developed based on the volume of fluid method (VOF) in conjunction with the Navier-Stokes equations. The absorbing wave-maker boundary on the left side of the channel is presented by prescribing velocity reference to linear wave-maker theory. The principle of which is that the numerical wave-maker is designed to move in a way that generates the required incident wave and cancels out any reflected wave that reach it at the same time. On the right side of the channel, the open boundary is set to permit incident waves to be transmitted freely. The parametric studies have been carried out at a range of ratios of water depth to wave length d/ L from 0.124 to 0.219, with wave height in the front of paddle/water depth ratio (H0 / d) from 0.1 to 0.3. Wave height, wave pressure distribution along the channel and velocity field are obtained for both open boundary condition and reflective boundary condition at the other end of the channel. For a reflective case, it is shown that the absorbing wave-maker is very effective in canceling out the reflected wave that reaches the numerical paddle and highly repeatable waves can be generated.展开更多
The electromagnetic and microwave absorbing properties of FeCoB powder composites prepared by sin- gle-roller melt-spinning and mechanical milling processes were investigated in this paper. The result indicates that t...The electromagnetic and microwave absorbing properties of FeCoB powder composites prepared by sin- gle-roller melt-spinning and mechanical milling processes were investigated in this paper. The result indicates that the flake-like powders are obtained. As milling time increases, the flake-like powder particles tend to agglomerate, causing the flake-like powders decrease gradually. The milling time plays an important role in the electromagnetic parameters which relates to the shape and size of the powder particles. The calculation shows that the sample milled for 6 h could achieve an optimal reflection loss of -11.5 dB at 5.8 GHz, with mass fraction of 83 % and a matching thickness of 1.8 mm. The result also indicates that the microwave absorbing properties of the FeCoB powder composites are adjustable by changing their thickness, and can be applied as a thinner microwave absorbing material in the range of 2-8 GHz.展开更多
The structure and electrochemical properties of nanocrystalline LaNi_5-type alloys were studied. These materials were prepared by mechanical alloying (MA) followed by annealing. The properties of hydrogen host materia...The structure and electrochemical properties of nanocrystalline LaNi_5-type alloys were studied. These materials were prepared by mechanical alloying (MA) followed by annealing. The properties of hydrogen host materials can be modified substantially by alloying to obtain the desired storage characteristics. It was found that the partial substitution of Ni by Al or Mn in LaNi_(5-x)M_x alloy leads to an increase in discharge capacity. The alloying elements such as Al, Mn and Co greatly improved the cycle life of LaNi_5 material. For example, in the nanocrystalline LaNi_(3.75)Mn_(0.75)Al_(0.25)Co_(0.25) powder, discharge capacity up to 258 mAh·g^(-1) was measured (at 40 mA·g^(-1) discharge current). Furthermore, the effect of the graphite coating on the structure of some nanocrystalline alloys and the electrodes characteristics were investigated. The mechanical coating with graphite effectively reduced the degradation rate of the studied electrode materials. The combination of a nanocrystalline LaNi_5-type hydride electrodes and a nickel positive electrode to form a Ni-MH battery, was successful.展开更多
When modeling wave propagation in infinite space, it is necessary to have stable absorbing boundaries to effectively eliminate spurious reflections from the truncation boundaries. The SH wave equations for Perfectly M...When modeling wave propagation in infinite space, it is necessary to have stable absorbing boundaries to effectively eliminate spurious reflections from the truncation boundaries. The SH wave equations for Perfectly Matched Layers (PML) are deduced and their Crank-Nicolson scheme are presented in this paper. We use the second-, sixth-, and tenth-order finite difference and pseudo-spectral algorithms to compute the spatial derivatives. Two numerical models, a homogeneous isotropic medium and a multi-layer model with a cave, are designed to investigate how the absorbing boundary width and the algorithms determine PML effects. Numerical results show that, for PML, the low-order finite difference algorithms have fairly good absorbing effects when the absorbing boundary is thin, whereas, high-order algorithms always have good absorption when the boundary is thick. Finally, we discuss the reflection coefficient and point out its shortcomings, which is why we use the SNR to quantitatively scale the PML effects,展开更多
