The massively separated flows over a realistic aircraft configuration at 40?, 50?, and 60?angles of attack are studied using the delayed detached eddy simulation(DDES).The calculations are carried out at experime...The massively separated flows over a realistic aircraft configuration at 40?, 50?, and 60?angles of attack are studied using the delayed detached eddy simulation(DDES).The calculations are carried out at experimental conditions corresponding to a mean aerodynamic chord-based Reynolds number of 8.93 × 10~5 and Mach number of 0.088. The influence of the grid size is investigated using two grids, 20.0×10~6cells and 31.0 × 10~6 cells. At the selected conditions, the lift,drag, and pitching moment from DDES predictions agree with the experimental data better than that from the Reynoldsaveraged Navier–Stokes. The effect of angle of attack on the flow structure over the general aircraft is also studied, and it is found that the dominated frequency associated with the vortex shedding process decreases with increasing angle of attack.展开更多
In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system(EFCS) equipped civil aircraft, digital virtual flight testing and e...In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system(EFCS) equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method(HQRM)is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model,comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric turbulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness compliance of the airplane can be evaluated relying on the relevant regulations for handling qualities(HQ) rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.展开更多
基金supported by National Natural Science Foundation of China(Grant 11302245)
文摘The massively separated flows over a realistic aircraft configuration at 40?, 50?, and 60?angles of attack are studied using the delayed detached eddy simulation(DDES).The calculations are carried out at experimental conditions corresponding to a mean aerodynamic chord-based Reynolds number of 8.93 × 10~5 and Mach number of 0.088. The influence of the grid size is investigated using two grids, 20.0×10~6cells and 31.0 × 10~6 cells. At the selected conditions, the lift,drag, and pitching moment from DDES predictions agree with the experimental data better than that from the Reynoldsaveraged Navier–Stokes. The effect of angle of attack on the flow structure over the general aircraft is also studied, and it is found that the dominated frequency associated with the vortex shedding process decreases with increasing angle of attack.
基金supported by the National High-tech Research and Development Program of China(No.2014AA110500)
文摘In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system(EFCS) equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method(HQRM)is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model,comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric turbulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness compliance of the airplane can be evaluated relying on the relevant regulations for handling qualities(HQ) rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.