A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the correspon...A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.展开更多
Under appropriate conditions, with the perturbation method and the theory of differential inequalities, a class of weakly nonlinear singularly perturbed reaction diffusion problem is considered. The existence of solut...Under appropriate conditions, with the perturbation method and the theory of differential inequalities, a class of weakly nonlinear singularly perturbed reaction diffusion problem is considered. The existence of solution of the original problem is proved by constructing the auxiliary functions. The uniformly valid asymptotic expansions of the solution for arbitrary mth order approximation are obtained through constructing the formal solutions of the original problem, expanding the nonlinear terms to the power in small parameter ε and comparing the coefficient for the same powers of ε. Finally, an example is provided, resulting in the error of 0(ε^2).展开更多
This paper consider a class of perturbed mechanism for the western boundary undercurrents in the Pacific. The model of generalized governing equations is studied. Using the perturbation method, it constructs the asymp...This paper consider a class of perturbed mechanism for the western boundary undercurrents in the Pacific. The model of generalized governing equations is studied. Using the perturbation method, it constructs the asymptotic solution of the model. And the accuracy of asymptotic solution is proved by the theory of differential inequalities. Thus the uniformly valid asymptotic expansions of the solution are obtained.展开更多
A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, ...A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.展开更多
In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal...In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.展开更多
The self-similarity solutions of the Navier-Stokes equations are constructed for an incompressible laminar flow through a uniformly porous channel with retractable walls under a transverse magnetic field. The flow is ...The self-similarity solutions of the Navier-Stokes equations are constructed for an incompressible laminar flow through a uniformly porous channel with retractable walls under a transverse magnetic field. The flow is driven by the expanding or contracting walls with different permeability. The velocities of the asymmetric flow at the upper and lower walls are different in not only the magnitude but also the direction. The asymptotic solutions are well constructed with the method of boundary layer correction in two cases with large Reynolds numbers, i.e., both walls of the channel are with suction, and one of the walls is with injection while the other one is with suction. For small Reynolds number cases, the double perturbation method is used to construct the asymptotic solution. All the asymptotic results are finally verified by numerical results.展开更多
Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) ...Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.展开更多
By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate wi...By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied.And the uniformly valid asymptotic solution of Nth-order for ε_1 and Mth-order for ε_2 of the deflection functions and stress function are obtained.展开更多
A higher order asymptotic solution of near-tip field is studied for plane-atrain Mode-Ⅰ quasi-static steady crack growth in the incompressible (v=1/2) elastic perfectly-plastic media.The results show that the near-ti...A higher order asymptotic solution of near-tip field is studied for plane-atrain Mode-Ⅰ quasi-static steady crack growth in the incompressible (v=1/2) elastic perfectly-plastic media.The results show that the near-tip stress and strain are fully continuous,and the strain possesses In (A/r) singularity at the crack tip.The expressions of the stress,strain and velocity in each region are also given.展开更多
In this paper, a second order linear ordinary differential equation with three-turning points is studied. This equation is as follows (dx2)/(d2y) + [lambda(2)q(1)(x) + lambda q(2)(x, lambda)]y = 0, where q(1) (x) = (x...In this paper, a second order linear ordinary differential equation with three-turning points is studied. This equation is as follows (dx2)/(d2y) + [lambda(2)q(1)(x) + lambda q(2)(x, lambda)]y = 0, where q(1) (x) = (x - mu(1))(x - mu(2))(x - mu(3))f(x), f(x) not equal 0, mu(1) < mu(2) < mu(3) and lambda is a large parameter, but q(2)(x, lambda) = Sigma(i = 0)(epsilon a) g(i)(x)lambda(-i) (here g(0)(x) not equivalent to 0). By using JL function, the complete expression of the formal uniformly, valid asymptotic solutions of the equation near turning point is obtained.展开更多
This paper uses the boundary layer theory to obtain an asymptotic solution of the nonlinear educed wave equation. This solution is valid in the secular region where the geometrical optics result fails. However it agre...This paper uses the boundary layer theory to obtain an asymptotic solution of the nonlinear educed wave equation. This solution is valid in the secular region where the geometrical optics result fails. However it agrees with the geometrical optics result when the field is away from the secular region. By using this solution the self-focusing length can also be obtained.展开更多
A class of nonlinear global climate oscillation models is considered. Using perturbation theory and its methods, solutions to the asymptotic expansions of some related problems are constructed. These asymptotic expans...A class of nonlinear global climate oscillation models is considered. Using perturbation theory and its methods, solutions to the asymptotic expansions of some related problems are constructed. These asymptotic expansions of the solutions for the original problem possess a higher approximation. The perturbed asymptotic method is an analyti cmethod.展开更多
A second order linear ordinary differential equation has been studied,and thecomplete expression.of the formal uniformly valid asymptotic solutions to the equationnear turning point is obtained by using extended Airy ...A second order linear ordinary differential equation has been studied,and thecomplete expression.of the formal uniformly valid asymptotic solutions to the equationnear turning point is obtained by using extended Airy function.展开更多
In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted,...In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted, and the results in [1 - 4] are improved and extended by means of the modified method of multiple scales.展开更多
The stationary phase method in conventional Lighthill's two-stage scheme to get the expressions of the velocity field was given up in this paper. The method that Ursell had used in deducing the elevation expression o...The stationary phase method in conventional Lighthill's two-stage scheme to get the expressions of the velocity field was given up in this paper. The method that Ursell had used in deducing the elevation expression of ship wave was adopted, and an asymptotic solution of velocity field of ship waves on an inviscid fluid that is perfectly fit for the region inside and outside the critical lines was obtained. It is very convenient to be used in SAR technique.展开更多
In this paper a class of nonlinear reaction diffusion problems are considered. Using the perturbed method, the asymptotic solution for corresponding problem is obtained.
