期刊文献+
共找到301篇文章
< 1 2 16 >
每页显示 20 50 100
Hepatic steatosis is associated with dysregulated cholesterol metabolism and altered protein acetylation dynamics in chickens
1
作者 Xiaoli Guo Qianqian Zhou +5 位作者 Jiaming Jin Fangren Lan Chaoliang Wen Junying Li Ning Yang Congjiao Sun 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第1期53-67,共15页
Background Hepatic steatosis is a prevalent manifestation of fatty liver, that has detrimental effect on the health and productivity of laying hens, resulting in economic losses to the poultry industry. Here, we aimed... Background Hepatic steatosis is a prevalent manifestation of fatty liver, that has detrimental effect on the health and productivity of laying hens, resulting in economic losses to the poultry industry. Here, we aimed to systematically investigate the genetic regulatory mechanisms of hepatic steatosis in laying hens.Methods Ninety individuals with the most prominent characteristics were selected from 686 laying hens according to the accumulation of lipid droplets in the liver, and were graded into three groups, including the control, mild hepatic steatosis and severe hepatic steatosis groups. A combination of transcriptome, proteome, acetylome and lipidome analyses, along with bioinformatics analysis were used to screen the key biological processes, modifications and lipids associated with hepatic steatosis.Results The rationality of the hepatic steatosis grouping was verified through liver biochemical assays and RNA-seq. Hepatic steatosis was characterized by increased lipid deposition and multiple metabolic abnormalities. Integration of proteome and acetylome revealed that differentially expressed proteins(DEPs) interacted with differentially acetylated proteins(DAPs) and were involved in maintaining the metabolic balance in the liver. Acetylation alterations mainly occurred in the progression from mild to severe hepatic steatosis, i.e., the enzymes in the fatty acid oxidation and bile acid synthesis pathways were significantly less acetylated in severe hepatic steatosis group than that in mild group(P < 0.05). Lipidomics detected a variety of sphingolipids(SPs) and glycerophospholipids(GPs) were negatively correlated with hepatic steatosis(r ≤-0.5, P < 0.05). Furthermore, the severity of hepatic steatosis was associated with a decrease in cholesterol and bile acid synthesis and an increase in exogenous cholesterol transport.Conclusions In addition to acquiring a global and thorough picture of hepatic steatosis in laying hens, we were able to reveal the role of acetylation in hepatic steatosis and depict the changes in hepatic cholesterol metabolism. The findings provides a wealth of information to facilitate a deeper understanding of the pathophysiology of fatty liver and contributes to the development of therapeutic strategies. 展开更多
关键词 acetylation Cholesterol metabolism Hepatic steatosis Laying hens Multiomics
下载PDF
IL-17 induces NSCLC cell migration and invasion by elevating MMP19 gene transcription and expression through the interaction of p300-dependent STAT3-K631 acetylation and its Y705-phosphorylation
2
作者 WEN GE YA LI +7 位作者 YUTING RUAN NINGXIA WU PEI MA TONGPENG XU YONGQIAN SHU YINGWEI WANG WEN QIU CHENHUI ZHAO 《Oncology Research》 SCIE 2024年第4期625-641,共17页
The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer(NSCLC).Although researchers have disclosed that interleukin 17(IL-17)can increase matrix metalloproteinases(MMPs)inductio... The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer(NSCLC).Although researchers have disclosed that interleukin 17(IL-17)can increase matrix metalloproteinases(MMPs)induction causing NSCLC cell metastasis,the underlying mechanism remains unclear.In the study,we found that IL-17 receptor A(IL-17RA),p300,p-STAT3,Ack-STAT3,and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17.p300,STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3,Ack-STAT3 and MMP19 level as well as the cell migration and invasion.Mechanism investigation revealed that STAT3 and p300 bound to the same region(−544 to−389 nt)of MMP19 promoter,and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity,p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17.Meanwhile,p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact,synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion.Besides,the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300,STAT3 or MMP19 gene plus IL-17 treatment,the nodule number,and MMP19,Ack-STAT3,or p-STAT3 production in the lung metastatic nodules were all alleviated.Collectively,these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation,which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy. 展开更多