A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) me...A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) method, the interaction of electromagnetic (EM) waves with the model can be studied. In this paper, three covering cases are considered: a. RAM or plasma covering the metal solely; b. RAM and plasma covering the metal, while plasma is placed outside; e. RAM and plasma covering the metal, while RAM is placed outside. The calculated results show that the covering order has a great influence on the absorption of EM waves. Compared to case a, case b has an advantage in the absorption of relatively high-frequency EM waves (HFWs), whereas case c has an advantage in the absorption of relatively low-frequency EM waves (LFWs). Through the optimization of the parameters of both plasma and RAM, it is hopeful to obtain a broad absorption band by RAM and plasma covering. Near-field attenuation rate and far-field radar cross section (RCS) are employed to compare the different cases.展开更多
The R & D of hydrogen absorbing alloys in Japan started in the early 1970s.Many alloys such as TiMm1.5 based alloys, Fe-Ti-O alloys (e.g. FeTi1.15 O0.024) andthe(mischmetal)Ni5 based alloys (e.g. MmNi4.5 Cr0.46 Mn...The R & D of hydrogen absorbing alloys in Japan started in the early 1970s.Many alloys such as TiMm1.5 based alloys, Fe-Ti-O alloys (e.g. FeTi1.15 O0.024) andthe(mischmetal)Ni5 based alloys (e.g. MmNi4.5 Cr0.46 Mn0.04) were developed by the early 1980s. The application of these alloys to hydrogen storage, heat storage, heat pump, hydrogen purification and motor vehicles has been tried in many iaboratories,and the various techniques for using hydrogen absorbing alloys have been developed.The standarkization of evaluation methods for hydrogen absorbing alloys has been promoted by the Ministry of International Trade and Industry (MITI), and four of them were established as Japanese Industrial Standard (JIS).Alloys for Ni-Metal Hydride batteries have been extensively investigated since 1987in Japun. Mm-Ni-Co-Al-Mn alloys (e.g. MmNi3.55 Co0.75Al0.9Mn0.4) have been devel-oped and commereialized since 1990. The amount of production of small-size Ni-MH batteries in 1995 was about three hundred milliion in number and about one hundred billion yen. The R & D for higher enerpy-density Ni-MH batteries is intensively in progress.MITI and STA (Science and Technology Agency) have promoted the R & D of hydro-gen absorbing alloys in Japan by carrying out the national projects such as Sunshine Program (MITI: 1974-1993) and Utilization of Wind Engeray (STA 1980-1985). The New Sunshine Program (MITI 1993-2020) have started in 1993. This program con-tains the application of hydrogen absorbing alloys to Economical- Enerpy- City System and to We-NET (International Clean Energy System of Technology Utilizing Hydro-gen: World Energy Network.展开更多
The effects of types and amounts of silane coupling agent on mechanical properties of vuleanized rubber microwave absorbing patch (VRMAP) were studied. The mechanisms of silane coupling agent's effects on mechanica...The effects of types and amounts of silane coupling agent on mechanical properties of vuleanized rubber microwave absorbing patch (VRMAP) were studied. The mechanisms of silane coupling agent's effects on mechanical properties of rubber microwave absorbing patch ( RMAP ) and microvave absorbing patch's (MAP's) mierostrueture were also discussed by using SEM and FT-IR. The experimental results show that the tensile strength of RMAP could be increased through adding the filler of carbonyl iron powder (CIP) modified by silane coupling agent. RMAP fiUed with CIP, which was treated by silane coupling agent KH550, possessed a high tensile strength of 11.5 MPa, which was 448% more than that of MAP whose filler wus not modified by any coupling agent. It was found that the optimal amount of KH550 was 1.0 phr to 100.0 phr carbonyl iron powder. The effects of different modifying techniques on RMAP's mechanical properties were also inrestigated. It is indieated that MAP whose filler is modified by the wet process has the highest tensile strength, but it is not the optimal modiifying technique due to complieated wet process. On the contrary, the dry process was very simple, and VRMAP possessed fairly high mechanical properties, therefore, it was the perfect modifying process.展开更多