We study the long-time asymptotic behaviour of viscosity solutions u(x,t)of the Hamilton-Jacobi equation u_(t)(x,t)+H(x,u(x,t),Du(x,t))=0 in T^(n)×(0,∞)with a PDE approach,where H=H(x,u,p)is coercive in p,non-de...We study the long-time asymptotic behaviour of viscosity solutions u(x,t)of the Hamilton-Jacobi equation u_(t)(x,t)+H(x,u(x,t),Du(x,t))=0 in T^(n)×(0,∞)with a PDE approach,where H=H(x,u,p)is coercive in p,non-decreasing in u and strictly convex in(u,p),and establish the uniform convergence of u(x,t)to an asymptotic solution u_(∞)(x)as t→∞.Moreover,u_(∞) is a viscosity solution of Hamilton-Jacobi equation H(x,u(x),Du(x))=0.展开更多
The soliton solutions with a double spectral parameter for the principal chiral field are derived by Darboux transformation. The asymptotic behavior of the solutions as time tends to infinity is obtained and the speed...The soliton solutions with a double spectral parameter for the principal chiral field are derived by Darboux transformation. The asymptotic behavior of the solutions as time tends to infinity is obtained and the speeds of the peaks in the asymptotic solutions are not constants.展开更多
This paper deals with reaction-diffusion system with nonlocal source. It is proved that there exists a unique classical solution and the solution either exists globally or blows up in finite time. Furthermore, its blo...This paper deals with reaction-diffusion system with nonlocal source. It is proved that there exists a unique classical solution and the solution either exists globally or blows up in finite time. Furthermore, its blow-up set and asymptotic behavior are obtained provided that the solution blows up in finite time.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB403501)the National Natural Science Foundation of China (GrantNos. 41175058,41275062,and 11202106)
文摘A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.
基金supported by the E-Institutes of Shanghai Municipal Education Commission (Grant No.E03004)
文摘Under appropriate conditions, with the perturbation method and the theory of differential inequalities, a class of weakly nonlinear singularly perturbed reaction diffusion problem is considered. The existence of solution of the original problem is proved by constructing the auxiliary functions. The uniformly valid asymptotic expansions of the solution for arbitrary mth order approximation are obtained through constructing the formal solutions of the original problem, expanding the nonlinear terms to the power in small parameter ε and comparing the coefficient for the same powers of ε. Finally, an example is provided, resulting in the error of 0(ε^2).
基金supported by the National Natural Science Foundation of China(Grant Nos 40676016 and 40876010)the Knowledge Innovation Project of Chinese Academy of Sciences(Grant No KZCX2-YW-Q03-08)LASG State Key Laboratory Special fund and E-Institutes of Shanghai Municipal Education Commission of China(Grant No E03004)
文摘This paper consider a class of perturbed mechanism for the western boundary undercurrents in the Pacific. The model of generalized governing equations is studied. Using the perturbation method, it constructs the asymptotic solution of the model. And the accuracy of asymptotic solution is proved by the theory of differential inequalities. Thus the uniformly valid asymptotic expansions of the solution are obtained.
文摘A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.
文摘In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.
基金Project supported by the National Natural Science Foundation of China(Nos.91430106 and11771040)the Fundamental Research Funds for the Central Universities of China(No.06500073)
文摘The self-similarity solutions of the Navier-Stokes equations are constructed for an incompressible laminar flow through a uniformly porous channel with retractable walls under a transverse magnetic field. The flow is driven by the expanding or contracting walls with different permeability. The velocities of the asymmetric flow at the upper and lower walls are different in not only the magnitude but also the direction. The asymptotic solutions are well constructed with the method of boundary layer correction in two cases with large Reynolds numbers, i.e., both walls of the channel are with suction, and one of the walls is with injection while the other one is with suction. For small Reynolds number cases, the double perturbation method is used to construct the asymptotic solution. All the asymptotic results are finally verified by numerical results.