关键词 NSCLC cell migration and invasion IL-17 P300 STAT3 MMP19 acetylation and phosphorylation
下载PDF
Acetylation of Chinese bamboo flour and thermoplasticity 被引量:6
3
作者 李雪芳 陈钦慧 +2 位作者 林金火 卓东贤 吴秀玲 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第1期69-71,共3页
Chinese bamboo flour was chemically modified by acetylation with acetic anhydride by using trichloroacetic acid as an activation agent and the optimized condition for acetylation of bamboo flour was determined as the ... Chinese bamboo flour was chemically modified by acetylation with acetic anhydride by using trichloroacetic acid as an activation agent and the optimized condition for acetylation of bamboo flour was determined as the trichloroacetic acid amount 6.0 g per 1.5-g bamboo flour, ultrasosonication duration 40 min and the reaction time 1 h at 65℃. The composition, microstructure and thermal behavior of acetylated bamboo flour were preliminarily characterized by FT-IR, DSC and SEM etc. The acetylated bamboo flour can be molded into sheets at 130℃ and 10 MPa, indicating the modified bamboo flour possesses thermalplastic performance. 展开更多
关键词 acetylation THERMOPLASTICITY bamboo flour modification trichloroacetic acid
下载PDF
Curcumin-induced Histone Acetylation in Malignant Hematologic Cells
4
作者 胡俊斌 王妍 陈燕 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2009年第1期25-28,共4页
This study investigated the inhibitory effects of curcumin on proliferation of hematological malignant cells in vitro and the anti-tumor mechanism at histone acetylation/histone deacetylation levels. The effects of cu... This study investigated the inhibitory effects of curcumin on proliferation of hematological malignant cells in vitro and the anti-tumor mechanism at histone acetylation/histone deacetylation levels. The effects of curcumin and histone deacetylase inhibitor trichostatin A (TSA) on the growth of Raji cells were tested by MTT assay. The expression of acetylated histone-3 (H3) in Raji, HL60 and K562 cells, and peripheral blood mononuclear cells (PBMCs) treated with curcumin or TSA was detected by immunohistochemistry and FACS. The results showed curcumin inhibited pro- liferation of Raji cells significantly in a time- and dose-dependent fashion, while exhibited low toxicity in PBMCs. Curcumin induced up-regulation of the expression of acetylated H3 dose-dependently in all malignant cell lines tested. In conclusion, curcumin inhibited proliferation of Raji cells selectively, enhanced the level of acetylated H3 in Raji, HL60, and K562 cells, which acted as a histone deacetylase inhibitor like TSA. Furthermore, up-regulation of H3 acetylation may play an important role in regulating the proliferation of Raji cells. 展开更多
关键词 CURCUMIN histone acetylation histone deacetylation
下载PDF
HDACs,histone deacetylation and gene transcription: from molecular biology to cancer therapeutics 被引量:36
5
作者 PaolaGallinari StefaniaDiMarco +2 位作者 PhillipJones MichelePallaoro ChristianSteinkühler 《Cell Research》 SCIE CAS CSCD 2007年第3期195-211,共17页
Histone deacetylases (HDACs) and histone acetyl transferases (HATs) are two counteracting enzyme families whose enzymatic activity controls the acetylation state of protein lysine residues, notably those contained... Histone deacetylases (HDACs) and histone acetyl transferases (HATs) are two counteracting enzyme families whose enzymatic activity controls the acetylation state of protein lysine residues, notably those contained in the N-terminal extensions of the core histones. Acetylation of histones affects gene expression through its influence on chromatin conformation. In addition, several non-histone proteins are regulated in their stability or biological function by the acetylation state of specific lysine residues. HDACs intervene in a multitude of biological processes and are part of a multiprotein family in which each member has its specialized functions. In addition, HDAC activity is tightly controlled through targeted recruitment, protein-protein interactions and post-translational modifications. Control of cell cycle progression, cell survival and differentiation are among the most important roles of these enzymes. Since these processes are affected by malignant transformation, HDAC inhibitors were developed as antineoplastic drugs and are showing encouraging efficacy in cancer patients. 展开更多
关键词 histone deacetylase HISTONE post-translational modification TRANSCRIPTION histone deacetylase inhibitors protein acetylation
下载PDF
Effects of histone acetylation and DNA methylation on p21^(WAF1)regulation 被引量:25
6
作者 FangJY LuYY 《World Journal of Gastroenterology》 SCIE CAS CSCD 2002年第3期400-405,共6页