Employing carbonyl iron powder and Ethylene-Propylene-Diene Monomer (EPDM) as the absorbent and matrix, rubber radar absorbing materials (RAM) were prepared. Effects of the carbonyl iron volume fraction and the th...Employing carbonyl iron powder and Ethylene-Propylene-Diene Monomer (EPDM) as the absorbent and matrix, rubber radar absorbing materials (RAM) were prepared. Effects of the carbonyl iron volume fraction and the thickness of the RAM on the microwave absorption properties in the frequency range of 2.6-18GHz were studied, and a mathematical analysis was made using the electromagnetic theory. The experimental results indicate that the minimum reflectivity of the radar absorbing materials continuously decreases with the increase of the carbonyl iron volume fraction, and the absorption peak also moves towards the low frequency for the same thickness of the RAM. The minimum reflectivity of the 3.0 mm RAM is -21.7dB at 3.5 GHz when the volume fraction of carbonyl iron is 45%. The reflectivity of the RAM is not in direct proportional to the thickness of the RAM, when the RAM has the same volume fraction of the carbonyl iron. The reflectivity of the RAM presents a regular trend at a given carbonyl iron volume fraction in the frequency range of 2.6-18 GHz. With the increase of the thickness, the maximum absorption peak moves towards low frequency band, the minimum reflectivity firstly decreases and then increases, and the absorption bandwidth for reflectivity〈-10 dB firstly increases and then decreases. The microwave absorption properties of the RAM are determined by the thickness and the composition of the radar absorbing materials. Theoretical analysis indicates that the reflectivity of the RAM is determined by the matching degree of the air's characteristic impedance and the input impedance.展开更多
Two kinds of nickel particles with flower-like struc~'es assembled with a number of nano-flakes were synthesized and the relationship of their morphology and microwave absorbing properties was studied. The electromag...Two kinds of nickel particles with flower-like struc~'es assembled with a number of nano-flakes were synthesized and the relationship of their morphology and microwave absorbing properties was studied. The electromagnetic parameters of these flower-like Ni were measured with vector network analyzer at 2-18 GHz frequency and the reflection losses (RL) with different sample thicknesses were calculated. The results indicate that the flower-like nickel-wax composites with the sample thickness less than 2 mm show excellent absorbing ability. This result is expected to play a guiding role in the preparation of the highly efficient absorber.展开更多
文摘The objective of this paper is to present a new method for designing absorbing or non-reflective boundary conditions (ABC) or (NRBC), illustrated by the case study of the modelling of a solid body in water, specifically the capillary gravity waves generated by its motion at the surface. The study analyses the flow of an inviscid, barotropic, and compressible fluid around the stationary solid body. The dynamic behaviour of the fluid is analysed using a two-dimensional coupled Neumann-Kelvin model extended with capillarity and inertia terms. For computational purposes, it is necessary to truncate the unbounded spatial domain with artificial boundaries and then introduce appropriate absorbing boundary conditions. The propagation of short wavelength waves in a convective fluid medium with significant differences in properties between the interior and the surface of the fluid presents a number of difficulties in the design of these conditions. The results are illustrated numerically and commented upon.
基金Project(51072165)supported by the National Natural Science Foundation of ChinaProject(201305)supported by the Fund of State Key Laboratory of Solidification Processing,ChinaProjects(2013JK0921,2013JK0922)supported by Shaanxi Provincial Education Department of China
文摘The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C composites were investigated in the frequency range of 8.2-12.4 GHz. Both the real and imaginary parts of the complex permittivity decreased after thermal oxidation. The composites after 100 h thermal oxidation showed that reflection loss exceeded-10 d B in the frequency of 9.7-11.9 GHz and the minimum value was-11.4 d B at 11.0 GHz. The flexural strength of composites decreased but fracture behavior was improved obviously after thermal oxidation. These results indicate that the SiCf/SiC composites containing PyC interphase after thermal oxidation possess good microwave absorbing property and fracture behavior.
