A new green technique for producing chromic acid via an electrosynthesis method was studied.The kinetic experiments were carried out on the direct electrosynthesis reaction of chromic acid from sodium dichromate in a ...A new green technique for producing chromic acid via an electrosynthesis method was studied.The kinetic experiments were carried out on the direct electrosynthesis reaction of chromic acid from sodium dichromate in a self-made electrosynthesis reactor with a multiple-unit metal oxides combination anode,a stainless steel cathode,and a reinforcing combination Nafion 324 cation exchange membrane.The apparent kinetic data were experimentally measured at different reaction time under different reaction conditions by relating many essential cell processes and their interaction,as well as their synergistic effect to the whole electrochemical synthesis process.The results show that the electrosynthesis reaction process follows a quasi-first-order reaction kinetic characteristic.The apparent kinetic model of the electrosynthesis reaction was established,and kinetic parameters were calculated.展开更多
Poly-α-olefin(PAO)synthetic oil,a regular long-chain alkane produced from the catalytic polymerization ofα-olefin,is a high-quality lubricating base oil with huge market potential.In this study,PAO synthesis based o...Poly-α-olefin(PAO)synthetic oil,a regular long-chain alkane produced from the catalytic polymerization ofα-olefin,is a high-quality lubricating base oil with huge market potential.In this study,PAO synthesis based on the catalytic polymerization of 1-decene using the ionic liquid(IL)[Bmim]_(x)[C_(2)H_(5)NH_(3)]_(1-x)[Al_(2)Cl_(7)]as the catalyst was studied.Compared with the conventional catalyst[Bmim][Al_(2)Cl_(7)],the obtained PAO product incorporates more trimers and tetramers of 1-decene and contains few double-bond end groups,demonstrating a better catalytic system for PAO-10 production.The apparent polymerization kinetics of 1-decene in this catalytic system were studied based on the 1-decene concentration,catalyst concentration,and reaction temperature.An apparent kinetic equation for PAO formation was determined,providing a promising strategy for PAO production using 1-decene polymerization.展开更多
Conjugated linoleic acid (CLA) is a fatty acid with physiological activities and potential application prospect. This paper focuses on the method of synthesis of conjugated linoleic acid of high purity and the process...Conjugated linoleic acid (CLA) is a fatty acid with physiological activities and potential application prospect. This paper focuses on the method of synthesis of conjugated linoleic acid of high purity and the process line and conditions for its purification that can be used in large scale production. CLA of more than 95% purity was prepared by means of urea adduct purification and conjugation using safflower oil as material. The total recovery of the product adds up to more than 48%. The reactive kinetics about linoleic acid from sunflower oil converted into CLA was investigated, and its apparent kinetic model was also established, which can be used as a base for industrial designs.展开更多
The biodiesel production technology catalyzed by 1,8-diazabicycloundec-7-ene(DBU)is developed in this work.Crude glycerol containing DBU and DBU/glycerol/CO2(DGC)ionic compounds reacts directly with dimethyl carbo...The biodiesel production technology catalyzed by 1,8-diazabicycloundec-7-ene(DBU)is developed in this work.Crude glycerol containing DBU and DBU/glycerol/CO2(DGC)ionic compounds reacts directly with dimethyl carbonate(DMC)to produce high value-added glycerol carbonate(GC)catalyzed by DBU and DGC.The catalytic performance of DBU and DGC,as well as the kinetics of the reaction catalyzed by DBU,were investigated.The results show that DGC has a weak catalytic effect on the transesterification of glycerol and DMC.When the temperature is higher than 60℃,DGC catalyzes the reaction jointly with DBU,which is produced from the decomposition of DGC.DBU has a good catalytic effect on the reaction between glycerol and DMC,with 90%conversion of glycerol and 84%selectivity to GC under the following conditions:DMC-to-glycerol molar ratio of 3:1,4.0%DBU(based on glycerol mass),reaction time of 60 min,and reaction temperature of 40℃.The apparent kinetics results show that the activation energies are 30.95 kJ·mol^-1 and 55.16 kJ·mol^-1 for the forward and reverse GC generation reactions,respectively,and the activation energy of the decomposition reaction of GC to glycidol(GD)is 26.58 kJ·mol^-1.展开更多