Cell cycle progression is regulated by interactions between cyclins and cyclin-dependent kinases (CDKs). p21(WAF1) is one of the CIP/KIP family which inhibits CDKs activity. Increased expression of p21(WAF1) may play ... Cell cycle progression is regulated by interactions between cyclins and cyclin-dependent kinases (CDKs). p21(WAF1) is one of the CIP/KIP family which inhibits CDKs activity. Increased expression of p21(WAF1) may play an important role in the growth arrest induced in transformed cells. Although the stability of the p21( WAF1) mRNA could be altered by different signals, cell differentiation and numerous influencing factors. However, recent studies suggest that two known mechanisms of epigenesis, i.e.gene inactivation by methylation in promoter region and changes to an inactive chromatin by histone deacetylation, seem to be the best candidate mechanisms for inactivation of p21( WAF1). To date, almost no coding region p21(WAF1) mutations have been found in tumor cells, despite extensive screening of hundreds of various tumors. Hypermethylation of the p21(WAF1) promoter region may represent an alternative mechanism by which the p21(WAF1/CIP1) gene can be inactivated. The reduction of cellular DNMT protein levels also induces a corresponding rapid increase in the cell cycle regulator p21(WAF1) protein demonstrating a regulatory link between DNMT and p21(WAF1) which is independent of methylation of DNA. Both histone hyperacetylation and hypoacetylation appear to be important in the carcinoma process, and induction of the p21(WAF1) gene by histone hyperacetylation may be a mechanism by which dietary fiber prevents carcinogenesis. Here, we review the influence of histone acetylation and DNA methylation on p21(WAF1) transcription, and affection of pathways or factors associated such as p 53, E2A, Sp1 as well as several histone deacetylation inhibitors. 展开更多
关键词 DNA Methylation DNA-Binding Proteins acetylation ACETYLTRANSFERASES Base Sequence Basic Helix-Loop-Helix Transcription Factors Cell Cycle Proteins Cell Transformation Neoplastic CpG Islands Cyclin-Dependent Kinase Inhibitor p21 CYCLINS DNA Histone Acetyltransferases HISTONES Humans Molecular Sequence Data Nuclear Proteins Signal Transduction Sp1 Transcription Factor TRANS-ACTIVATORS Transcription Factors
下载PDF
Homogeneous Acetylation of Cellulose at Relatively High Concentrations in an Ionic Liquid 被引量:8
7
作者 曹妍 张军 +2 位作者 何嘉松 李会泉 张懿 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第3期515-522,共8页
At relatively high cellulose mass concentrations(8%,10%,and 12%),homogeneous acetylation of cellulose was carried out in an ionic liquid,1-allyl-3-methylimidazolium chloride(AmimCl).Without using any catalyst,cellulos... At relatively high cellulose mass concentrations(8%,10%,and 12%),homogeneous acetylation of cellulose was carried out in an ionic liquid,1-allyl-3-methylimidazolium chloride(AmimCl).Without using any catalyst,cellulose acetates(CAs)with the degree of substitution(DS)in a range from 0.4 to 3.0 were synthesized in one-step.The effects of reaction time,temperature and molar ratio of acetic anhydride/anhydroglucose unit(AGU) in cellulose on DS value of CAs were investigated.The synthesized CAs were characterized by means of FT-IR, NMR,and solubility,mechanical and thermal tests.After the acetylation,the used ionic liquid AmimCl was easily recycled and reused.This study shows the potential of the homogeneous acetylation of cellulose at relatively high concentrations in ionic liquids in future industrial applications. 展开更多
关键词 CELLULOSE high concentration acetylation HOMOGENEOUS ionic liquid
下载PDF
p-Toluenesulfonyl chloride as a new and effective catalyst for acetylation and formylation of hydroxyl compounds under mild conditions 被引量:4
8
作者 Ardeshir Khazaei Amin Rostami Fatemeh Mantashlo 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第12期1430-1434,共5页
The catalytic application of p-toluenesulfonyl chloride for efficient acetylation of various types of alcohols and phenols with acetic anhydride in solvent-free conditions is reported.Also structurally diverse alcohol... The catalytic application of p-toluenesulfonyl chloride for efficient acetylation of various types of alcohols and phenols with acetic anhydride in solvent-free conditions is reported.Also structurally diverse alcohols were formylated using formic acid based on the use of catalytic amount of p-toluenesulfonyl chloride under solvent-free condition.The reactions were carried out in short reaction time and in good to excellent yields at room temperature. 展开更多
关键词 p-Toluenesulfonyl chloride Hydroxyl compounds acetylation Forrnylation
下载PDF
Histone acetylation of the htr3a gene in the prefrontal cortex of Wistar rats regulates ethanol-seeking behavior 被引量:3