基金Supported by Special Fund for the Transformation of Scientific and Technologica Achievements in Jiangsu Province(BA2013057)~~
文摘Objective] This study almed to compare the effects of three absorbing medium on microwave degradation of chIordane in contaminated soiI under alkaline condition. [Method] SoiI sampIes were coI ected from the original site of a reIocated pesticide production enterprise as experimental materials, to investigate the effects of Cu2O, MnO2 and activated carbon powder as absorbing medium on soiI warming and removal rate of chIordane under alkaline condition with 20% moisture content. In addition, the effects of activated carbon as the optimal absorbing media on the removal rate of chIordane in contaminated soiI were analyzed, and the effects on the removal rate of chIordane in different weights of soiI sampIes were investigated. [Result] The effects of three different absorbing medium on the removal rates of chIordane demonstrated a descending order of activated carbon > MnO2 > CuO2. Under the same microwave condition, the removal rate of chIordane decreased with the increase of soiI weights, but the utiIization efficiency of microwave was improved continuousIy and tended to be stabiIized with the increase of soiI weights. [Conclu-sion] This study provided a theoretical basis for further Iarge-scale appIication in soiI remediation.
基金The National Natural Science Foundation of China(No.51205282)
文摘In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.
基金supported by the National Nature Science Foundation of China(Grant No.U1262208)the Important National Science & Technology Specific Projects(Grant No.2011ZX05019-008)
文摘We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer(PML), the complexity decreases, and the stability and fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
基金The National Natural Science Foundation of China(No.60702027)the Free Research Fund of the National Mobile Communications Research Laboratory of Southeast University (No.2008B07)the National Basic Research Program of China(973 Program)(No.2007CB310603)
文摘With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) method. The reflection of the ABC caused by both the truncated error and the phase velocity error is analyzed. Based on the phase velocity estimation and the nonuniform cell, two methods are studied and then adopted to improve the performance of the ABC. A calculation case of a rectangular waveguide which is a typical dispersive transmission line is carried out using the ADI-FDTD method with the improved ABC for evaluation. According to the calculated case, the comparison is given between the reflection coefficients of the ABC with and without the velocity estimation and also the comparison between the reflection coefficients of the ABC with and without the nonuniform processing. The reflection variation of the ABC under different time steps is also analyzed and the acceptable worsening will not obscure the improvement on the absorption. Numerical results obviously show that efficient improvement on the absorbing performance of the ABC is achieved based on these methods for the ADI-FDTD.
基金sponsored by the Chinese National Development and Reform Commission(No.[2005]2372)the Innovative Technological Research Foundation of PetroChina Company Limited(No.060511-1-3)
文摘In elastic wave forward modeling, absorbing boundary conditions (ABC) are used to mitigate undesired reflections from the model truncation boundaries. The perfectly matched layer (PML) has proved to be the best available ABC. However, the traditional splitting PML (SPML) ABC has some serious disadvantages: for example, global SPML ABCs require much more computing memory, although the implementation is easy. The implementation of local SPML ABCs also has some difficulties, since edges and corners must be considered. The traditional non-splitting perfectly matched layer (NPML) ABC has complex computation because of the convolution. In this paper, based on non-splitting perfectly matched layer (NPML) ABCs combined with the complex frequency-shifted stretching function (CFS), we introduce a novel numerical implementation method for PML absorbing boundary conditions with simple calculation equations, small memory requirement, and easy programming.
