In China,gravity retaining walls are widely used as protection structures against rockfalls,debris flows and debris avalanches along the roads in mountainous areas.In this paper,the Discrete Element Method(DEM) has be...In China,gravity retaining walls are widely used as protection structures against rockfalls,debris flows and debris avalanches along the roads in mountainous areas.In this paper,the Discrete Element Method(DEM) has been used to investigate the impact of granular avalanches and debris flows on retaining walls.The debris is modeled as two dimensional circular disks that interact through frictional sliding contacts.The basic equations that control the deformation and motion of the particles are introduced.A series of numerical experiments were conducted on an idealized debris slide impacting a retaining wall.The parametric study has been performed to examine the influences of slope geometry,travel distance of the sliding mass,wall position,and surface friction on the impact force exerted on the wall.Results show that:1) the force achieves its maximum value when slope angle is equal to 60°,as it varies from 30° to 75°;2) an approximate linear relationship between the impact force and the storage area length is determined.展开更多
Rock avalanche–debris flows triggered by earthquakes commonly take place in mountainous areas.When entering a body of water,due to good fluidity they can move for some time instead of halting in water.In this study,w...Rock avalanche–debris flows triggered by earthquakes commonly take place in mountainous areas.When entering a body of water,due to good fluidity they can move for some time instead of halting in water.In this study,we proposed a method for calculating the surge height of rock avalanche–debris flows based on momentum balance and designed a series of model tests to validate this method.The experimental variables include the initial water depth,landslide velocity,and landslide volume.According to the experimental results,we analyzed the maximum wave height in sliding zone based on momentum balance.In addition,we investigated the surge height and proposed the calculation method in propagating zone and running up zone.In this way,we can find out the surge height in different areas when a rock avalanche–debris flow impacts into the water,which could provide a basis for analyzing the burst of barrier lakes.展开更多
At 5: 39 AM on 24 June 2017, a huge landslide-debris avalanche occurred on Fugui Mountain at Xinmo village, Diexi town, Maoxian county, Sichuan province, China. The debris blocked the Songpinggou River for about 2 km,...At 5: 39 AM on 24 June 2017, a huge landslide-debris avalanche occurred on Fugui Mountain at Xinmo village, Diexi town, Maoxian county, Sichuan province, China. The debris blocked the Songpinggou River for about 2 km, resulting in a heavy loss of both human lives and properties(10 deaths, 3 injuries, 73 missing, and 103 houses completely destroyed). The objectives of this paper are to understand the overall process and triggering factors of this landslide and to explore the affecting factors for its long term evolution before failure. Post event surveys were carried out the day after the landslide occurrence. Information was gathered from literature and on-site investigation and measurement. Topography, landforms, lithology, geological setting, earthquake history, meteorological and hydrological data of the area were analysed. Aerial photographs and other remote sensing information were used for evaluation and discussion. Eye witnesses also provided a lot of helpful information for us to understand the process of initiation, development and deposition. The depositional characteristics of the moving material as well as the traces of the movement,the structural features of the main scarp and the seismic waves induced by the slide are presented and discussed in detail in this paper. The results show that the mechanism of the landslide is a sudden rupture of the main block caused by the instability of a secondary block at a higher position. After the initiation, the failed rock mass at higher position overloaded the main block at the lower elevation and collapsed in tandem. Fragmentation of the rock mass occurred later, thus forming a debris avalanche with high mobility. This landslide case indicates that such seismic events could influence geological hazards for over 80 years and this study provides reference to the long term susceptibility and risk assessment of secondary geological hazards from earthquake.展开更多
The Wenchuan (汶川) earthquake on 12 May 2008 induced a large number of landslides, collapses, and rockfalls along the Longmenshan (龙门山) fault. The landslide in Niujnau (牛圈) Valley (named Niujuan landslide...The Wenchuan (汶川) earthquake on 12 May 2008 induced a large number of landslides, collapses, and rockfalls along the Longmenshan (龙门山) fault. The landslide in Niujnau (牛圈) Valley (named Niujuan landslide), close to the epicenter, is one that travelled a long distance with damaging consequences. Using QuickBird satellite images and GIS tools, the seismogenic mass movements are analyzed, and the movement phases, travel path, and post-catastrophic processes of Niujuan landslide are described and discussed. Image interpretation and a GPS survey showed that the mass movements denuded 37% of the research area. The Niujuan landslide moved 1 950 m along the Lianhuaxingou (莲花心沟) stream, transformed to a debris avalanche, and accumulated in the downstream bed of Niujuan Valley, where they formed a dam 30 m in height, blocking the Niujuan stream and creating a barrier lake basin with 0.11 million m3 storage capacity. Subsequent to the Ninjuan landslide, debris flowshave been more active in Lianhuaxingou and Niujuan valleys because of the accumulated mass of debris.展开更多
基金support from the 973 Program of China (Grant No. 2008CB425803)the West Light Foundation of the CAS (Grant No. 09R2200200)
文摘In China,gravity retaining walls are widely used as protection structures against rockfalls,debris flows and debris avalanches along the roads in mountainous areas.In this paper,the Discrete Element Method(DEM) has been used to investigate the impact of granular avalanches and debris flows on retaining walls.The debris is modeled as two dimensional circular disks that interact through frictional sliding contacts.The basic equations that control the deformation and motion of the particles are introduced.A series of numerical experiments were conducted on an idealized debris slide impacting a retaining wall.The parametric study has been performed to examine the influences of slope geometry,travel distance of the sliding mass,wall position,and surface friction on the impact force exerted on the wall.Results show that:1) the force achieves its maximum value when slope angle is equal to 60°,as it varies from 30° to 75°;2) an approximate linear relationship between the impact force and the storage area length is determined.