9
作者 Yahui Xu Xuebing Liu +4 位作者 Xiaojie Zhang Guanbai Zhang Ruiling Zhang Tieqiao Liu Wei Hao 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第13期1021-1028,共8页
Previous reports showed that decreased histone deacetylase activity significantly potentiated the rewarding effects of psychostimulants, and that encoding of the 5-HT3 receptor by the htr3a gene was related to ethanol... Previous reports showed that decreased histone deacetylase activity significantly potentiated the rewarding effects of psychostimulants, and that encoding of the 5-HT3 receptor by the htr3a gene was related to ethanol-seeking behavior. However, the effects of a histone deacetylase inhibitor on ethanol-seeking behavior and epigenetic regulation of htr3a mRNA expression after chronic ethanol exposure are not fully understood. Using quantitative reverse transcription-polymerase chain reaction and chromatin immunoprecipitation analysis, we investigated the effects of chronic ethanol exposure and its interaction with a histone deacetylase inhibitor on histone-acetylation-mediated changes in htr3a mRNA expression in the htr3a promoter region. The conditioned place preference procedure was used to evaluate ethanol-seeking behavior. Chronic exposure to ethanol effectively elicited place conditioning. In the prefrontal cortex, the acetylation of H3K9 and htr3a mRNA expression in the htr3a promoter region were significantly higher in the ethanol group than in the saline group. The histone deacetylase inhibitor sodium butyrate potentiated the effects of ethanol on htr3a mRNA expression and enhanced ethanol-induced conditioned place preferences. These results suggest that ethanol upregulates htr3a levels through mechanisms involving H3K9 acetylation, and that histone acetylation may be a therapeutic target for treating ethanol abuse. 展开更多
关键词 Ethanol seeking chronic ethanol exposure htr3a histone deacetylase histone acetylation sodiumbutyrate neural regeneration
下载PDF
Alcohol-induced protein hyperacetylation: Mechanisms and consequences 被引量:3
10
作者 Blythe D Shepard Pamela L Tuma 《World Journal of Gastroenterology》 SCIE CAS CSCD 2009年第10期1219-1230,共12页
Although the clinical manifestations of alcoholic liver disease are well-described, little is known about the molecular basis of liver injury. Recent studies have indicated that ethanol exposure induces global protein... Although the clinical manifestations of alcoholic liver disease are well-described, little is known about the molecular basis of liver injury. Recent studies have indicated that ethanol exposure induces global protein hyperacetylationo This reversible, post- translational modification on the E-amino groups of lysine residues has been shown to modulate multiple, diverse cellular processes ranging from transcriptional activation to microtubule stability. Thus, alcohol- induced protein hyperacetylation likely leads to major physiological consequences that contribute to alcohol-induced hepatotoxicity. Lysine acetylation is controlled by the activities of two opposing enzymes, histone acetyltransferases and histone deacetylases. Currently, efforts are aimed at determining which enzymes are responsible for the increased acetylation of specific substrates. However, the greater challenge will be to determine the physiological ramifications of protein hyperacetylation and how they might contribute to the progression of liver disease. In this review, we will first list and discuss the proteins known to be hyperacetylated in the presence of ethanol. We will then describe what is known about the mechanisms leading to increased protein acetylation and how hyperacetylation may perturb hepatic function. 展开更多
关键词 ETHANOL HEPATOTOXICITY acetylation DEACETYLASES ACETYLTRANSFERASES
下载PDF
Involvement of chromatin and histone acetylation in the regulation of HIV-LTR by thyroid hormone receptor 被引量:4
11
作者 HsiaSC WangH 《Cell Research》 SCIE CAS CSCD 2001年第1期8-16,共9页
The HIV-1 LTR controls the expression of HIV-1 viral genes and thus is critical for viral propagation and pathology. Numerous host factors have been shown to participate in the regulation of the LTR promoter. Among th... The HIV-1 LTR controls the expression of HIV-1 viral genes and thus is critical for viral propagation and pathology. Numerous host factors have been shown to participate in the regulation of the LTR promoter. Among them is the thyroid hormone (T3) receptor (TR). TR has been shown to bind to the critical region of the promoter that contain the NFbB and Sp1 binding sites. Interestingly, earlier transient transfection studies in tissue culture cells have yielded contradicting conclusions on the role of TR in LTR regulation, likely due to the use of different cell types and/or lack of proper chromatin organization. Here, using the frog oocyte as a model system that allows replication-coupled chromatin assembly, mimicking that in somatic cells, we demonstrate that unliganded heterodimers of TR and RXR (9-cis retinoic acid receptor) repress LTR while the addition of T3 relieves the repression and further activates the promoter. More importantly, we show that chromatin and unliganded TR/RXR synergize to repress the promoter in a histone deacetylase-dependent manner. 展开更多
