BACKGROUND: The most prominent characteristic of brain aging is decreased learning and memory ability. The functions of learning and memory are closely related to intracerebral acetylcholinesterase (ACHE) and monoa...BACKGROUND: The most prominent characteristic of brain aging is decreased learning and memory ability. The functions of learning and memory are closely related to intracerebral acetylcholinesterase (ACHE) and monoamine neurotransmitter activity. Previous studies have shown that Schisandra chinensis polysaccharide has an anti-aging effect. OBJECTIVE: To explore the effects of Schisandra chinensis polysaccharide on AChE activity and monoamine neurotransmitter content, as well as learning and memory ability in a D-galactose-induced aging mouse brain model compared with the positive control drug Kangnaoling. DESIGN, TIME AND SETTING: Completely randomized, controlled experiment based on neurobiochemistry was performed at the Pharmacological Laboratory, Henan University of Traditional Chinese Medicine from September to December 2003. MATERIALS: Schisandra chinensis was purchased from Henan Provincial Medicinal Company. Schisandra chinensis polysaccharide was obtained by water extraction and alcohol precipitation. Kangnaoling pellets were provided by Liaoning Tianlong Pharmaceutical (batch No. 20030804; state drug permit No. H21023095). A total of 50 six-week-old Kunming mice were randomly divided into five groups: blank control, model, Kangnaoling, high and low dosage Schisandra chinensis polysaccharide groups, with 10 mice per group. METHODS: Mice in the blank control group were subcutaneously injected with 0.5 mL/20 g normal saline into the nape of the neck each day, while the remaining mice were subcutaneously injected with 5% D-galactose saline solution (0.5 mL/20 g) in the nape for 40 days to induce a brain aging model. On day 11, mice in the high and low dosage Schisandra chinensis polysaccharide groups were intragastrically infused with 20 mg/mL and 10 mg/mL Schisandra chinensis polysaccharide solution (0.2 mL/10 g), respectively. Mice from the Kangnaoling group were intragastrically infused with 35 mg/mL Kangnaoling suspension (0.2 mL/10 g), and the mice in the model group were intragastrically infused with the same volume of normal saline (0.2 mL/10 g) once per day for 30 consecutive days. MAIN OUTCOME MEASURES: Two hours after the final administration, pathohistological changes in the cerebral cortex and hippocampus were observed using hematoxylin & eosin staining. AChE activity was detected using chromatometry. Monoamine neurotransmitter content was measured using fluorimetry. Learning and memory was measured using the step down test and darkness avoidance test. RESULTS: Both Schisandra chinensis polysaccharide and Kangnaoling improved pathological injury to the cerebral cortex and hippocampus in a mouse model of brain aging. Compared with the blank control group, AChE activity and content of norepinephrine (NA), dopamine (DA), and 5-hydroxytryptamine (5-HT) were significantly decreased in the model group (P 〈 0.01 ). In contrast, AChE activity and NA, DA, and 5-HT levels significantly increased in the Kangnaoling and high dosage Schisandra chinensis polysaccharide groups (P 〈 0.01), while NA levels significantly increased in the low dosage Schisandra chinensis polysaccharide group (P 〈 0.01). Drug treatment improved learning and memory abilities (P 〈 0.01 or P 〈 0.05). CONCLUSION: Schisandra chinensis polysaccharide significantly increased levels of central neurotransmitters and improved learning and memory in a mouse model of brain aging. The effects of Schisandra chinensis polysaccharide were equal to that of Kangnaoling pellets.展开更多