基金financial support from the Project of National Science Foundation of China(Grant No.41272346)the National Outstanding Youth Funds(Grant No.41225011)+2 种基金financial support from the Science & Technology Research Plan of China Railway Eryuan Engineering Group CO.LTD (Grant No.13164196(13-15))the Project of National Science Foundation of China(Grant Nos. 41472293,91430105)"hundred talents" program of CAS
文摘Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer protection galleries do not have sufficient buffer capacity, a two-layered absorbing system has been designed. This study aims to find whether an expanded poly-styrol (EPS) cushion, which is used in the soil-covered protection galleries for shock absorption, could be positioned under dynamic loadings. The dynamic impacts of the two-layered absorbing system under the conditions of rock avalanches are numerically simulated through a 2D discrete dement method. By selecting reasonable parameters, a series of numerical experiments were conducted to find the best combination for the two- layered absorbing system. The values of the EPS layer area as a percentage of the total area were set as 0% (Sl), 22~ (S2), and 70% ($3). 22~ of the area of the EPS layer was found to be a reasonable value, and experiments were conducted to find the best position of the EPS layer in the two-layered absorbing system. The numerical results yield useful conclusions regarding the interaction between the impacting avalanches and the two-layered absorbing system. The soil layer can absorb the shock energy effectively and S2 (0.4-m thick EPS cushion covered with soil layer) is the most efficient combination, which can reduce the impact force, compared with the other combinations.
基金Supported by the National Natural Science Foundation of China(21706100 and U1507115)Natural Science Foundation of Jiangsu Province(BK20160500,BK20161362and BK20160491)+4 种基金the China Postdoctoral Science Foundation(2016M600373,2018T110452 and 2017M621649)China Postdoctoral Science Foundation of Jiangsu Province(1601016A,1701067C and 1701073C)Scientific Research Foundation for Advanced Talents,Jiangsu University(15JDG142)High-Level Personnel Training Project of Jiangsu Province(BRA2016142)Key Research and Development Program of Jiangxi Province(20171BBH80008)
文摘Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Among the various presented technologies applied for oil/water separation, oil absorption process has been explored widely and offers satisfactory results especially with surface modified oil-absorbing material and/or hybrid absorbents. In this review, we summarize the recent research activities involved in the designing strategies of oil-absorbing absorbents and their application in oil absorption. Then, an extensive list of various oil-absorbing materials from literature, including polymer materials, porous inorganic materials and biomass materials, has been compiled and the oil adsorption capacities toward various types of oils and organic solvents as available in the literature are presented along with highlighting and discussing the various factors involved in the designing of oil-absorbing absorbents tested so far for oil/water separation. Finally, some future trends and perspectives in oil-absorbing material are outlined.
文摘The numerical wave channel has been developed based on the volume of fluid method (VOF) in conjunction with the Navier-Stokes equations. The absorbing wave-maker boundary on the left side of the channel is presented by prescribing velocity reference to linear wave-maker theory. The principle of which is that the numerical wave-maker is designed to move in a way that generates the required incident wave and cancels out any reflected wave that reach it at the same time. On the right side of the channel, the open boundary is set to permit incident waves to be transmitted freely. The parametric studies have been carried out at a range of ratios of water depth to wave length d/ L from 0.124 to 0.219, with wave height in the front of paddle/water depth ratio (H0 / d) from 0.1 to 0.3. Wave height, wave pressure distribution along the channel and velocity field are obtained for both open boundary condition and reflective boundary condition at the other end of the channel. For a reflective case, it is shown that the absorbing wave-maker is very effective in canceling out the reflected wave that reaches the numerical paddle and highly repeatable waves can be generated.
基金financially supported by the National Hi-tech R&D Project Supporting Programs Funded by Ministry of Science&Technology of China(No.2012AA063202)the National Natural Science Foundation of China(Nos.50972013,50802008,and 51004011)+1 种基金the National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science&Technology of China(Nos.2012BAC02B01,2012BAC12B05,2011BAE13B07,and 2011BAC10B02)the Guangdong Province&Ministry of Education Industry-Study-Research United Project(No.2009A090100017)
文摘The electromagnetic and microwave absorbing properties of FeCoB powder composites prepared by sin- gle-roller melt-spinning and mechanical milling processes were investigated in this paper. The result indicates that the flake-like powders are obtained. As milling time increases, the flake-like powder particles tend to agglomerate, causing the flake-like powders decrease gradually. The milling time plays an important role in the electromagnetic parameters which relates to the shape and size of the powder particles. The calculation shows that the sample milled for 6 h could achieve an optimal reflection loss of -11.5 dB at 5.8 GHz, with mass fraction of 83 % and a matching thickness of 1.8 mm. The result also indicates that the microwave absorbing properties of the FeCoB powder composites are adjustable by changing their thickness, and can be applied as a thinner microwave absorbing material in the range of 2-8 GHz.