关键词 acetylation Acquired Immunodeficiency Syndrome Animals CHROMATIN DIMERIZATION Gene Expression Regulation Viral HIV Long Terminal Repeat HIV-1 Histone Deacetylases HISTONES Ligands NF-kappa B OOCYTES Receptors Retinoic Acid Receptors Thyroid Hormone Response Elements Retinoid X Receptors Transcription Factors Xenopus laevis
下载PDF
V(HSO_4)_3 catalyzed chemoselectivity acetylation of alcohols and phenols in solution and under solvent-free conditions 被引量:2
12
作者 Farhad Shirini Ali Reza Sakhaei Masoumeh Abedini 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第4期439-443,共5页
A variety of alcohols and phenols are efficiently acetylated with acetic anhydride in the presence of a catalytic amount of V(HSO4)3 in solution and under solvent free conditions. Mild reaction conditions, high yiel... A variety of alcohols and phenols are efficiently acetylated with acetic anhydride in the presence of a catalytic amount of V(HSO4)3 in solution and under solvent free conditions. Mild reaction conditions, high yields of the products, easy procedure and selective acetylation of alcohols and phenols in the presence of amines and thiols are the main advantages of this procedure. 展开更多
关键词 ALCOHOLS PHENOLS acetylation Solvent-free conditions Vanadium hydrogen sulfate
下载PDF
Pharmacokinetics and acetylation of sulfamethoxazole in turbot Scophthalmus maximus after intravascular administration 被引量:1
13
作者 常志强 柳飞 +2 位作者 连春盎 翟倩倩 李健 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2016年第4期789-794,共6页
The pharmacokinetic profi les and sulfamethoxazole(SMX) acetylation process in turbot reared at 18°C were investigated. Either SMX(parent drug) or its acetylized metabolite, N4-acetylsulfamethoxazole(Ac SMX), was... The pharmacokinetic profi les and sulfamethoxazole(SMX) acetylation process in turbot reared at 18°C were investigated. Either SMX(parent drug) or its acetylized metabolite, N4-acetylsulfamethoxazole(Ac SMX), was administered intravascularly to turbot at a dosage of 50 mg/kg BW. Serum concentrations of the parent drug and its metabolite were both measured by HPLC, and the changes in concentration over time were analyzed in two- and non-compartment models because SMX treatment produced multiple peaks. The results demonstrated that the elimination half-life of the parent drugs, SMX and Ac SMX, were 159.2 and 5.9 h, respectively. The apparent volume of distribution was 0.2 and 0.8 L/kg, and the clearance was 0.038 and 0.222 L/(h·kg), for SMX and Ac SMX, respectively. SMX acetylation in turbot was 2.8%, and the deacetylation of Ac SMX was 0.2%. These fi ndings may be useful in optimizing SMX dosage regimens in turbot aquaculture. 展开更多
关键词 PHARMACOKINETICS acetylation SULFAMETHOXAZOLE TURBOT
下载PDF
Induction of Apoptosis and Acetylation of Histone H3 and H4 by Arctigenin in the Human Melanoma Cell Line SK-MEL-28 被引量:2
14
作者 Jin Boo Jeong Se Chul Hong +1 位作者 Jin Suk Koo Hyung Jin Jeong 《Food and Nutrition Sciences》 2011年第2期128-132,共5页
Cutaneous melanoma is one of the most aggressive forms of skin cancer. Arctigenin, one of the major bioactive compo-nents of Arctii Fructus, has been reported to exhibit antioxidant, antitumor and anti-inflammatory ac... Cutaneous melanoma is one of the most aggressive forms of skin cancer. Arctigenin, one of the major bioactive compo-nents of Arctii Fructus, has been reported to exhibit antioxidant, antitumor and anti-inflammatory activities. In the pre-sent study, we investigated the effect of arctigenin on induction of apoptosis in highly metastatic SK-MEL-28 human melanoma cells. Arctigenin inhibited growth of SK-MEL-28 cells in a dose-dependent manner. Treatment of SK-MEL-28cells with arctigenin caused cleavage of caspases 3, 7 and 9, and poly (ADP-ribose) polymerase in a dose-dependent manner. Furthermore, acetylation of histone H3 and H4 in the SK-MEL-28 cells was dramatically increased by arctigenin treatment. Collectively, these findings indicate that arctigenin-induces apoptosis of SK-MEL-28 melanoma cells via activation of caspases and histone acetylation. 展开更多
关键词 ARCTIGENIN APOPTOSIS HISTONE acetylation CASPASES MELANOMA