BACKGROUND: Peripheral nerve ischemia has been shown to result in ischemic fiber degenera-tion and axoplasmic transport disturbance. However, the effect on acetylcholinesterase (AChE) ex- pression in relevant cells...BACKGROUND: Peripheral nerve ischemia has been shown to result in ischemic fiber degenera-tion and axoplasmic transport disturbance. However, the effect on acetylcholinesterase (AChE) ex- pression in relevant cells following sciatic nerve ischemia remains unclear. OBJECTIVE: To observe AChE concentration changes following peripheral nerve ischemia. DESIGN, TIME AND SETTING: The present comparative observation, neuroanatomical experiment was performed at the Central Laboratory Animal of Chengde Medical College between 2006 and 2007. MATERIALS: A total of 20 healthy, adult, Wistar rats were randomized into two groups (n = 10): 8-day ischemia and 14-day ischemia. METHODS: Ischemia injury was induced in the unilateral sciatic nerve (experimental side) through ligation of the common iliac artery. The contralateral side received no intervention, and served as the control side. Rats in the 8-day ischemia and 14-day ischemia groups were allowed to survive for 8 and 14 days, respectively. MAIN OUTCOME MEASURES: The L5 lumbar spinal cord and the L5 dorsal root ganglion were removed from both sides and sectioned utilizing a Leica vibrating slicer. AChE cellular expression was detected using Karnovsky-Root, and the number of AChE-positive cells and average gray value were analyzed using a MiVnt image analysis system. RESULTS: In the 8-day ischemia group, AChE-positive cell numbers were significantly less in the dorsal root ganglion and spinal cord anterior horn of the experimental side, but the average gray value was significantly greater, compared with the control side (P 〈 0.05). These changes were more significant in the 14-day ischemia group than in the 8-day ischemia group (P 〈 0.01). CONCLUSION: Peripheral nerve ischemia leads to decreased AChE expression in the associated cells in a time-dependent manner.展开更多
Objective To establish an artificial somatic-autonomic reflex arc in rats and observe the following distributive changes of neural fibers in the bladder. Methods Adult Sprague-Dawley rats were randomly divided into th...Objective To establish an artificial somatic-autonomic reflex arc in rats and observe the following distributive changes of neural fibers in the bladder. Methods Adult Sprague-Dawley rats were randomly divided into three groups: control group, spinal cord injury (SCI) group, and reinnervation group. DiI retrograde tracing was used to verify establishment of the model and to investigate the transport function of the regenerated efferent axons in the new reflex arc. Choline acetyltransferase (CHAT) in the DiI-labeled neurons was detected by immunohistochemistry. Distribution of neural fibers in the bladder was observed by acetylcholine esterase staining. Results DR-labeled neurons distributed mainly in the left ventral horn from L3 to L5, and some of them were also CHAT-positive. The neural fibers in the bladder detrusor reduced remarkably in the SCI group compared with the control (P 〈 0.05). After establishment of the somatic-autonomic reflex arc in the reinnervation group, the number of ipsilateral fibers in the bladder increased markedly compared with the SCI group (P 〈 0.05), though still much less than that in the control (P 〈 0.05). Conclusion The efferent branches of the somatic nerves may grow and replace the parasympathetic preganglionic axons through axonal regeneration. Acetylcholine is still the major neurotransmitter of the new reflex arc. The controllability of detrusor may be promoted when it is reinnervated by the pelvic ganglia efferent somatic motor fibers from the postganglionic axons.展开更多
The present study observed sciatic nerve and gastrocnemius muscle changes in denervated rats using morphology methods, and assessed expression of perlecan, an extracellular matrix component, which is located at the sk...The present study observed sciatic nerve and gastrocnemius muscle changes in denervated rats using morphology methods, and assessed expression of perlecan, an extracellular matrix component, which is located at the skeletal muscle cell surface as acetylcholine esterase, as well as synaptophysin, a synaptic marker. Results showed degeneration and inflammation following transection of the sciatic nerve. In addition, the sciatic nerve-dominated skeletal muscle degenerated with mild inflammation, indicating that skeletal muscle atrophy primarily contributed to denervation-induced nutritional disturbances. With prolonged injury time (1-4 weeks post-injury), perlecan expression gradually decreased and reached the lowest level at 4 weeks, but synaptophysin expression remained unchanged after denervation. Results suggested that perlecan expression was more sensitive to denervation and reflected regional extracellular matrix changes following denervation.展开更多