文摘The structure and electrochemical properties of nanocrystalline LaNi_5-type alloys were studied. These materials were prepared by mechanical alloying (MA) followed by annealing. The properties of hydrogen host materials can be modified substantially by alloying to obtain the desired storage characteristics. It was found that the partial substitution of Ni by Al or Mn in LaNi_(5-x)M_x alloy leads to an increase in discharge capacity. The alloying elements such as Al, Mn and Co greatly improved the cycle life of LaNi_5 material. For example, in the nanocrystalline LaNi_(3.75)Mn_(0.75)Al_(0.25)Co_(0.25) powder, discharge capacity up to 258 mAh·g^(-1) was measured (at 40 mA·g^(-1) discharge current). Furthermore, the effect of the graphite coating on the structure of some nanocrystalline alloys and the electrodes characteristics were investigated. The mechanical coating with graphite effectively reduced the degradation rate of the studied electrode materials. The combination of a nanocrystalline LaNi_5-type hydride electrodes and a nickel positive electrode to form a Ni-MH battery, was successful.
基金supported jointly by the 973 Program (Grant No.2007CB209505)the National Natural Science Fund (Grant No.40704019,40674061)+1 种基金the School Basic Research Fund of Tsinghua University (JC2007030)PetroChina Innovation Fund (Grant No.060511-1-1)
文摘When modeling wave propagation in infinite space, it is necessary to have stable absorbing boundaries to effectively eliminate spurious reflections from the truncation boundaries. The SH wave equations for Perfectly Matched Layers (PML) are deduced and their Crank-Nicolson scheme are presented in this paper. We use the second-, sixth-, and tenth-order finite difference and pseudo-spectral algorithms to compute the spatial derivatives. Two numerical models, a homogeneous isotropic medium and a multi-layer model with a cave, are designed to investigate how the absorbing boundary width and the algorithms determine PML effects. Numerical results show that, for PML, the low-order finite difference algorithms have fairly good absorbing effects when the absorbing boundary is thin, whereas, high-order algorithms always have good absorption when the boundary is thick. Finally, we discuss the reflection coefficient and point out its shortcomings, which is why we use the SNR to quantitatively scale the PML effects,
基金National Nature Science Foundation of China(No.90405004)
文摘A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) method, the interaction of electromagnetic (EM) waves with the model can be studied. In this paper, three covering cases are considered: a. RAM or plasma covering the metal solely; b. RAM and plasma covering the metal, while plasma is placed outside; e. RAM and plasma covering the metal, while RAM is placed outside. The calculated results show that the covering order has a great influence on the absorption of EM waves. Compared to case a, case b has an advantage in the absorption of relatively high-frequency EM waves (HFWs), whereas case c has an advantage in the absorption of relatively low-frequency EM waves (LFWs). Through the optimization of the parameters of both plasma and RAM, it is hopeful to obtain a broad absorption band by RAM and plasma covering. Near-field attenuation rate and far-field radar cross section (RCS) are employed to compare the different cases.
文摘The R & D of hydrogen absorbing alloys in Japan started in the early 1970s.Many alloys such as TiMm1.5 based alloys, Fe-Ti-O alloys (e.g. FeTi1.15 O0.024) andthe(mischmetal)Ni5 based alloys (e.g. MmNi4.5 Cr0.46 Mn0.04) were developed by the early 1980s. The application of these alloys to hydrogen storage, heat storage, heat pump, hydrogen purification and motor vehicles has been tried in many iaboratories,and the various techniques for using hydrogen absorbing alloys have been developed.The standarkization of evaluation methods for hydrogen absorbing alloys has been promoted by the Ministry of International Trade and Industry (MITI), and four of them were established as Japanese Industrial Standard (JIS).Alloys for Ni-Metal Hydride batteries have been extensively investigated since 1987in Japun. Mm-Ni-Co-Al-Mn alloys (e.g. MmNi3.55 Co0.75Al0.9Mn0.4) have been devel-oped and commereialized since 1990. The amount of production of small-size Ni-MH batteries in 1995 was about three hundred milliion in number and about one hundred billion yen. The R & D for higher enerpy-density Ni-MH batteries is intensively in progress.MITI and STA (Science and Technology Agency) have promoted the R & D of hydro-gen absorbing alloys in Japan by carrying out the national projects such as Sunshine Program (MITI: 1974-1993) and Utilization of Wind Engeray (STA 1980-1985). The New Sunshine Program (MITI 1993-2020) have started in 1993. This program con-tains the application of hydrogen absorbing alloys to Economical- Enerpy- City System and to We-NET (International Clean Energy System of Technology Utilizing Hydro-gen: World Energy Network.