下载PDF
Histone acetylation and its role in embryonic stem cell differentiation 被引量:1
15
作者 Naiara Z Saraiva Clara S Oliveira Joaquim M Garcia 《World Journal of Stem Cells》 SCIE CAS 2010年第6期121-126,共6页
The understanding of mechanisms leading to cellular differentiation is the main aim of numerous studies.Accessibility of DNA to transcription factors depends on local chromatin structure and chromatin compaction inhib... The understanding of mechanisms leading to cellular differentiation is the main aim of numerous studies.Accessibility of DNA to transcription factors depends on local chromatin structure and chromatin compaction inhibits gene transcription.Histone acetylation correlates with an open chromatin structure and increased gene expression.Gene transcription levels are changed in early embryonic stem cells differentiation in a tissuespecific manner and epigenetic marks are modified,including increased global acetylation levels.Manipulation of histone deacetylases activity might be an interesting tool to generate populations of specific cell types for transplantation purposes.Thus,this review aims to show recent findings on histone acetylation,a post translational modif ication and its manipulation in embryonic stem cells differentiation. 展开更多
关键词 EMBRYONIC stem cells CELLULAR DIFFERENTIATION EPIGENETICS HISTONE acetylation
下载PDF
Role of α-Tubulin Acetylation and Protein Kinase D2 Ser/Tyr Phosphorylation in Modulation by Ghrelin of Porphyromonas gingivalis-Induced Enhancement in Matrix Metalloproteinase-9 (MMP-9) Secretion by Salivary Gland Cells 被引量:3
16
作者 Bronislaw L. Slomiany Amalia Slomiany 《Journal of Biosciences and Medicines》 2016年第7期82-94,共13页
Matrix metalloproteinas-9 (MMP-9) is a glycosylated endopeptidase, and hence its processing between the endoplasmic reticulum (ER), Golgi and trans-Golgi (TGN) network remains under a strict control of factors that af... Matrix metalloproteinas-9 (MMP-9) is a glycosylated endopeptidase, and hence its processing between the endoplasmic reticulum (ER), Golgi and trans-Golgi (TGN) network remains under a strict control of factors that affect the microtubule (MT) stabilization, and the recruitment and activation of coat and cargo proteins, including ADP-ribosylation factors (Arfs) and protein kinase D (PKD). Here, we report on the factors implicated in the regulation of MMP-9 secretion by salivary gland acinar cells in response to P. gingivalis LPS, and the effect of hormone, ghrelin. We show that the LPS-elicited induction in MMP-9 secretion is associated with the increase in α-tubulin acetylation and the enhancement in MT stabilization, while the modulatory effect of ghrelin is reflected in a decrease in α-tubulin acetylation. Further, the effect of the LPS occurs in concert with up-regulation in Arf-guanine nucleotide exchange factor (GEF)-mediated Arf1 activation and the TGN recruitment of PKD2, while ghrelin exerts the modulatory effect on Arf-GEF activation. Moreover, we reveal that the LPS-induced up-regulation in MMP-9 secretion is reflected in a marked increase in PKCδ-mediated PKD2 phosphorylation on Ser, while the modulatory effect of ghrelin is manifested by the SFK-PTKs-dependent phosphorylation of PKD2 on Tyr. The findings demonstrate that MT stabilization along with Arf-GEF-mediated Arf1/PKD2 activation play a major role in P. gingivalis LPS-induced up-regulation in salivary gland acinar cell MMP-9 secretion, and point the modulatory mode of action by ghrelin. 展开更多
关键词 Porphyromonas gingivalis Oral Mucosa GHRELIN MMP-9 α-Tubulin acetylation Arf1 PKD2 Ser/Tyr Phosphorylation
下载PDF
Effects of acute doxorubicin treatment on hepatic proteome lysine acetylation status and the apoptotic environment 被引量:1
17
作者 Amie J Dirks-Naylor Samir A Kouzi +3 位作者 Joseph D Bero Ngan TK Tran Sendra Yang Raean Mabolo 《World Journal of Biological Chemistry》 CAS 2014年第3期377-386,共10页
AIM: To determine if doxorubicin(Dox) alters hepatic proteome acetylation status and if acetylation status was associated with an apoptotic environment. METHODS: Doxorubicin(20 mg/kg; Sigma, Saint Louis, MO; n = 8) or... AIM: To determine if doxorubicin(Dox) alters hepatic proteome acetylation status and if acetylation status was associated with an apoptotic environment. METHODS: Doxorubicin(20 mg/kg; Sigma, Saint Louis, MO; n = 8) or NaCl(0.9%; n = 7) was administered as an intraperitoneal injection to male F344 rats, 6-wk of age. Once animals were treated with Dox or saline, all animals were fasted until sacrifice 24 h later. RESULTS: Dox treatment decreased proteome lysine acetylation likely due to a decrease in histone acetyltransferase activity. Proteome deacetylation may likely not be associated with a proapoptotic environment. Dox did not increase caspase-9,-8, or-3 activation nor poly(adenosine diphosphate-ribose) polymerase-1 cleavage. Dox did stimulate caspase-12 activation, however, it likely did not play a role in apoptosis induction. CONCLUSION: Early effects of Dox involve hepatic proteome lysine deacetylation and caspase-12 activa-tion under these experimental conditions. 展开更多