Objective:To observe the therapeutic effect of Yangxue Qingnao Granule(养血清脑颗粒, YXQNG) on cognitive impairment induced by chronic cerebral hypoperfusion and to investigate its impact on oxidative stress,apopto...Objective:To observe the therapeutic effect of Yangxue Qingnao Granule(养血清脑颗粒, YXQNG) on cognitive impairment induced by chronic cerebral hypoperfusion and to investigate its impact on oxidative stress,apoptosis,and the cholinergic system.Methods:Adult male Wistar rats were subjected to chronic cerebral hypoperfusion by permanent occlusion of bilateral common carotid arteries(2-VO).Thirty rats were randomly assigned to one of the five treatment groups in a 1:1:1:1:1 ratio:sham operation plus normal saline treatment,2-VO plus normal saline treatment,2-VO plus YXQNG at a dose of 2 g·kg(-1)·d^(-1) or 4 g·kg(-1)·d^(-1), or 2-VO plus rivastigmine 2 mgkg^(-1)·d^(-1).The Morris water maze test was used to assess the spatial memory retrieval.Apoptosis,total antioxide capacity(T-AOC),acetylcholine esterase(AchE) and choline acetyl transferase(ChAT) activities in the hippocampus and the cortex were investigated.Results:In the chronic cerebral hypoperfusion model,the 2-VO plus saline treatment resulted in impaired special learning as shown by the significantly prolonged escape latency and shorter swim time in the first quadrant as compared to the sham operation.The impairment was associated with apoptosis and significant decreases in T-AOC,AchE and ChAT activities in the hippocampus and the cortex.Treatment with YXQNG at either 2 g·kg(-1)·d^(-1) or 4 g·kg(-1)·d^(-1) dose,or rivastigmine resulted in significantly shorter escape latencies and longer swim time in the first quadrant.YXQNG at both doses,but not rivastigmine,had significant reduction in apoptosis,and significant increases in T-AOC and ChAT activity in both the hippocampus and the cortex.Unlike rivastigmine,neither dose of YXQNG showed significant reduction in AchE activity.Conclusions:YXQNG ameliorated cognitive impairment induced by chronic cerebral hypoperfusion.The protective effect may be mediated through its regulation of apoptosis and activities of T-AOC and ChAT in the hippocampus and cortex of the rats in the chronic cerebral hypoperfusion model,a mechanism that is different from rivastigmine.展开更多
基金Support Program for New Century Excellent Talents in the National Ministry of Education,No. NCET-04-0657Henan Project for cultivation of Innovation Talents in Colleges and Universities No.2004-23
文摘BACKGROUND: The most prominent characteristic of brain aging is decreased learning and memory ability. The functions of learning and memory are closely related to intracerebral acetylcholinesterase (ACHE) and monoamine neurotransmitter activity. Previous studies have shown that Schisandra chinensis polysaccharide has an anti-aging effect. OBJECTIVE: To explore the effects of Schisandra chinensis polysaccharide on AChE activity and monoamine neurotransmitter content, as well as learning and memory ability in a D-galactose-induced aging mouse brain model compared with the positive control drug Kangnaoling. DESIGN, TIME AND SETTING: Completely randomized, controlled experiment based on neurobiochemistry was performed at the Pharmacological Laboratory, Henan University of Traditional Chinese Medicine from September to December 2003. MATERIALS: Schisandra chinensis was purchased from Henan Provincial Medicinal Company. Schisandra chinensis polysaccharide was obtained by water extraction and alcohol precipitation. Kangnaoling pellets were provided by Liaoning Tianlong Pharmaceutical (batch No. 20030804; state drug permit No. H21023095). A total of 50 six-week-old Kunming mice were