基金supported by the National Program on Key Research Projects of China(Grant No.2016YFC0802206)the National Natural Science Foundation of China(Grant No.41571004)
文摘Rock avalanche–debris flows triggered by earthquakes commonly take place in mountainous areas.When entering a body of water,due to good fluidity they can move for some time instead of halting in water.In this study,we proposed a method for calculating the surge height of rock avalanche–debris flows based on momentum balance and designed a series of model tests to validate this method.The experimental variables include the initial water depth,landslide velocity,and landslide volume.According to the experimental results,we analyzed the maximum wave height in sliding zone based on momentum balance.In addition,we investigated the surge height and proposed the calculation method in propagating zone and running up zone.In this way,we can find out the surge height in different areas when a rock avalanche–debris flow impacts into the water,which could provide a basis for analyzing the burst of barrier lakes.
基金financially supported by the National Basic Reareach program of China (973 program, Grant No. 2013CB733201)Key Research Program of Frontier Sciences, CAS (Grant No. QYZDY-SSW-DQC006)the “Hundred Talents” program (SU Li-jun) of Chinese Academy of Sciences (CAS)
文摘At 5: 39 AM on 24 June 2017, a huge landslide-debris avalanche occurred on Fugui Mountain at Xinmo village, Diexi town, Maoxian county, Sichuan province, China. The debris blocked the Songpinggou River for about 2 km, resulting in a heavy loss of both human lives and properties(10 deaths, 3 injuries, 73 missing, and 103 houses completely destroyed). The objectives of this paper are to understand the overall process and triggering factors of this landslide and to explore the affecting factors for its long term evolution before failure. Post event surveys were carried out the day after the landslide occurrence. Information was gathered from literature and on-site investigation and measurement. Topography, landforms, lithology, geological setting, earthquake history, meteorological and hydrological data of the area were analysed. Aerial photographs and other remote sensing information were used for evaluation and discussion. Eye witnesses also provided a lot of helpful information for us to understand the process of initiation, development and deposition. The depositional characteristics of the moving material as well as the traces of the movement,the structural features of the main scarp and the seismic waves induced by the slide are presented and discussed in detail in this paper. The results show that the mechanism of the landslide is a sudden rupture of the main block caused by the instability of a secondary block at a higher position. After the initiation, the failed rock mass at higher position overloaded the main block at the lower elevation and collapsed in tandem. Fragmentation of the rock mass occurred later, thus forming a debris avalanche with high mobility. This landslide case indicates that such seismic events could influence geological hazards for over 80 years and this study provides reference to the long term susceptibility and risk assessment of secondary geological hazards from earthquake.
基金supported by the NSFC-RFBR Projects (Nos. 40911120089, 08-05-92206 NSFCa)the Russian Leading Science Schools Programme (No. НШ-3405.2010.5)+1 种基金the Interna-tional Cooperation Project of the Ministry of Science and Technology of China (No. 2009DFR20620)the International Cooperation Project of the Department of Science and Technology of Sichuan Province (No. 2009HH0005)
文摘The Wenchuan (汶川) earthquake on 12 May 2008 induced a large number of landslides, collapses, and rockfalls along the Longmenshan (龙门山) fault. The landslide in Niujnau (牛圈) Valley (named Niujuan landslide), close to the epicenter, is one that travelled a long distance with damaging consequences. Using QuickBird satellite images and GIS tools, the seismogenic mass movements are analyzed, and the movement phases, travel path, and post-catastrophic processes of Niujuan landslide are described and discussed. Image interpretation and a GPS survey showed that the mass movements denuded 37% of the research area. The Niujuan landslide moved 1 950 m along the Lianhuaxingou (莲花心沟) stream, transformed to a debris avalanche, and accumulated in the downstream bed of Niujuan Valley, where they formed a dam 30 m in height, blocking the Niujuan stream and creating a barrier lake basin with 0.11 million m3 storage capacity. Subsequent to the Ninjuan landslide, debris flowshave been more active in Lianhuaxingou and Niujuan valleys because of the accumulated mass of debris.