文摘The effects of types and amounts of silane coupling agent on mechanical properties of vuleanized rubber microwave absorbing patch (VRMAP) were studied. The mechanisms of silane coupling agent's effects on mechanical properties of rubber microwave absorbing patch ( RMAP ) and microvave absorbing patch's (MAP's) mierostrueture were also discussed by using SEM and FT-IR. The experimental results show that the tensile strength of RMAP could be increased through adding the filler of carbonyl iron powder (CIP) modified by silane coupling agent. RMAP fiUed with CIP, which was treated by silane coupling agent KH550, possessed a high tensile strength of 11.5 MPa, which was 448% more than that of MAP whose filler wus not modified by any coupling agent. It was found that the optimal amount of KH550 was 1.0 phr to 100.0 phr carbonyl iron powder. The effects of different modifying techniques on RMAP's mechanical properties were also inrestigated. It is indieated that MAP whose filler is modified by the wet process has the highest tensile strength, but it is not the optimal modiifying technique due to complieated wet process. On the contrary, the dry process was very simple, and VRMAP possessed fairly high mechanical properties, therefore, it was the perfect modifying process.
基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.04KJB430040)
文摘Employing carbonyl iron powder and Ethylene-Propylene-Diene Monomer (EPDM) as the absorbent and matrix, rubber radar absorbing materials (RAM) were prepared. Effects of the carbonyl iron volume fraction and the thickness of the RAM on the microwave absorption properties in the frequency range of 2.6-18GHz were studied, and a mathematical analysis was made using the electromagnetic theory. The experimental results indicate that the minimum reflectivity of the radar absorbing materials continuously decreases with the increase of the carbonyl iron volume fraction, and the absorption peak also moves towards the low frequency for the same thickness of the RAM. The minimum reflectivity of the 3.0 mm RAM is -21.7dB at 3.5 GHz when the volume fraction of carbonyl iron is 45%. The reflectivity of the RAM is not in direct proportional to the thickness of the RAM, when the RAM has the same volume fraction of the carbonyl iron. The reflectivity of the RAM presents a regular trend at a given carbonyl iron volume fraction in the frequency range of 2.6-18 GHz. With the increase of the thickness, the maximum absorption peak moves towards low frequency band, the minimum reflectivity firstly decreases and then increases, and the absorption bandwidth for reflectivity〈-10 dB firstly increases and then decreases. The microwave absorption properties of the RAM are determined by the thickness and the composition of the radar absorbing materials. Theoretical analysis indicates that the reflectivity of the RAM is determined by the matching degree of the air's characteristic impedance and the input impedance.
基金Project(JC201006020838A)supported by the Basic Research Funds of Science and Technology Foundation of Shenzhen,China
文摘Two kinds of nickel particles with flower-like struc~'es assembled with a number of nano-flakes were synthesized and the relationship of their morphology and microwave absorbing properties was studied. The electromagnetic parameters of these flower-like Ni were measured with vector network analyzer at 2-18 GHz frequency and the reflection losses (RL) with different sample thicknesses were calculated. The results indicate that the flower-like nickel-wax composites with the sample thickness less than 2 mm show excellent absorbing ability. This result is expected to play a guiding role in the preparation of the highly efficient absorber.