randomly divided into five groups: blank control, model, Kangnaoling, high and low dosage Schisandra chinensis polysaccharide groups, with 10 mice per group. METHODS: Mice in the blank control group were subcutaneously injected with 0.5 mL/20 g normal saline into the nape of the neck each day, while the remaining mice were subcutaneously injected with 5% D-galactose saline solution (0.5 mL/20 g) in the nape for 40 days to induce a brain aging model. On day 11, mice in the high and low dosage Schisandra chinensis polysaccharide groups were intragastrically infused with 20 mg/mL and 10 mg/mL Schisandra chinensis polysaccharide solution (0.2 mL/10 g), respectively. Mice from the Kangnaoling group were intragastrically infused with 35 mg/mL Kangnaoling suspension (0.2 mL/10 g), and the mice in the model group were intragastrically infused with the same volume of normal saline (0.2 mL/10 g) once per day for 30 consecutive days. MAIN OUTCOME MEASURES: Two hours after the final administration, pathohistological changes in the cerebral cortex and hippocampus were observed using hematoxylin & eosin staining. AChE activity was detected using chromatometry. Monoamine neurotransmitter content was measured using fluorimetry. Learning and memory was measured using the step down test and darkness avoidance test. RESULTS: Both Schisandra chinensis polysaccharide and Kangnaoling improved pathological injury to the cerebral cortex and hippocampus in a mouse model of brain aging. Compared with the blank control group, AChE activity and content of norepinephrine (NA), dopamine (DA), and 5-hydroxytryptamine (5-HT) were significantly decreased in the model group (P 〈 0.01 ). In contrast, AChE activity and NA, DA, and 5-HT levels significantly increased in the Kangnaoling and high dosage Schisandra chinensis polysaccharide groups (P 〈 0.01), while NA levels significantly increased in the low dosage Schisandra chinensis polysaccharide group (P 〈 0.01). Drug treatment improved learning and memory abilities (P 〈 0.01 or P 〈 0.05). CONCLUSION: Schisandra chinensis polysaccharide significantly increased levels of central neurotransmitters and improved learning and memory in a mouse model of brain aging. The effects of Schisandra chinensis polysaccharide were equal to that of Kangnaoling pellets.
文摘BACKGROUND: Peripheral nerve ischemia has been shown to result in ischemic fiber degenera-tion and axoplasmic transport disturbance. However, the effect on acetylcholinesterase (AChE) ex- pression in relevant cells following sciatic nerve ischemia remains unclear. OBJECTIVE: To observe AChE concentration changes following peripheral nerve ischemia. DESIGN, TIME AND SETTING: The present comparative observation, neuroanatomical experiment was performed at the Central Laboratory Animal of Chengde Medical College between 2006 and 2007. MATERIALS: A total of 20 healthy, adult, Wistar rats were randomized into two groups (n = 10): 8-day ischemia and 14-day ischemia. METHODS: Ischemia injury was induced in the unilateral sciatic nerve (experimental side) through ligation of the common iliac artery. The contralateral side received no intervention, and served as the control side. Rats in the 8-day ischemia and 14-day ischemia groups were allowed to survive for 8 and 14 days, respectively. MAIN OUTCOME MEASURES: The L5 lumbar spinal cord and the L5 dorsal root ganglion were removed from both sides and sectioned utilizing a Leica vibrating slicer. AChE cellular expression was detected using Karnovsky-Root, and the number of AChE-positive cells and average gray value were analyzed using a MiVnt image analysis system. RESULTS: In the 8-day ischemia group, AChE-positive cell numbers were significantly less in the dorsal root ganglion and spinal cord anterior horn of the experimental side, but the average gray value was significantly greater, compared with the control side (P 〈 0.05). These changes were more significant in the 14-day ischemia group than in the 8-day ischemia group (P 〈 0.01). CONCLUSION: Peripheral nerve ischemia leads to decreased AChE expression in the associated cells in a time-dependent manner.