文摘Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.
文摘By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied.And the uniformly valid asymptotic solution of Nth-order for ε_1 and Mth-order for ε_2 of the deflection functions and stress function are obtained.
基金The project supported by National Natural Science Foundation of China
文摘A higher order asymptotic solution of near-tip field is studied for plane-atrain Mode-Ⅰ quasi-static steady crack growth in the incompressible (v=1/2) elastic perfectly-plastic media.The results show that the near-tip stress and strain are fully continuous,and the strain possesses In (A/r) singularity at the crack tip.The expressions of the stress,strain and velocity in each region are also given.
文摘In this paper, a second order linear ordinary differential equation with three-turning points is studied. This equation is as follows (dx2)/(d2y) + [lambda(2)q(1)(x) + lambda q(2)(x, lambda)]y = 0, where q(1) (x) = (x - mu(1))(x - mu(2))(x - mu(3))f(x), f(x) not equal 0, mu(1) < mu(2) < mu(3) and lambda is a large parameter, but q(2)(x, lambda) = Sigma(i = 0)(epsilon a) g(i)(x)lambda(-i) (here g(0)(x) not equivalent to 0). By using JL function, the complete expression of the formal uniformly, valid asymptotic solutions of the equation near turning point is obtained.
文摘This paper uses the boundary layer theory to obtain an asymptotic solution of the nonlinear educed wave equation. This solution is valid in the secular region where the geometrical optics result fails. However it agrees with the geometrical optics result when the field is away from the secular region. By using this solution the self-focusing length can also be obtained.
基金supported by the support of the National Natural Science Foundation of China (Grant No. 40676016)the State Key Development Program for Basic Research of China (Grant Nos. 2003CB415101-03, 2004CB418304)+1 种基金the Key of the Knowledge Innovation of the Chinese Academy of Sciences (Grant No. KZCX3-SW-221)in part, by the E-Institutes of Shanghai Municipal Education Commission (Grant No. E03004)
文摘A class of nonlinear global climate oscillation models is considered. Using perturbation theory and its methods, solutions to the asymptotic expansions of some related problems are constructed. These asymptotic expansions of the solutions for the original problem possess a higher approximation. The perturbed asymptotic method is an analyti cmethod.
文摘A second order linear ordinary differential equation has been studied,and thecomplete expression.of the formal uniformly valid asymptotic solutions to the equationnear turning point is obtained by using extended Airy function.
基金The Project Supported by the National Natural Science Foundation of China
文摘In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted, and the results in [1 - 4] are improved and extended by means of the modified method of multiple scales.
基金Project supported by the National Natural Science Foundation of China (Grant No: 10372025) and the National Key Basic Research Foundation (Grant No: 2001CB309400).
文摘The stationary phase method in conventional Lighthill's two-stage scheme to get the expressions of the velocity field was given up in this paper. The method that Ursell had used in deducing the elevation expression of ship wave was adopted, and an asymptotic solution of velocity field of ship waves on an inviscid fluid that is perfectly fit for the region inside and outside the critical lines was obtained. It is very convenient to be used in SAR technique.
基金Supported by the National Natural Science Foundation of China (40676016 and 10471039)the National Key Project for Basics Research (2003CB415101-03 and 2004CB418304)the Key Project of the Chinese Academy of Sciences (KZCX3-SW-221)in part by E-Insitutes of Shanghai Municipal Education Commission (N.E03004)the Natural Science Foundation of Zhejiang (Y604127).
文摘In this paper a class of nonlinear reaction diffusion problems are considered. Using the perturbed method, the asymptotic solution for corresponding problem is obtained.
基金the National Natural Science Foundation of China(11971344)Jiangsu Graduate Science Innovation Project(KYCX20-2746)。
文摘We study the long-time asymptotic behaviour of viscosity solutions u(x,t)of the Hamilton-Jacobi equation u_(t)(x,t)+H(x,u(x,t),Du(x,t))=0 in T^(n)×(0,∞)with a PDE approach,where H=H(x,u,p)is coercive in p,non-decreasing in u and strictly convex in(u,p),and establish the uniform convergence of u(x,t)to an asymptotic solution u_(∞)(x)as t→∞.Moreover,u_(∞) is a viscosity solution of Hamilton-Jacobi equation H(x,u(x),Du(x))=0.
文摘The soliton solutions with a double spectral parameter for the principal chiral field are derived by Darboux transformation. The asymptotic behavior of the solutions as time tends to infinity is obtained and the speeds of the peaks in the asymptotic solutions are not constants.
文摘This paper deals with reaction-diffusion system with nonlocal source. It is proved that there exists a unique classical solution and the solution either exists globally or blows up in finite time. Furthermore, its blow-up set and asymptotic behavior are obtained provided that the solution blows up in finite time.