The reaction kinetics between diazide(4,4'-biphenyl dibenzyl azide) and different diynes(dipropargyl bisphenol A and 1,3-diethynylbenzene) were studied by means of differential scanning calorimetry(DSC) and nuc...The reaction kinetics between diazide(4,4'-biphenyl dibenzyl azide) and different diynes(dipropargyl bisphenol A and 1,3-diethynylbenzene) were studied by means of differential scanning calorimetry(DSC) and nuclear magnetic resonance spectroscopy(~1H-NMR).DSC was adopted to analyze the reactions under bulk polymerization condition,while ~1H-NMR for solution reaction polymerization was conducted.The apparent activation energies(E_α) calculated by Kissinger's method were 77.96,81.24 k J/mol,which were confirmed by Friedman's method,and 65.45,69.36 k J/mol by ~1H-NMR for dispropargyl bisphenol A/4,4'-biphenyl dibenzyl azide and 1,3-diethynylbenzene/4,4'-biphenyl dibenzyl azide,respectively.The polymerizations between the diazide and diynes were first-order reactions based on calculation from both DSC and ~1H-NMR.The results showed that the reaction between dipropargyl bisphenol A and 4,4'-biphenyl dibenzyl azide was easier than that between 1,3-diethynylbenzene and 4,4'-biphenyl dibenzyl azide,verifying that the reactivity of aliphatic alkyne was higher than that of aromatic alkyne.展开更多
Removal kinetics of phosphorus through use of basic oxygen furnace slag(BOF-slag)was investigated through batch experiments. Effects of several parameters such as initial phosphorus concentration, temperature, BOF-s...Removal kinetics of phosphorus through use of basic oxygen furnace slag(BOF-slag)was investigated through batch experiments. Effects of several parameters such as initial phosphorus concentration, temperature, BOF-slag size, initial p H, and BOF-slag dosage on phosphorus removal kinetics were measured in detail. It was demonstrated that the removal process of phosphorus through BOF-slag followed pseudo-first-order reaction kinetics. The apparent rate constant(kobs) significantly decreased with increasing initial phosphorus concentration, BOF-slag size, and initial p H, whereas it exhibited an opposite trend with increasing reaction temperature and BOF-slag dosage.A linear dependence of kobson total removed phosphorus(TRP) was established with kobs=(3.51 ± 0.11) × 10^-4× TRP. Finally, it was suggested that the Langmuir–Rideal(L–R)or Langmuir–Hinshelwood(L–H) mechanism may be used to describe the removal process of phosphorus using BOF-slag.展开更多
基金Supported by the National Natural Science Foundation of China(No.20676136)
文摘A new green technique for producing chromic acid via an electrosynthesis method was studied.The kinetic experiments were carried out on the direct electrosynthesis reaction of chromic acid from sodium dichromate in a self-made electrosynthesis reactor with a multiple-unit metal oxides combination anode,a stainless steel cathode,and a reinforcing combination Nafion 324 cation exchange membrane.The apparent kinetic data were experimentally measured at different reaction time under different reaction conditions by relating many essential cell processes and their interaction,as well as their synergistic effect to the whole electrochemical synthesis process.The results show that the electrosynthesis reaction process follows a quasi-first-order reaction kinetic characteristic.The apparent kinetic model of the electrosynthesis reaction was established,and kinetic parameters were calculated.
基金supported by the Key Research and Development Program of Ningxia Autonomous Region (No.2023BFE01001)Tianjin Science and Technology Program (Nos.22ZYJDSS00060+2 种基金22YDTPJC00920)Program for Tianjin Innovative Research Team in Universities (No.TD13-5031)Tianjin 131 Research Team of Innovative Talents。
文摘Poly-α-olefin(PAO)synthetic oil,a regular long-chain alkane produced from the catalytic polymerization ofα-olefin,is a high-quality lubricating base oil with huge market potential.In this study,PAO synthesis based on the catalytic polymerization of 1-decene using the ionic liquid(IL)[Bmim]_(x)[C_(2)H_(5)NH_(3)]_(1-x)[Al_(2)Cl_(7)]as the catalyst was studied.Compared with the conventional catalyst[Bmim][Al_(2)Cl_(7)],the obtained PAO product incorporates more trimers and tetramers of 1-decene and contains few double-bond end groups,demonstrating a better catalytic system for PAO-10 production.The apparent polymerization kinetics of 1-decene in this catalytic system were studied based on the 1-decene concentration,catalyst concentration,and reaction temperature.An apparent kinetic equation for PAO formation was determined,providing a promising strategy for PAO production using 1-decene polymerization.