文摘Objective To establish an artificial somatic-autonomic reflex arc in rats and observe the following distributive changes of neural fibers in the bladder. Methods Adult Sprague-Dawley rats were randomly divided into three groups: control group, spinal cord injury (SCI) group, and reinnervation group. DiI retrograde tracing was used to verify establishment of the model and to investigate the transport function of the regenerated efferent axons in the new reflex arc. Choline acetyltransferase (CHAT) in the DiI-labeled neurons was detected by immunohistochemistry. Distribution of neural fibers in the bladder was observed by acetylcholine esterase staining. Results DR-labeled neurons distributed mainly in the left ventral horn from L3 to L5, and some of them were also CHAT-positive. The neural fibers in the bladder detrusor reduced remarkably in the SCI group compared with the control (P 〈 0.05). After establishment of the somatic-autonomic reflex arc in the reinnervation group, the number of ipsilateral fibers in the bladder increased markedly compared with the SCI group (P 〈 0.05), though still much less than that in the control (P 〈 0.05). Conclusion The efferent branches of the somatic nerves may grow and replace the parasympathetic preganglionic axons through axonal regeneration. Acetylcholine is still the major neurotransmitter of the new reflex arc. The controllability of detrusor may be promoted when it is reinnervated by the pelvic ganglia efferent somatic motor fibers from the postganglionic axons.
基金supported by the National Natural Science Foundation of China,No.30900300/C1002
文摘The present study observed sciatic nerve and gastrocnemius muscle changes in denervated rats using morphology methods, and assessed expression of perlecan, an extracellular matrix component, which is located at the skeletal muscle cell surface as acetylcholine esterase, as well as synaptophysin, a synaptic marker. Results showed degeneration and inflammation following transection of the sciatic nerve. In addition, the sciatic nerve-dominated skeletal muscle degenerated with mild inflammation, indicating that skeletal muscle atrophy primarily contributed to denervation-induced nutritional disturbances. With prolonged injury time (1-4 weeks post-injury), perlecan expression gradually decreased and reached the lowest level at 4 weeks, but synaptophysin expression remained unchanged after denervation. Results suggested that perlecan expression was more sensitive to denervation and reflected regional extracellular matrix changes following denervation.
文摘Objective:To observe the therapeutic effect of Yangxue Qingnao Granule(养血清脑颗粒, YXQNG) on cognitive impairment induced by chronic cerebral hypoperfusion and to investigate its impact on oxidative stress,apoptosis,and the cholinergic system.Methods:Adult male Wistar rats were subjected to chronic cerebral hypoperfusion by permanent occlusion of bilateral common carotid arteries(2-VO).Thirty rats were randomly assigned to one of the five treatment groups in a 1:1:1:1:1 ratio:sham operation plus normal saline treatment,2-VO plus normal saline treatment,2-VO plus YXQNG at a dose of 2 g·kg(-1)·d^(-1) or 4 g·kg(-1)·d^(-1), or 2-VO plus rivastigmine 2 mgkg^(-1)·d^(-1).The Morris water maze test was used to assess the spatial memory retrieval.Apoptosis,total antioxide capacity(T-AOC),acetylcholine esterase(AchE) and choline acetyl transferase(ChAT) activities in the hippocampus and the cortex were investigated.Results:In the chronic cerebral hypoperfusion model,the 2-VO plus saline treatment resulted in impaired special learning as shown by the significantly prolonged escape latency and shorter swim time in the first quadrant as compared to the sham operation.The impairment was associated with apoptosis and significant decreases in T-AOC,AchE and ChAT activities in the hippocampus and the cortex.Treatment with YXQNG at either 2 g·kg(-1)·d^(-1) or 4 g·kg(-1)·d^(-1) dose,or rivastigmine resulted in significantly shorter escape latencies and longer swim time in the first quadrant.YXQNG at both doses,but not rivastigmine,had significant reduction in apoptosis,and significant increases in T-AOC and ChAT activity in both the hippocampus and the cortex.Unlike rivastigmine,neither dose of YXQNG showed significant reduction in AchE activity.Conclusions:YXQNG ameliorated cognitive impairment induced by chronic cerebral hypoperfusion.The protective effect may be mediated through its regulation of apoptosis and activities of T-AOC and ChAT in the hippocampus and cortex of the rats in the chronic cerebral hypoperfusion model,a mechanism that is different from rivastigmine.