关键词 SIRTUIN 1 SIRTUIN 3 Caspase Apoptosis acetylation HISTONE DEACETYLASE HISTONE ACETYLTRANSFERASE
下载PDF
Dynamic profiles of DNA methylation and the interaction with histone acetylation during fiber cell initiation of Gossypium hirsutum 被引量:1
18
作者 CHEN Guangyu LI Yonghui +3 位作者 WEI Zhenzhen GAN Lei LIU Jisheng WANG Zhi 《Journal of Cotton Research》 2022年第1期34-47,共14页
Background:Fiber,as the main product of cotton,provides main raw material for the textile industry.Many key factors have been revealed a significant role in fiber cell development including Myb proteins,phytohormones,... Background:Fiber,as the main product of cotton,provides main raw material for the textile industry.Many key factors have been revealed a significant role in fiber cell development including Myb proteins,phytohormones,fatty acid metabolites,and epigenetic modifications.DNA methylation is one of the important epigenetic modifications to regulate plant development and responses to abiotic or biotic stimuli.In general,DNA methylation consisting of 5mC and 6mA regulates the chromatin structure and gene transcription to affect plant development,however,the detailed role and underlying mechanism of DNA methylation in the fiber development of cotton are yet vague.Results:Here,systematical study of the 5mC and 6mA DNA methylation profiles during the fiber initiation period of Xu142 and its glabrous mutant Xu142fl represented a clear alteration of global DNA methylation associated with fiber cell initiation.Then,the genome-wide identification of genes responsible for methylation regulation at the fifth carbon of cytosine and the sixth carbon of adenine of DNA was operated in Gossypium hirsutum.As a result,13,10,6,and 17 genes were identified for 5mC methylation,5mC demethylation,6mA methylation,and 6mA demethylation,respectively.We then investigated the tissue expression pattern of all these genes,and some genes showed higher expression levels in fiber initiation,among which some displayed a significant change in transcription between Xu142 and Xu142fl.The possible interaction between histone acetylation and DNA methylation in fiber initiation through in vitro culture was studied by dot blot,and the results showed that repressed histone deacetylation by Trichostatin A(TSA)inhibited the global DNA methylation,and some causal genes(e.g.,GhDMT13,GhDAMT2,GhALKBH12,GhDM7)were also identified.Conclusions:In this study,all the findings indicated the interplay between histone acetylation and DNA methylation,supporting their important roles and providing precious clues for the epigenetic modifications associated with DNA methylation in the fiber development of cotton. 展开更多
关键词 Fiber initiation DNA methylation Histone acetylation Gossypium hirsutum
下载PDF
Garcinol suppresses the growth of human hepatocellular carcinoma by inducing abrogation of STAT3 phosphorylation,acetylation and dimerization
19
作者 Muthu K SHANMUGAM Snehajyoti CHATTERJEE +8 位作者 Peramaiyan RAJENDRAN Feng LI Parijat SENAPATI Kwong Fai WONG Alan Prem KUMAR John MLUK Kam Man HUI Gautam SETHI Tapas K KUNDU 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2015年第S1期82-83,共2页
OBJECTIVE Hepatocellular carcinoma(HCC)is the fifth most common malignancy worldwide and the third cause of global cancer mortality.Activation of signal transducer and activator of transcription 3(STAT3)is commonly ob... OBJECTIVE Hepatocellular carcinoma(HCC)is the fifth most common malignancy worldwide and the third cause of global cancer mortality.Activation of signal transducer and activator of transcription 3(STAT3)is commonly observed in tumor cells and is a critical mediator of on cogenic signaling in HCC and controls the expression of several genes involved in proliferation,survival,metastasis and angiogenesis.Current drug-targeted therapies,besides being expensive,are associated with serious side effects and morbidity.Thus,novel agents that can suppress STAT3 activation have potential for both prevention and treatment of HCC.In the present report,we investigated whether the potent HAT/KAT inhibitor,garcinol,(apolyisoprenylatedbenzophenone),could suppress STAT3 activation in HCC cells and in nude mice model.METHODS The effect of garcinol on HCC cell lines wasdetermined by MTT assay,immunoblotting,DNA binding