文摘Conjugated linoleic acid (CLA) is a fatty acid with physiological activities and potential application prospect. This paper focuses on the method of synthesis of conjugated linoleic acid of high purity and the process line and conditions for its purification that can be used in large scale production. CLA of more than 95% purity was prepared by means of urea adduct purification and conjugation using safflower oil as material. The total recovery of the product adds up to more than 48%. The reactive kinetics about linoleic acid from sunflower oil converted into CLA was investigated, and its apparent kinetic model was also established, which can be used as a base for industrial designs.
基金Supported by the National Natural Science Foundation of China(No.21476150)
文摘The biodiesel production technology catalyzed by 1,8-diazabicycloundec-7-ene(DBU)is developed in this work.Crude glycerol containing DBU and DBU/glycerol/CO2(DGC)ionic compounds reacts directly with dimethyl carbonate(DMC)to produce high value-added glycerol carbonate(GC)catalyzed by DBU and DGC.The catalytic performance of DBU and DGC,as well as the kinetics of the reaction catalyzed by DBU,were investigated.The results show that DGC has a weak catalytic effect on the transesterification of glycerol and DMC.When the temperature is higher than 60℃,DGC catalyzes the reaction jointly with DBU,which is produced from the decomposition of DGC.DBU has a good catalytic effect on the reaction between glycerol and DMC,with 90%conversion of glycerol and 84%selectivity to GC under the following conditions:DMC-to-glycerol molar ratio of 3:1,4.0%DBU(based on glycerol mass),reaction time of 60 min,and reaction temperature of 40℃.The apparent kinetics results show that the activation energies are 30.95 kJ·mol^-1 and 55.16 kJ·mol^-1 for the forward and reverse GC generation reactions,respectively,and the activation energy of the decomposition reaction of GC to glycidol(GD)is 26.58 kJ·mol^-1.
基金Funded by the Financial Support of Shanghai Leading Academic Discipline Project(No.B502)Fundamental Research for the Central University
文摘The reaction kinetics between diazide(4,4'-biphenyl dibenzyl azide) and different diynes(dipropargyl bisphenol A and 1,3-diethynylbenzene) were studied by means of differential scanning calorimetry(DSC) and nuclear magnetic resonance spectroscopy(~1H-NMR).DSC was adopted to analyze the reactions under bulk polymerization condition,while ~1H-NMR for solution reaction polymerization was conducted.The apparent activation energies(E_α) calculated by Kissinger's method were 77.96,81.24 k J/mol,which were confirmed by Friedman's method,and 65.45,69.36 k J/mol by ~1H-NMR for dispropargyl bisphenol A/4,4'-biphenyl dibenzyl azide and 1,3-diethynylbenzene/4,4'-biphenyl dibenzyl azide,respectively.The polymerizations between the diazide and diynes were first-order reactions based on calculation from both DSC and ~1H-NMR.The results showed that the reaction between dipropargyl bisphenol A and 4,4'-biphenyl dibenzyl azide was easier than that between 1,3-diethynylbenzene and 4,4'-biphenyl dibenzyl azide,verifying that the reactivity of aliphatic alkyne was higher than that of aromatic alkyne.
基金financially supported by the Fundamental Research Fund for the Central Universities (No. N130302004)the National Natural Science Foundation of China (No. U1360204)
文摘Removal kinetics of phosphorus through use of basic oxygen furnace slag(BOF-slag)was investigated through batch experiments. Effects of several parameters such as initial phosphorus concentration, temperature, BOF-slag size, initial p H, and BOF-slag dosage on phosphorus removal kinetics were measured in detail. It was demonstrated that the removal process of phosphorus through BOF-slag followed pseudo-first-order reaction kinetics. The apparent rate constant(kobs) significantly decreased with increasing initial phosphorus concentration, BOF-slag size, and initial p H, whereas it exhibited an opposite trend with increasing reaction temperature and BOF-slag dosage.A linear dependence of kobson total removed phosphorus(TRP) was established with kobs=(3.51 ± 0.11) × 10^-4× TRP. Finally, it was suggested that the Langmuir–Rideal(L–R)or Langmuir–Hinshelwood(L–H) mechanism may be used to describe the removal process of phosphorus using BOF-slag.