assays,immuno-fluorescenceand immune-histochemical analysis.The effect of garcinolon the inhibition of tumor growth in vivo was also investigated using HCCxenograft tumor modelin athymic nu/nu mice.RESULTS We found that garcinol could inhibit constitutive STAT3 activation in a dose-and time-dependent manner both by inhibiting STAT3 phosphorylation and acetylation in HCC cells.When investigated for molecular mechanism(s),we found that garcinol interferes with the dimer formation of STAT3 thereby inhibits its nuclear localization.Computational modeling showed that garcinol could bind to the SH2 domain of STAT3 and suppresses its dimerization in vitro.To understand the cellular mechanism(s)of inhibition of STAT3 function by garcinol,we observed that upon inhibition of STAT3 dimerization bygarcinol,STAT3 DNA binding ability gets repressed.The inhibition of STAT3 activation by garcinol led to the suppression of various gene products involved in proliferation,survival,and angiogenesis.Finally,when administered i.p.,garcinol inhibited the growth of human HCC xenograft tumors in athymic nu/nu mice.CONCLUSION Results frominvitroand in vivo studies suggest that garcinol exerts its anti-proliferative and pro-apoptotic effects through suppression of STAT3 signaling cascade in HCC by inhibiting its phosphorylation,acetylation and ultimately dimerization. 展开更多
关键词 STAT3 HCC GARCINOL acetylation DIMERIZATION NUDE m
下载PDF
Sodium butyrate alleviates deoxynivalenol-induced hepatic cholesterol metabolic dysfunction via RORγ-mediated histone acetylation modification in weaning piglets
20
作者 Qiufang Zong Huan Qu +5 位作者 Yahui Zhao Haoyu Liu Shenglong Wu Shuai Wang Wenbin Bao Demin Cai 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第2期792-805,共14页
Background:Cholesterol is an essential component of lipid rafts in cell plasma membrane,which exerts a hepatoprotective role against mycotoxin exposure in pigs,and cholesterol metabolism is vulnerable to epigenetic hi... Background:Cholesterol is an essential component of lipid rafts in cell plasma membrane,which exerts a hepatoprotective role against mycotoxin exposure in pigs,and cholesterol metabolism is vulnerable to epigenetic histone acetylation.Therefore,our present study aimed to investigate whether a histone deacetylase inhibitor(sodium butyrate [NaBu]) could protect the porcine liver from deoxynivalenol(DON) exposure by modulating cholesterol metabolism.Herein,we randomly divided 28 pigs into four groups,which were fed an uncontaminated basal diet,contaminated diet(4 mg DON/kg),uncontaminated diet supplemented with 0.2% NaBu or 4 mg/kg DON contaminated diet(4 mg DON/kg) supplemented with 0.2% NaBu for 28 d.Results:We found that the serum alanine transaminase(ALT),aspartate transaminase(AST),and alkaline phosphatase(ALP) were all increased in pigs exposed to DON,indicative of significant liver injury.Furthermore,the cholesterol content in the serum of DON-exposed pigs was significantly reduced,compared to the healthy Vehicle group.Transcriptome analysis of porcine liver tissues revealed that the cholesterol homeostasis pathway was highly enriched due to DON exposure.In which we validated by qRT-PCR and western blotting that the cholesterol program was markedly activated.Importantly,NaBu effectively restored parameters associated with liver injury,along with the cholesterol content and the expression of key genes involved in the cholesterol biosynthesis pathway.Mechanistically,we performed a ChIP-seq analysis of H3K27ac and showed that NaBu strongly diminished DON-increased H3K27ac genome-wide enrichment.We further validated that the elevated H3K27ac and H3K9ac occupancies on cholesterol biosynthesis genes were both decreased by NaBu,as determined by ChIP-qPCR analysis.Notably,nuclear receptor RORγ,a novel regulator of cholesterol biosynthesis,was found in the hyperacetylated regions.Again,a remarkable increase of RORγ at both mRNA and protein levels in DON-exposed porcine livers was drastically reduced by NaBu.Consistent with RORγ expression,NaBu also hindered RORγ transcriptional binding enrichments on these activated cholesterol biosynthesis genes like HMGCR,SQLE,and DHCR24.Furthermore,we conducted an in vitro luciferase reporter assay to verify that porcine RORγ directly bonds to the promoters of the above target genes.Conclusions:Collectively,our results demonstrate the utility of the natural product Na Bu as a potential anti-mycotoxin nutritional strategy for regulating cholesterol metabolism via RORγ-mediated histone acetylation modification. 展开更多
关键词 Cholesterol biosynthesis DON Histone acetylation RORγ Sodium butyrate
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部